
Accredited

Stefano Maruui

0

9
79162

OS/2 2.1 Workplace
Shell Programming

rq/ ?i
Workplace Sfiell
Prograrnrning

Stefuno Maruzzi

.,'-
RAVrmHousE
BHTunrv8LJevMG

OS/2 2.1 Workplace Shell Programming

Copyright © 1994 by Stefano Maruzzi

Composed and produced by Suncliff Graphic Productions

All rights reserved. No part of the contents of this book may be reproduced in any form or
by any means without the written permission of the pubhiher.

Pub fished in the United States by Random House, hc., New York, and simultaneously in
Canada by Random House of Canada, Limited.

Manufactured in the Uhited States of America.

First Edition

0987654321

ISBN 0-679-79162-0

Theauthorandpubfisherhaveusedtheirbesteffortsinpreparingthisbook,thediskaccompanying
thisbook,andtheprogramsanddatacontainedherein.However,theauthorandpublishermakeno
warranties of any kind, express or implied, with regard to the documentation or programs or data
contained in this book or disk, and specificauy disclaim, without limitation, any implied warranties
ofmerchantabilityandfitnessforaparticularpuaposewithrespecttothedisk,theprograms,and/or
thetechniquesdescribedinthebook.hnoeventshalltheauthororpublisherberespousibleorliable
foranylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,
consequential,oranyotherdamagesinconnectionwithorarisingoutoffumishing,performance,or
use of this book or the programs or data.

Trademarks
A number of entered words in which we have reason to believe trademark, service mark, or other
proprietary rights may exist have been designated as such by use of initial capitalization. However,
no attempt has been made to designate as trademarks or service marks all personal computer words
or termrs in which proprietary rights might exist. The inclusion, exclusion, or definition of a word or
term is not intended to affect, or express any judgment on, the validity or legal status of any
proprietary right, which may be claimed in that word or term.

NewYork Toronto London Sydney Auckland

Preface

Today,PCusersdemandnotjustsimpleGulapplications,butapplicationsthatmust
also be powerful, easy to use, fast, reliable, and, above all, rich in features. This book
shows how to write this kind of program using the OS/2 2.1 Presentation Manager
API and Workplace Shell (WPS) objects. Starting from the ground up, you will learn
the development model in great detail, adding new concepts to the general scheme.
At the end of the reading, you will be able to write the kinds of professional
applications that the current market demands.

This book is the result of more than six years of working in OS/2 since the release
ofversion1.0.Ithasbeenwrittenfromscratchbasedonthe2.1API,closelyfollowing
the user interface rules introduced by Workplace Shell and the object-oriented inter-
face. It not only explains how to write OS/2 applications, but also how to create a
user-friendly interface exploiting all the WPS features, such as drag & drop, direct
manipulation of objects, and extensive use of the pointer device. Each subject has its
own collection of examples with which to put theory into practice. The source code
samples(overl.5MBofdata)clarifytheuseoftheAplandareagoodbasisforwriting
customized software. In the menu chapter, for example, you will 1eam how to create
a basic menu bar and modify its attributes. You will also see how to create run-time
menus, window context menus, and run-time pop-up menus. Drag & drop and WPS
objects are the topics of the last two chapters. Detailed examples illustrate how to
implement titlebar dragging and write applications that interact with common ob-
jects, such as Font Palette and Color Palette.

Thenextgenerationofoperatingsystemswillmakeuseofanobject-orientedshell,
and OS/2 2.x has been among the first widely used operating systems to bring this
capabilitytothemarket.Thedirectmanipulationofobjectsrequiresthedevelopment
of a new breed of applications deeply integrated in the system shell. As a matter of
fact, in the near future the distinction between the operating system and third-party
appHcationswillbegintofade,eventuallymovingtoafullyobject-orientedoperating
environment. Therefore, the implementation of drag & drop is a real must to extend
the system shell behavior into every software program. The next and final step
coincides with the use of objects provided by the system.

The WPS compHant editor described in Chapter 13 is good example of the future
direction of software development under OS/2 2.x. The integration of hand-written

V

v± Preface

code and system object is sealess, reducing the burden of procedural coding. Ih
PMEDIT you can drag objects from e to the shell, easing typical applications such as
opening and saving a document.

To further enhance your use of this book, we have placed all the Hstings on the
accompanying disk, both to save trees and because this is how (where?) you'11 really
beusingthelistings.Detailedinstructionsonhowtousethediskareprovidedonthe
last two pages of the book.

This book is dedicated to my wife Antonella

Acknowledgments

IhavealwaysdreamtofwritingatechnicalbookinEnglish,andthankstoSteveGuty
and the support of Jean Davis-Taft and Michael Aquilante of Random House, this
dream has become a reality. I hope this is just the beginning of a long and successful
working relationship, with new titles to come.

I would also like to thank Stefano Tendon, Claudio Galletti, and Marco Canrfu for
their work, support, suggestions, and help.

Stefano Maruzzi can be reached on these electronic e-mail systems:

MCI Mail: Stefano Maruzzi (555-4412)
Compuserve: 100115,356

vii

Contents

Preface v

Acknowledgments vii

1 An Iutrodrction to presentation Manager 1
OS/2 Applications 1
Multitasking in os/2 5
The pM Screen Group 8

Working in the pM Screen Group 8
TheAplof os/2 8
The Development of pM Applications 11

Software Tools 11

The c Language and pM 12
Header Files 12
Handies 13
Data Types and the Defines in pM 15 ,
The EXPENTRY Functions 17

Debugging in os/2 PM 19
Kwikinf 20

The Development Model zl
CUA 89 and the System Menu
CUA 91 and the System Menu
The sizing Icons 24
The Menu Bar 24
Flow chart 24
The Make File 26
Resource Files 31

1X

X Contents

Header Files 34
The source code 35
The M¢z.74() Function 36

Initialization of an Instance 37
Creating the Message Queue 39
Registering a window class 39
Class styles 41
Window words 41

The predefined window classes 43
Why Register window classes? 45

The Nature of pM 45
Strategies for Registering Window Classes 46

Creating a window 46
The Parameters of Wt.7tc7`e¢£esfdw€.7tdozo() 47
Comparison between FS_ and FCF_ Styles 53

Some Remarks on Wz.7?C7'e¢fesfdw£.7tdozt7() 56
ELrors with wincreatestdwindow() 56

Displaying a window 56
The Message Loop 60

Living in the Message Loop 64
Execution Termination 64

The M¢z.7t() Function for a Generic PM Application 65
The window procedure 66

A sample Application 67
Some Altemate Solutions and Enhancements 71
The Look of windows 72 .
The Application Title 72

3 Messages 75
Painting 78

Output Techniques in pM 81 w
Distinction between Presentation Space and Device Context 83

The presentation spaces 83
The cached Mcro ps 84
TheMcrops 85
The Normalps 86

Contents Xi

The wM_PAINT Message 87
The update Region 87
Forcing a wM_PAINT Message 89
Output synchronization 91

Output Handling 92
Erasing a window's Background 94
Message Flow in pM 97

Queued Messages 97
The parameters of wz.7cPos£Msg() 100
When to post a Message 100
Non-Queued Messages 101
When to send a Message 103
Some Message-Sending considerations 103
Functions and Messages 104
Messages, Windows, and window procedures 107
Functions That use Messages 108
The Messages of the predefined classes 108
Defining New Messages 108

Some Enhancements 109
Message parameters 109

Sending Messages 111
Execution of painting 115

4 Windowing iL9
Creating a window with wz.7tcrc¢£esfdw€.7zdozo() 119
The Frame w-indow 119
Parenthood 120
Sibling windows 126
Ownership 126
The Frame control window 130
Reserved Memory 132
Extending the Reserved Memory Area 135
Querying the Reserved Memory Area 136
Window words' Usage Rules 137
Message passing 137
The Wz.7ccre¢fewz.7tdezo() Function 138

Building standard windows with wz.7ecre¢£ew€.7zdow() 140

Xii Contents

The FCF_ Flags and the WC_FRAME Class 143
Experiments using wz.7zcrc¢fewc.7tdoov() 144

The CREATESTRUCT structure 144
1

How to Destroy a window 145
Closing a Window in a Multi-Window Application 146
Sizing and positioning a window 147
Saving the position of a window 153

\

Creating a client's child window 154
hforming the window List 156
Execution of one single hstance 159

Accessing the window List 160
Enumerating Top-Level windows 163
A Third solution 165
Other solutions 168

Registering a public class 168
The Wz.77Mcss¢geBo#() Function 169
The Focus chain 175
Adding a system Icon 179

5 InputTools andResources 183
The Keyboard 183

Keyboard usage 187

TheMouse 188
Teaching an Old Mouse New Mouse Tricks 193
Mouse clicking 195
Selection of an object 195
Selecting More objects 196
Drag&Drop 197

Timers 198
The Resource File 200

The Nature of Resources 201
The Text Resources 202
STRINGTABLE 204
Loading a string 206
Defining computed IDs 207
Why You Should Use a STRINGTABLE 208

Contents Xiii

MESSAGETABLE 209
i/VINDol/VTEMPLATE 211

Using Resources 215
Binary Resources 217

Loading an Icon 218
Predefined Icons and pointers 221

Displaying predefined Bitmaps 226
Moving an Icon in a Window 228

Moving a Bitmap in a Window 233
ASSOCTABLE 236

6 Menus 241
The Titlebar Menu 243

The Titlebar Menu and wps 246
The Apls of PM and the System Menu 248
Giving a Menu to a Window 249

Creating a Menu Template 249
The Menu Template 251
Keyboard Access 253
Menu style Rules 256

Defiing Templates 258
Complex Menu Templates 261

Syntax Rules for Menu Templates 264
Loading a Menu Template 265
Menus, Parenthood, and ownership 268
Modifying the window procedure 269
Recognizing the Source of a Selection 275
Changing Attributes Dynamically 278
Messages and Macros 281
Loading a New Menu 281
Bitmaps AS Menu Items 285
Menus Built by the Application 286
Accelerators 287
Run-Time Menus 292
WPS Menus 294
hteractious between the Menu Bar and the Client Window 296

Xiv Contents

Window context Menu 297
Detecting wM_CONTEXTMENU 298
Emphasizing an object 303

The predef tned window classes 3or
The Message Flow 309
Peeping through windows 310
The structure of windows 316
The Predefined Window Classes and the Window Words 317
Undocumented classes 318
How to create awindow of class wc 318

l^Th.en to Create a Window of a Predefined Class 320

The class wc BUTTON 320
Fashionable Buttons 323
The BTNCDATA structure 324
Interacting with a Button 326
Notification codes 327
Pushbuttons as Input Elements 327

The class wc STATIC 329
+

The ss_ Styles 330
The sM_ Messages 332

The class wc_TITLEBAR 332
The class wc_SCROLLBAR 333

The SBS_ Styles 333
The SBM_ Messages 333
Some considerations 337

The class wc LISTBOX 338
The Styles of the Class WC_LISTBOX 339
The LM_ Messages 339
The Reserved Memory Area 342
Multiple selection Listboxes 343
The Notification codes 345
A simple Listbox 346
Message Flow 349
Creating a Listbox 350
Owner-Drawn Listboxes 354

Contents XV

The wM_MEASUREITEM Message 354
The wM_DRAWITEM Message 354
Creating a Listbox 358
Handing inform.ation 360
Drawing an Item 361
Some considerations 365

The class wc_ENTRYFIELD 365
The ES_ Styles 365
The EM_ Messages 366
Notification codes 367
The ENTRYFDATA structure 368
The class wc_COMBOBOX 369
The CBS_ Styles 369
The CBM_ Messages 370
The Notification codes 370
Using a combobox 370

The class wc_MLE 372
The Styles of the Class WC_MLE 372
The MLM_ Messages 373
The MLN_ Notification codes 377
Data Structures of the Class WC_MLE 377
The MLECTLDATA structure 379

The class wc_NOTEBOOK 380
Filling a Notebook 383
hserting a page 385
Associating hformation with a page 387
Notification codes 387
A FirstTry 387

The class wc_CONTAINER 388
The Styles of the Class WC_CONTAINER 388
The Logic of the WC_CONTAINER Class 389
Creating a container 392
The Objects of a Container 393
Diversions with containers 403
The window context Menu 404
Proliferation of objects 406
Other Actions on containers 407

The class wc_SLIDER 410
Creating a slider 414

Xvi Contents

Messages of the Class WC_SLIDER 414 I
A sample slider 417

The class wc_SPINBUTTON 417
Master or servant? 421
The Notification codes 422
A sample spihbutton 422

The class wc_VALUESET 424
Creating a valueset 424

8 Dialogwindows 4z9
Two Types of Dialogs 430

Features of a Dialog 430
Creating a Dialog 432
Modal or Modeless? 435
Dialog Templates 436
The Styles WS_GROUP and WS_TABSTOP 438
The Dialog procedure 439
A Doubtful Question 439

The Message wM_INITDLG 441
The Ownership Problem 443
Getting to REow the Owner 445
Accessing controls 446

The presentation parameters 448
Setting the presentation parameters 452
Presentation Parameters and Wz.7tcre¢£ew{.7idozo() 454
Presentation Parameters and Resource Files 456
Terminating a Modal Dialog 456
Default Message processing 457
Some considerations 458

A utility for pM 458
Searching for a File 459
The Scheme of the Application 461
The Accelerator Table 463
Error Handling 463
Executing a File 463
Selection of a File 464

Contents Xvii

Deleting Files 465
Searching for Files 468

Creating an open Box 469
Positioning the Dialog 470
A New Data Type 470
Centering the Dialog 471
Filling in controls 472
hiput sources 472
Selecting a File 475

Predefined Dialogs 476
Accessing the File systems 476
Listing Fonts 478

Modeless Dialogs 480
A Sample of a Modeless Dialog 480

9 Developing Fast Multithreaded Apphcdions 4!g3
Memory AIlocation 485

Memory Management 486
Segmented Applications 487
Code segment and Data segment 487 `

Executing several hstances 488
Producing a Fast Executable 489
The Structure of the DEF 490
Segmentation Rules 491

A Menu Editor 492
The hterface of Menu Maker 493
The Maximized window 493
The Empty Menu Bar 493
The control panel 495
The Application's Logic 495
DefirLing a Top-Level Menu 496
Defining a Drop-Down Menu 497
Defiing a separator 499
Defining a submenu 500
Saving the Template 501
Loading a Menu Template 502

Xviii Contents

Parsing the MNU and HHII Files 504
The MENUITEM structure 505
The position 505
The style 505
The Attributes 506
ThelD 506
The submenu Handle 506
The Bitmap Handie 506
Saving a Menu Template 507
Adding a Top-Level 507
Adding a Drop-Down 508
Adding a SEPARATOR 509
Adding a submenu 509
Gathering Menu Maker Functions 510

Multithreaded os/2 Applications 511
Creating a Multithreaded Application 511
Creating a Thread 512
Compiling a Multithreaded Appfication 514
Threads and pM Applications 514 .
The priority classes 515
Selecting a priority class 518

Multithreaded i/VHEREIS 519
I

Some considerations 522
Performance Tuning 524
Yet More Enhancements 525

T0 Sulclassing, Saperclassing, and DLL 52:9
Accessing the window procedure 531
Performing subclassing 534

A sample subclassing 536
When to perform subclassing 536

Superclassing 537
Performing superclassing 537
Features of superclassing 539

Dynalnic Linking Libraries 540
Definition of a DLL 540
How to produce a DLL 541

Contents XIX

Advantages of DLLs 542
Producing a DLL 544
Static Linking 544
Dynamic Linking 545
Structure of a Relocation Record 546
Executing a Program That Accesses a DLL 548
Loading a DLL Implicitly 548
Loading a DLL ExpHcitly 549
Coding a DLL 551

Creating a sample DLL 552
Compiling a DLL 554
The DEF File of a DLL 554
Producing an Import Library 558

Creating a New control 559
Creating a New predefined class 560

Constructing a New Window Class 562
Writing the window procedure 563
Creating a Window of the New Class 564
Passing hformation 565
How to Install a New Class of Controls 567
Some considerations 570

11 8z:.£#%%#dTBC#Ezq"es..® I, \ \ 1 ®

571

The clipboard 571
Clipboard Management 572
Ihserting Data into the Clipboard 574
Transferring an object 576
Retrieving the CHpboard's Contents 577
Examining the Contents of the Clipboard 578
CLIPPUT and CLIPSHOW 578

Dynamic Data Exchange 582
A DDE Conversation 584
Designing a DDE Conversation 584
Features of a Transaction 585
hitiating a DDE Conversation 586
Requesting Data 590
Providing Data to the Cfient 593

XX Contents

Estabfishing a Permanent Link 595
Terminating a DDE Conversation 595
Invisible windows 596
Uses ofDDE 598
Defiing the project 598
The server 601
The client 604
The cHent hterface 604
Some considerations 606

T2 Drag&Drop 6or
The Drag & Drop API 607

The Logic of Drag & Drop 610
Selecting objects 613
Preparing the Image 622
Executing the Drag 623

Preparing objects for Dropping 625
Changing the cursor's Look 631
Acceptance Feedback 633
Return value of DM_DRAGOVER 634
Frame/Client and Dragging 636
Receiving objects 637
Dragging the Titlebar Icon 638

DRAG: Preparing Data 639
DROP: Accepting an object 644

htercepting DM_DROP 646
Drag & Drop and valuesets 648
Drag & Drop and Listboxes 650
Drag & Drop and Folders 654

13 WPs programming 659
htegrating in wps 660

Miinal htegration 660
Medium Integration 660
Advanced Integration 660

Contents in

How to Develop for os/2 661
Analysis of the program 668
Creating a panel 674
The Apl for wps objects 677
A simple Ihstallation program 684
Destroying an object 691

Developing a wps Editor 691
Loading a File 692
Editing a New Document from Scratch 692

Saving a Document 693
Printing 694
hteracting with the clipboard 694
Searching and Replacing Text 694
Changing the Look: Fonts and Colors 695
PREDIT 695
WPs objects in PMEDIT 698
The structural Elements of PMEDIT 700
Changing the Name of a Document 701

Index of Listings 7o3

Index 7o7 `

Howto usethe Disk 7ig

OS/2 2.1 Workplace
Shell Programming

An Introduction to
Presentation Manager
The OS/2 operating system was introduced to the personal computer market at the
endof1987withversion1.0.New features,distinctfromthoseavailableinDOS,were
to be found in its multitasking capabhities, the greater amount of memory available
to each single rurfug application (at that time up to 16MB of physical RAM in the
system),and,aboveall,theadoptionofagraphicaluserinterfacecalledPrese#f¢f£.ore
M¢7tnger (PM) in place of the classic system prompt. Presentation Manager was
released starting with version 1.1 of the operating system (December 1988). Then a
second, more advanced version was released in September 1989 together with OS/2
1.2. The 16-bit version reached its final form in September 1990 with version 1.3.
Despiteitslong-timeavaflability,OS/2hasnotseenanygreatermarketacceptance-
ratherithasalmostfallenintoobscurityinconsequenceofthesplitbetweenIBMand
Microsoft, the two companies originally in charge of the system's design and devel-
opment.

Withtheadventofversion2.OinAprill992,OS/2acquiredyetmorenewfeatures-
completely developed by IBM (although there are still some signs of the former
partnership with Microsoft), it is dedicated to Intel and closely compatible 32-bit
processors.hJune1993,IBMreleasedversion2.1.

Thisbookdiscussesthestructuralandlogicalrulesthatgovemthedevelopmentof
OS/22.1applicatiousruringunderthePMuserinterface,wherebyeachprogramis
disguised as one or more graphical windows that can be displayed on the screen
simultaneously (Figure 1.1). h OS/2 it is possible to develop applications that stand
out from others both for their exterior, visual aspects as well as for their imer
workings,stronglyrelatedtotheexecutablecoderundngonthemicroprocessor.

OS/2 Applications
TheOS/2operatingsystemtakesfulladvantageofthe32-bitprofecfedmodeoflntel's
iAPX86 processor family. This operating mode is available in the 80386, 80486, and
Pe#f£.tt77t processors, including all their SX, DX, and DX2 variants. The system can

1

2. OS/2 2.1 Wor:laplace shell progranming

ETHELREHREEiHEjREREusRE

®®®®®S
rna,®SSS
Drag item to target

!±r±=.9Egg_!=9=pe.I__vy=i_g=9==._e=ingL3:RERE

r 9 ,nfo8ons.ve%ct. D¥A HPLEet,,D F#M

GH % fiE EI
DoSvvindow osreFull screen ffiEEEma WNosreFull sore8n

AA fa E@ ©
EffiffiRE country Devlc8DrTverlnstall FontpaJette Keyboard MigrateAppllcalons Mouse

rffl fia givgree

RE RE RE RE RE RE
1993Europeanchampions 1993ltallenChamplons AC MIlon BitmapBMP car Colorpalette

rna RE RE
DaEFo,derFon,palette,F!MeREMFTM,trofomFTFexFAIPIREplF

RE RE RE
EHH Pnnt8r Program SchemepalettB

Figure 1.1 The aspect of OS/2 2.1 system i§ characterized by the simultaneous
presence of several visible windows.

address up to 4GB of physical space, temporarily limited to 512MB for each 32-bit
process. The rules for developing an OS/2 application differ significantly from those
you might be accustomed to in DOS. These differences allow you to take full advan-
tage of this new operating system's features, such as T71fe7Process Co77777t#7tz.co£!.o7ts, flat
memorymodel,semaphores,protectedmemory,andothers.Somefeaturesaresinilar
to those found in the MS Windows environment as far as the graphical user interface
isconcemed.ThegreatestadvantageofOS/2PMisitsabilitytoexploitallthepower
ofafullypreemptivemultitaskingsystem,providingbetterperformanceandahigher
levelofprotectionforeachtaskinexecution.Theprogramminglanguagesthatcanbe
used are those most commonly found on other hardware and software platforms,
although OS/2 has a stron`g bias towards C and C++ for their flexibhity and power.

The various applications available for OS/2 are commonly grouped into three
distinct categories:

• Full-screen character-based kemel applications (FS)
• Character-based kemel appHcations runnable inside a graphical PM window

(WIN)
• Presentation Manager applications (PM)

An Introduction to presentation, Manager 3

This list is extended with DOS, DOS-Extender, and MS Windows 2.x or 3.x appli-
cations. Compatibility with au these different 16-bit programs is granted by the
support of virtual machines (VM), a feature typical o£ 32-bit processors. All these
categoriesarenotOS/22.x-specificapplications,andthereforetheycannotexploital1
of the system's capabilities. We will limit our attention only to those executable
modules that are specific to OS/2, that is, pure 32-bit code. Let's exandne the OS/2
2.x native applications.

Full-Screen Applications (FS). This category of applications contains a great many
programsthataremostlyportsofpreviousDOSapplicationsthathavesimplybeen
recompiled for OS/2 (Figure 1.2).

ThedegreeofadaptationofexistingcodetoOS/2variesconsiderably.Itcanbeas
shallow as a simple recompilation in order to render the executable application
compatiblewiththenewsystemloader.Oritcanbeascomplexasacompleteredesign
toincludeandemployagreatmanynewfeaturesavailableinOS/2,suchasexploiting
the greater memory address space.

ThefirstapplicationsevermarketedforOS/2belongedtothiscategory.Thereason
for this being the ease with. which each software manufacturer could convert its
products. FS applications are constructed by relying on a specific Application Pro-
granrfug interface (API) of OS/2, which is essentially concentrated in the three
subsystemsKBD,VIO,andMOU,whichhandlerespectivelythekeyboard,thevideo,
andthemouse.Thisisstilla16-bitAPIinOS/22.x,andthereisnoplanforconverting
it to 32-bit. h this consideration there is an underlying strong message. A developer
can still write FS applications, though he or she must not.

Figure 1.2 Lotus 1-2-3 is a typical representative of character-based user
interface applications running under OS/2.

4 0S/2 2.1 Workplace shell progranming

WindowedApplications(WIN).Windowedappficationsdifferfromtheprevious
onesonlyinthattheyarecapableofrunninginsideaPMgraphicalwindow.Fromthe
point of view of coding and programming, this means that the designer has to base
all I/0 activity on a specific set of services provided by the operating system (VIO
subset),andavoidanyl/Otoolsavailableinthelanguageorinsomefunctionlibraries
(Figure 1.3).

Apositiveaspectoftheseprogramsisthattheyrunjustlikegraphicalapplicatious
in PM, with au the advantages of ease of use. Despite the presence of a window that
limits the output surface of similar applications, the program's output is always
designedontheassumptionthatithasindiscriminateaccesstoafullscreenof80x25
colurms. This means that the diminished output surface of a WIN application does
not imply any kind of reorganization of its output, but only a]jmit of its display. In
ordertoshowthewholeoutputofaWINapplicationitisnecessarytomaxinrizeits
window to full screen size, and therefore run the application as if it were a FS
application.

PM Applications. This is the category of the "true" OS/2 applications. The role
playedbyPresentationManageris,in fact,centraltoauofOS/2.Thesystem'smain
interfaceisknownastheWorkpz¢ceSfeeJZ(WPS),anditisthefirstappHcationthattakes

Figure 1.3 0S/2's system command processor, CMD.EXE, is a character based
application that can be run in a graphical window.

iBRI/ n Introdrction to presentation Manager 5

full advantage of PM's API and of the objects of the System Object Module (SOM), a
language-neutral environlnent for defining, managing, and interacting with class
libraries. (Figure 1.1).

Multitasking in OS/2
One of the distinctive features of OS/2 is its ability to run more than one application
simultaneously. OS/2's multitasking is hardware supported, and is technically
knownasz7ree77tpf£.z7c77t#Zfz.f¢sk£.7tg.Thistermmeansthatthereisacoordinationmecha-
nism that oversees the execution of code on part of the system's scfeed#Zer. In the
configuration file, CONFIG.SYS, the fz.77tesz€.ce parameter is used to express the mini-
mum. and maximun` amount of time, in milliseconds, that a piece of code can keep
rurming uninterruptedly on the CPU. Once this time is up, the program is taken off
theprocessor,whetherornotithasterminatedtheoperationsitwasengagedinwhen
preempted.Whenaprogralnispreemptedthisway,itsexecutionstateiscompletely
saved. The replacement of the code being executed can also take place before the
fz.77teszz.ccactuallyexpires;thiswillhappenwhenanapplicationwithahigherpriority
ispresentedtothesystem.Thescfeed#Zeridentifiesthenewpieceofcodethatneedsto
be transferred to the CPU by grouping appHcations in four priority classes, each one
featuring an additional 32 internal levels of differentiation.

Torespondtotherequirementsofmultitasking,thesystememploysasharedlogic
of I/0 tools (video, keyboard, and mouse). To this end, OS/2 virtualizes all I/0
devices for a total of 16 application execution contexts (virtual PCs), also known as
scree# gro#ps or sessions. Each session contains one or more ruining processes, and
eachprocesscanbemadeupofoneormoreffe7'e¢ds.Thus,themultitaskingtermsof
OS/2 are the following:

• Screen groups
• Processes
• Threads

Ascreengroupisaprocesscontainer.Processesconsistofoneormorethreads.Bythe
termprocesswemeanarunningapplicationwithallofitsassociatedresources-for
example, memory blocks dynamically allocated during execution. The term ffe7`e¢d
indicates the minimurn amount of code that can be addressed to the CPU by part of
the scheduler. A thread in C coincides with a function. Figure 1.4 summarizes the
relationships that exist among the multitasking elements of OS/2.

Notau16screengroupspresentinthesystemareavailabletotheuser.Onlytwelve
ofthemareaccessible,andtheyarecharacterizedbyauserinterfacecontrolledbythe
CMD.EXE command processor, the character user shell. One of them is dedicated to
PresentationManager,andfourarereservedand/orperformtasksstrictlyrelatedto
the requirements of the previous 16-bit versions of the system. The screen group to
which we will turn our attention will be the one containing PM.

6 0S/2 2.1 Wor:laplace shell progranming

Figure 1.4 Scheme of multitasking in OS/2 systems.

ThenumberofprocessesrunningsimultaneouslyunderOS/2isnotlinritedbythe
numberofactivescreengroups,andcarmotevenbeassessedonsuchabasis,because
each session allows a variable number of applications to run. The system sets a limit
to its multitasking capabilities only in terms of maximum number of simultaneously
runningthreads,alinritequalto4096.Thisisapurelytheoreticalnumber,a7?o7t-Zi.77tz.£.
You could think of just one application consisting of 4096 threads, or, at the other
extreme, 4096 single-thread applications.

Since every application consists of at least one thread, although it will most often
contain several threads (multi-threaded applications), the real number of simultane-
ouslyrunningprocessesinOS/2isquitehigh-certainlymuchhigherthantheneeds
of a typical user, or even a` power-user.

Therelationshipbetweenthescreengroupsofcharacter-basedapplicationandPM
favors the former, since an FS program win take up the entire screen, while an PM
applications have to share one (Figure 1.5).

This means that the PM screen group allows several processes to be running at the
sametime.Actually,itwillhandietheseprocessesaccordingtorulesthataredifferent
from those that govern all other screen groups. Figure 1.5 shows the subdivision of
the system into screen groups, and shows the unique qualities of PM.

An Introduction to presentation Manager 7

Quauttry Type of screen Groap

Presentation Manager
Reserved
Detached applications
Harderr
Full Screen

Figure 1.5 Distribution of screen groups in OS/21.x.

The switching from screen group to screen group takes place according to a
round-robinsystem.BypressingthekeyboardcombinationALT+ESCyoucantrans-
fer to the display device of the system all active screen groups, one after the other,
including the PM screen group. To directly access Window List, the simple PM
application containing a list of all active tasks (either PM tasks or kemel processes),
press CTRL+ESC (Figure 1.6).

ffiiife®®®®
®S®®@j#S

®®®®d
OCS€

Drag item to target window. H

S:`gErs`€`¥*§++rs`Sfsse§+§`§¥S BRE

EEEEgr country De\

RERE
1993Europeon champlons 1993ltallenCham

RE RE RE RE

® 0 # RE iE EEL

Gin % RE RI
ullseeBn DOSvvindow OS#Fullscreen E¥±±aiiaEm WNrosraFullscreen

OS/2 2.0 Desktop - loon View
KwiklNF
Sg§tem Clock - Date/Time
OS/2 Full ,Screen - OS/2 Full Screen
IBM WorkFrame/2 - IBM WorkFrame/2
PMCAMERA.EXE -PM Camera 1.26
0S/2 Sg§tem - Icon View
Command Prompts - loon View
OS/2 Window - OS/2 Window
Sg§tem Setup - loon View
Co(or Palette - Palette
5HEffiHffiHffiffiffiffiffiffiffiEEEffiffififfiREffiRERE

DcitaFile Folder Fontpalette lconlco MetofleMET Mlcrofomat'cFCDCFAX PIFfilepIF

RE RE RE EH
!iREEEE¥i¥ij!jiE Pnnter Program Scheme palette

Figure 1.6 Window List containing the list of all applications, both PM and
non-PM, that are active in the system.

8 0S/2 2.1 Worlcplace shell progranming

The PM Screen Group
The features of the PM screen group are not lilnited to the simultaneous execution of
severalappficationssharingthescreen'ssurface.Itisalsoactivatedi-ediatelyafter
the preliminary boofsfr#p phase. Furthermore, the graphical interface of the system,
WPS, is a PM application that is loaded immediately after bootstrap (Figure 1.7).
WorkinginOS/2issimpleandintuitivethankstoWPS,anewbreedofoZ7/.ec£-or!.e7ifed
user interface, a full replacement and enhancement of the interface of version 1.x.

Working in the PM Screen Groap
Whenthesystemistumedon,theuserwillbeinteractingdirectlywiththePMscreen
group. The screen will look like the one shown in Figure 1.7.

Severaliconswillbedisplayed.Asopposedto¢ppZz.co£!.o7t-or!.e7tfedinterfaceslikeMS
Windows or versions 1.x of OS/2, WPS is an ob/.ecf-or!.e7tfed user interface. The icons
that show up on the desktop can be broken into four categories:

• Folders
• Physical devices
• Data files
• Programs

h previous versions, the appearance of icons was strongly related to runing
apphications in their minimized state. h OS/2 WPS the scenario is different; the icons
do not provide a visual cue. Double-clicking on an icon is most often followed by a
windowopeningonthescreen,asinthecaseoffolders,theactivationofanapplication
(datafilesandprograms),orthedisplayofthesettingsofadevice.Anotherinteresting
feature of WPS is that menus are not related to the traditional menu bar. Each WPS
object is armed with a zo£.77dozo co74fexf 77te7t# that is activated by pressing the right
mouse button. h the next few chapters we will explore the relationship that exists
betweenPM'sAPIandthesefunctionalaspectsofWPS,anddiscussseveralexamples
that iuustrate in greater detail how to create folders and window context menus. WPS
itself is a PM application exploiting many features of the PM API, like predefined
window classes.

The API of OS/2
h order to proceed with the development of a PM program it is necessary to use
certain functions of the operating system. The entire set of services offered by OS/2
is called API (AppZz.cofz.o7t Progr#77t r7tfer/#ce). The API of OS/2 can be classified accord-
ing to their functions (Table 1.1).

As you can see, there are hundreds of calls available to the development process.
ThesoftwaredesignerwillcalltheAPIserviceswhenimmediatesolutionsareneeded
for certain problems related to the application's design. To open a file, call Dosope7e().

An Introduction to presentation Manager 9

Figure 1.7 An OS/2 system immediately after bootstrap operations.

DosAZZocMeffl() is the easiest way to allocate a chunk of memory. The creation of a
window is implemented through functions like W£.7icre¢fewz.7cdozu(), W£.7t-
Crc¢£esfdw€.7tdozo(), W{.7?Lo¢dDzg() and others. The API of OS/2 is implemented like a
callofthetype_System,acallingconventiondefinedbythedesignersofIBM,andis
accessible and callable directly from any high-level language.

Table 1.1 Prefixes That Characterize the Categories of API Functions of OS/2

Pr ef tx D es crip ti on Qu anttry

Windowing
Graphics
Drag&drop
Data formatting
INI management
Printers
Controlprogran
Management of logical devices
Spooler

10 0S/2 2.1 Workplace shell progranming

This approach to the API makes life a lot easier for programmers, as they are free
to develop code independent of the language being used, and that is mostly based on
toolsofferedbythesystem.Furthermore,callingtheAPIdirectlywillmakethelisting
easier to read and understand.

The following code fragment is extracted from a typical OS/2 application that
searches for a given ffle among all files in the system.

®®®

do

I
// store the ID
papprec -> 1Type = lType ;
1.f(1Type < OL)

papprec -> 1Type = j + i.nc ;

// load strl.ng
Wi.nLoadstri.ng(HAB(hwnd), NULLHANDLE,

OBJECTID + papprec -> 1Type,
si.zeof(szstri.ng), szstri.ng) ;

psz = strdup(szstri.ng) ;

// fi.lli.ng the RECORDCORE structure
-> flRecordAttr = CRA_CURSORED I CRA_DROPONABLE

prec ->
prec ->
prec ->
prec ->
prec ->
prec ->
prec ->

pszlcon = psz ;
hptrlcon = Wi.nLoadpoi.nter(HWND_DESKTOP,

NU LLHAN D LE ,

OBJECTID +

papprec -> lType)
hptrMi.ni.Icon = NULLHANDLE ;`

hbmBi.tmap = NULLHANDLE ;

hbmMi.ni.Bi.tmap = NULLHANDLE ;

pTreeltemDesc = NULL ;
pszText = psz ;
pszName = psz ;
pszTree = psz ;

// i.ncrease the counter
FLEE I

} whi.le(prec) ;
®,®

All functions that have the Dos prefix are API calls that can be invoked like any
function of the C language, following their syntax. When developing appfications for
PM you win most often use the entire set of functions characterized by the prefix Wz.7t,
and occasionally the functions with the prefix Gpz.. Sometimes, histings will also
contain cans to Dos, Dcz7, and Pr/. h this book we focus almost exclusively on the API
callsoftheWz.77type-thesetofsystemservicesthathavebeendesignedexpresslyfor
handling a window in PM.

Am Introduction to presentation Manager 11

The Development of PM Applications
hordertodevelopaPMapplication,youmusthaveathoroughunderstandingofthe
structural and functional features of OS/2. Uhlike MS Windows, PM is the only user
interfacetotheoperatingsystemtowhichallotherproblems\(memorymanagement,
file I/0 operations, process activation, creation of new threads, and so on) are
delegated.Thus,afullstudyoftheOS/2kemelisbeyondthescopeofthisbook,and
you should refer to the manuals that are furnished with the Toolkit for a thorough
treatment. However, in some chapters, I will provide a brief description of memory
management techniques, the use of semaphores, and the creation of threads.

SoftwareTools
TowriteaLPMapplicationyoumusthaveaireadyinstalledonyourpersonalcomputer
the OS/2 operating system, version 2.1 or even the older version 2.0, a high level
languagecompilerthatsupportsthe32-bitworldofOS/2andtheToolkit-thesetof
files necessary to create an executable starting from source modules. All examples in
this book have been written based on the IBM development product suite: IBM
WorkFrame/2, the IBM C/C++ compiler, and the IBM Toolkit. A111istings also have
been compiled and tested with the Borland C++ for OS/2 compiler, which is a valid
altemativetoIBM'sproductline.ThehardwareemployedwasanIBMmode190486
66MHzDX2,equippedwith24MBofRAM,two400MBSCSIharddiscsandanXGA
video adapter. You don't need such a powerful system to use OS/2 or develop
appficationsforit.Table1.21iststheextensiousofsomeofthefilesthatarenecessary
for creating PM applications that you will get acquainted with in the following
chapters. The three main pieces of development software are the C compiler, the
resource compiler, and the linker,listed in Table 1.3.

These tools are managed primarily by the development environment, Work-
Frame/2, and are transparent to the developer.

Table 1.2 File Extensions of the File Involvedin the Development of a pM Application

Eutension D escription

C source file
hclude or header source file
File containing a dialog window template
File containing an icon
File containing a bitmap
File containing non-compiled resources
Object file produced by a compilation run
Compiled resource file
Module definition file
Collection of .OBJ files and import libraries
Executable file produced by the linker

T2 0S/2 2.1 Workplace shell progranming

Table 1.3 The Names of the IBM C Compiler

Mo dude D es cription

RC.EXE Resource compiler
ICC.EXE Command for compiling and linking c programs
LINK386.EXE Linker for producing 32-bit applications

The C Language and PM
Almost all commercial PM applications are written in the C language, although it is
possible to use other high-level languages like C++, COBOL, and Modula-2. The
eventual next step is the transition to the C++ language, although that is not yet a
viable solution because C++ products are still in the development phase. The main
advantage of C++ over C is in the terseness of source code and in the power of the
language's operators. Nevertheless, the tools furnished with the IBM C Set/2 do
indeed make the development of programs easier.

Header Files
Just like any application written in C, those for PM depend on some fee¢der¢.Zes, an of
which have the .H ffle extension. h the OS/2 Toolkit there is a tree structure of several
header ffles that are often very large. In Appendix A, you will find a list of all the
defi.ne arguments that are available in these header ffles and that are used in
developing PM applications and to speed up the compilation phase. The main header
ffle,forourpurposes,isPMWIN.H,afilethatisover150Kandcontainsthefouowing:

• Prototype of the OS/2 API services with the W1.7t prefix, that manage all problems
involved in developing graphical windows

• Definitions of new simple and aggregate dataL types, used in the development of
PM applications

• Simple defines and macros

In order to include in a piece of source code all elements specified in PMWIN.H,
you need to specify the OS.H header file in an #i n cl ude directive. However, before
that you must write the directive #d ef i. n e I N C L_W I N as in the following example:

#defi.ne INCL_WIN
#i.nclude <os2.h>
®®,

In this way the C source code will be able to access automatically all defines and
APIcallscharacterizedbytheprefixWz.7t.hordertoalsohaveaccesstotheGp€.portion
ofpM'sAPI(describedinpMGPI.H),youneedonlyaddanewpreprocessordirective
as in the following example.

An Introduction to presentation Manager L3

#defi.ne INCL_WIN

#defi.ne INCL_GPI

#i.nclude <os2.h>
®®,

Both defines can be aggregated in an I N C L_PM directive:

#defi.ne INCL_PM

#include <os2.h>
®®,

Despite what you might think about the tree structure of the header files, it is
necessary to specify the OS2.H header file rather than PMWIN.H directly, because
some defines that affect the development of PM application are actually contained in
other files, like OS2DEF.H.

The #def i n e directives examined thus far affect only the access to the API that is
typicalofPM.However,inaPMapplicationyoumightwanttocallDos,Deuandeven
Vz.o functions. To meet this need, some specific directives allow the inclusion of other
portions of the system's header ffles. Quite often, the first part of a source file for a
generic PM application looks like this:

#defi.ne INCL_WIN

#defi.ne INCL_GPI
#defi.ne INCL_DOS

#defi.ne INCL_DEV

#i.nclude <os2.h>
®,®

This text is centered around the use of the W€.7t functions, and thus, in addition to
reading the on-line help text, you might also want to have a look at PhAVVIN.H and
PMSTDDLG.H-two excenent starting points for getting acquainted with PM's API.
The growing complexity of the interface of OS/2 and the constant addition of new
functions (for example, WPS), has inspired IBM developers to extend the contents of
PMWIN.H and even add new header files. Among these, PMSTDDLG.H and
PMWPS.Hplayafundamentalroleintheadditionofnewpredefinedwindowclasses
and to the new support of WPS.

Handles
I

Among the various types defined through the keyword typedef of the C Language,
fe¢rzdzes play an important role in the oZ7/.ec£-orz.e7ifed programming model of PM.
Actuauy,handleisjustatermthatsignifiesasimpleuns1.gned1ong(UL0NG),afour
byte datum through which the system can refer to complex objects like a window, a
bitmap, a presentation space, or a device context.

\

typedef unsi.gned long LHANDLE;

14 0S/2 2.1 Workplace shed progranming

Handles are used everywhere, and there are several kinds which differ` ordy in
namingconvention:Itispreciselyforthisreasonthattheymakelistingseasiertoread
(Tables 1.4,1.5,1.6).

Table 1.4 The Handles Declared in PMWIN.H

Handle D e s cription

HEP"
HIRAGE
HSAVEVVP
HACCEL
HPOINTER
HATOMTBL

Handle for enumeration operations.
Handle of an inage.
Handie for operations saving the position of a window.
Handie for an accelerator table.
Handie for the mouse p'ointer.
Handie for a table of atoms.

Table 1.5 The Handles Declared in OS2DEF.H

Handle D es cription

HMODULE
RAB
HPS
HDC
HRGN

HBITh4AP
HNI
HPAL
HVVNI
HMQ

Handie of a module (DLL).
Handie to the application's anchor block.
Handie to a presentation space.
Handie to a device context.
Handle to a region (surface that cannot be reduced to a standard
geometrical shape).
Handle to a bitmap.
Handie to a metafile.
Handle to a palette.
Handie to a window.
Handle to the message queue.

Table 1.6 The Handles Declared in PMSHL.H

Handle D es cription

HPROGRAM Handle to a program.
HAPP Handie to an application.
HINI Handie to a proffle ffle.
HSWITCH Handle to the list of applications in the window List.

An Introduction to preseritation Manager 15

Almost au of the handles listed in Tables 1.4 through 1.6 will be presented in the
examplesinthisbook.Thechoiceofhandlesastoolsforcontrollinglargeobjects(like
bitmaps) is sound because they are easy to use and small in size. Most often, in PM
listingsyouwillfindthedefi.neNULLHANDLE;it'sthegenericnullhandle:

#defi.ne NULLHANDLE ((LHANDLE)0)

Why do we have to deal with handles? The answer is a consequence of the
development model. Every PM object (a window, a bitmap) is a collection of data
storedsomewhereinthesystemmemory.Itslocationmayvaryduringexecutiontime
due to the memory management techniques inside the processor and the operating
systemitself.In fact,optimizationofmemoryusagerequiresthatobjectscanbemoved
freely to reduce fragmentation. The address of each object varies from time to time;
therefore,apointerisnotthemostsuitablewaytoaccessanymemorylocation,since
theoperatingsystemwouldhavetocoustantlyupdatethepointerwithinapplications.
hstead, when an application requests memory from the operating system,` it is
returned a handle, a dummy number which corresponds to a pointer to the actual
address.Memorylocationsarehandledbythesystem,handlesbytheapplication.You
will never find handle as the 7`-z7¢Ztte in an assignment operation, except when the
I-I)¢Z#c is another handle. Usually handles are treated as Z-z7¢Z#es where the r-I)¢Z#e is
an API call.

hwnd = Wi.ncreatestdwindow(...) ;

hptr = Wi.nLoadpoi.nter(...) ;

hbmp = Gpi.LoadBi.tmap(...) ;

This demonstrates that handles are returned by the operating system and that you
carmot make any assumptions regarding their numeric values-what really matters
istocheckifahandleisvalidornotvalid.Validhandleshavepositivevalues(greater
thanzerobecauseitisauLONGdatum),whileaninvalidhandleiszero,1ikeNULHANDLE.

Data Types and the Deftnes in PM
StartingwiththenextchapterwewilldevelopatruePMapplicationbyusingtheAPI
environment. It win be necessary to use data types and defines that are set up in the
OS/2 header files, so at this point we will examine the nature of PM's API in greater
detail.

h the first place, the API functions follow the _Sys tern calling convention. These
donotperformaswellasthe_Optl1.nkadoptedbytheCSet++compiler,butbetter
respondtotheneedsoftheAPI.The_Systemc¢ZZ£.ngco7tz7e7tf€.oropassesallparameters
onthestack,justliketheCcallingconvention,withadoublewordaligrment.Uhlike
theCcallingconvention,though,theparametersarepushedontothestackfromright
to left. The number of parameters is constant, like the P¢sc¢Z C¢Zze.7tg Co7€z7e7ifz.o7z. Their
disposal after a call must be taken care of by the calling code. h the header files,
_Sys tern will originate a define for an AP I ENTRY call:

16 0S/2 2.1 Workplace shell progranming

#defi.ne APIENTRY _System

#defi.ne EXPENTRY _System

The same value is also assigned to the define EX P E NTRY, used to mark au functions
ofthiskindexplicitlywritteninthesourcecodebytheprogrammerthatarenotpart
of the API of OS/2. The define EX P ENTRY exports the corresponding function so that
the executable module can be generated correctly by the linker (we will get back to
thisissuewhendealingwiththesubjectofthemoduledefinitionfile).OS2DEF.Halso
contains other definitions that are frequently used in PM progranrming (Table 1.7).

Table 1.7 Some Frequently Used Data Types in PM Programming

Frequeritky used Data Types in pM Pref txlDescription

#define VOID void
typedef unsigned long APIRET;

#define FALSE 0
#define TRUE 1
#define NIL ((void *)0)

Value returned by an API call of the
DOS type

NIL POINTER
#define NULLIIANDLE ((LHANDLE) 0) NULL HANDLE
#define CHAR char
#define SHORT short
#define LONG long
#defroe NI int
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char BYTE;
typedef unsigned char *PSZ;
typedef unsigned char *NPSZ;
typedef unsigned char *PCH;
typedef unsigned char *NPCH;
typedef BYTE *PBYTE;
typedef BYTE *NPBYTE;
typede£ CRAR *PCHAR;
typedef SHORT *PSHORT;
typedef LONG *PLONG;
typedef INT *PINT;
typedef UCIIAR *PUCHAR;
typedef USHORT *PUSHORT;

(coritinIAed)

An Introduction to presentation Manager T7

TaLble 1.7 (Continued)

Frequeutky used D ata Types in pM Pref txlDescription

typedef ULONG *PELONG;
typedef tJINT *PUINT;
typedef VOID *PVOID;
typedef PVOID *PPVOID;
typedef unsigned long BOOL;
typedef BOOL *PBOOL;

The values expressed in the second column indicate what prefix needs to be used
to mark each identifier for that particular data type in order to reflect the Hungarian
Notation conventionally used by PM programmers. H#7tgrr€.¢77 No£¢ffo7i is a conven-
tionthatsimplifiessoftwaremaintenanceandreadabhity.ItwasinventedbyCharles
Simonyi,aHungariansoftwaredeveloper.Thenotationreliesuponthepresenceofa
lowercase letter prefix that identifies the data type of an identifier (for example, psz
to indicate a pointer to an ASCIIZ string), and one or more full words with initial
capital letters. For example, if you need to declare an unsi. gned 1 ong to store the
description flags of a window, you might come up with an identifier like ul Frame -
Control Fl ags. This nright be further abbreviated to ul FCFl ags, provided its usage
context is always unambiguous.

If you want to declare an uns 1. gned s hort, you can specify the data type USHORT
and prefix the identifier with us as is shown in Table 1.7. A data type independent
arraycanbeintroducedbythelettersrg(range);anarrayofpointerstothechardata
typewillthusbecalledsomethinglikergszStri.ngs[]orevenszStri.ng[].

Appendix 8 contains a detailed description of the Hungarian Notation.

The EXPENTRY Functions
As we will see in the next chapter, the functions that are characterized by the define
EXPENTRYalwaysreturnavalueoftypeMRESULTandtaketwoparametersofthetype
MPARAM as defined in PMWIN.H (Table 1.8).

Table 1.8 The Parameters and Return Values of an EXPENTRY Function Are
Always of the Type MPARAM and MRESULT, Respectively

Paraneters Prefix Description

typedef VOID *MPARAM; mp Parameter to a window procedure

#:::: vng|AD¥L:E#T¥; Lmeps R:mLir;:1:e¥f£#dow procedure
typedefMRESULT *PMRESULT; prmes Pointer to aLMRESULT

18 0S/2 2.1 Workplace shell progranming .

h each +traditional PM application, there will always exist at least one function
declaredasEXPENTRY,andthusitisimportanttoknowitscharacteristicsandfunction.
Furthermore,somemacrosdefinedinOS2DEF.HandinPMWIN.Hplayafundamen-
tal role in making PM programming easier through functions of the EX P ENTRY type
(Tables 1.9 and 1.10).

Table 1.9 List of Macros Used by Functions That Have the EXPENTRY Modifier

Macro I Description

MAKETYPE(v, type) (*((type *)&v))
Casts an identifier into any other data type.

FIELDOFFSET(type, field) ((SHORT)&(((type *)0)->field))
Computes the offset of any kind of data structure.

MAKEULONG(I, h) ((ULONG)(((USHORT)(I))I I ((ULONG)((USHORT)(h))) << 16))
Builds a ULONG starting with two SHORTs.

MAKELONG(I, h) ((LONG)MAKEULONG(I, h))
Builds a LONG starting with two SHORTs.

MAKEUSHORT(I, h) (((USHORT)(I)) I ((USHORT)(h)) << 8)
Combines two 8 bit objects to create a USHORT.

MAKESHORT(1, h) ((SHORT)MAKEUSHORT(I, h))
Combines two 8 bit objects to create a SHORT.

LOBYTE(w) LOUCIIAR(w)
Extracts the lower byte.

IHBYTE(w) IHUCIIAR(w)
Extracts the higher byte.

LOUCIIAR(w) (qucIIAR)(w))
Extracts the lower UCIIAR.

HIUCIIAR(w) ((UCHAR)(((USHORT)(w) >> 8) & Oxff))
Extracts the higher UCIIAR.

LOUSHORT(I) ((USHORT)((ULONG)1))
Extracts the lower USHORT.

IHUSHORT(I) ((USHORT)(((ULONG)(1) >> 16) & Oxffff))
Extracts the higher USHORT.

Table 1.10 Extraction of Data from a MPARAM

Creation of a MPARAM Starting with Standard Data Types

NIVOID ((MPARAM)OL)
MPFROMP(p) ((MPARAM) ((ULONG) (p)))
MPFRONIIWND (hwnd) ((MPARAM) (HWND) (hwnd))
MPFROMCIIAR(ch) ((MPARAM) (USHORT) (ch))

(coritinued)

Am Introduction to presentation Manager T9

Table 1.10 (Co#fi.##ed)

Creation of a MPARAM StaiFting with Standard Data Types

MPFROMSHORT(s) ((MPARAM) (USHORT) (s))
MPFROM2sHORT(si, s2) ((nffARAM)MARELONG(si, s2))
MPFROMSH2CH(s, uchl, uch2) (quARAM)MARELONG(s, MARESHORT(uchl, uch2)))
MPFROMLONG (I) ((MPARAM) (ULONG) (l))

Maoros to Eutract Standard Data Types from 'a MPARAM

PVOIDFRohan(mp) ((VOID *) (mp))
HWNDFROP\mff(mp) ((HWND) (mp))
CIIARIFROMMP (mp) ((UCHAR) (mp))
CIIAR2FROMrm(mp) ((UCIIAR) ((ULONG)mp >> 8))
CIIAR3FRohun(mp) ((UCIIAR) ((ULONG)mp >> 16))
CIIAR4FRohon(mp) ((UCIIAR) ((ULONG)mp >> 24))
SHORTIFROMMP(mp) ((USHORT) (ULONG) (mp))
SHORT2FROMNI(mp) ((USHORT) ((ULONG)mp >> 16))
LONGFRohon(mp) ((ULONG) (mp))

Maoros to Create a MRESUIT from Standard Data Types

nmFRONI(p) ((MRESuLT) (volD *) (p))
hmFROMSHORT(s) ((MREsuLT) (USHORT) (s))
hmFROM2SHORT(si, s2) ((MRESuLT)MARELONG(si, s2))
MRFROMLONG (I) ((r\mEsuLT) (ULONG) (I))

Maoros to Extract Standard Data Types from a MRESUIT

PVOIDFROMMR(mr) ((VOID *) (mr))
SHORTIFROMrm(mr) ((USHORT) ((ULONG)mr))
SHORT2FROMMR(mr) ((USHORT) ((tJLONG)mr >> 16))
LONGFROMMR(mr) ((ULONG) (mr))

Debugging in OS/2 PM
An important element by which you can judge the maturity of a programming
environmentisbythequantityandqualityofdebuggingtools.Somepeoplecousider
debuggers tools you cannot live without, others think they are just cute accessories.
Nonetheless,youwillcertainlyfeelmorerelaxedinknowingthatyoucangohunting
bugs with tools like the IBM PM Debugger, which is bundied with the IBM C Set++
compiler. With this debugger you can easily and quickly inspect any executable
module(EXE)whileitisrunning.CineofthemanualsofthelBMCcompilerisdevoted

2:0 OS/2 2.1 Wor:laplace shed progranming

to IPMD, and presents detailed information on all facets of debugging-even in a
multithreaded environment Hke that of OS/2 PM. h this text we use IPMD both to
catch any bugs that might have crept into the code, as well as using it as a simple
learning tool. All examples in this text have in their corresponding WorkFrame/2
project files the debug flags set both for compiling as well as for linking.

Kwikinf
All IBM development tools are supported by rich on-line documentation, full of
cross-references that make it a breeze to use. The best way to access the on-line help
isbypressingthekeyboardcombinationALT+Q,whichwillbringtheKWIKINF.EXE
application on screen (Figure 1.8).

The installation of the toolkit will transfer KWIKINF.EXE and its related files to the
TOOLK21\OS2BIN directory. It is a good idea to place this file in the S£¢rft4p folder,
so that it will run automatically each time you turn on the system.

Whenusingtheadvancededitor,EPM.EXE,youcanaccesstheon-1inedocunenta-
tion by pressing the keyboard combination CTRL+H. You can also request help
regarding a message or function by pressing that keyboard combination when the
cursor is above an API item.

Figure 1.8 KWIKINF makes the software developer's life easier by presenting
on-line the whole of the development toolkit's documentation.

REhe Development
Model

ThecompletionofaPMapplicationfollowsaspecificlogicalpathbasedonaprecise
development model. Differences as compared to an OS/2 kemel program (i.e., char-
acterbasedapplications)aretobefoundbothinthenumberandtypeoffflesinvolved.
APMapplicationisclearlydistinguishedonthescreenbyoneormorewindows.(We
will use the term ge7ter!.c PM ¢ppZ€.coffo7t to refer to any program that shows up just in
an on-screen window.) The num.ber of windows and the specific type of relationship
estabfished among them is strongly affected by the interface model adopted by the
developer. The style guidelines of the Co77£777o7t Lrser Access 91 (CUA 91) recommend a
Sz.7tgzcDoc#77te7t£J74£er/#ce(SDI)approachratherthanthepreviouslypreferredM#Zfz.pze
Doc#77ze7zf J7tfer/#ce (MDI) adopted in OS/2 1.3 and derived from MS Windows 3.x.
Adhering to the CUA 91 specifications rather than the former CUA 89 specifications
involves a significant impact even on the software developer's work. We will stress
the stylistic guidelines and aspects to be fonowed whenever there are discrepancies
between the previous interface model and the new one.

h order to create and display a PM window/application, you must write several
ffles. On the whole, due to the specific rules of the PM development model, the effort
required is substantially greater than that required by a ¢ZZ scree7e program. Before
examing ,any code, 1et's define some structural elements and the terminology used
by a typical PM application (Figure 2.1).

It'seasytorecognizemanyofthestructuralelementsjustbylookingatapMwindow.
EachandeveryPMwindowhasaborderthatdelimitstheareatakenuponthescreen.
This border can have different attributes and aspects, depending on what has been set
up in the original source code. h the case of Figure 2.1, you can see a typical sizing
border,whichallowsyoutochangethesizeofawindowsimplybypointingthemouse
on one of the four borders, depressing the left mouse button, and, while keeping that
mouse button down, moving the mouse pointer on the desktop. When you release the
mousebutton,thewindowwillberesizedaccordingtowhathasbeenindicatedbythe
user. (There is also an equivalent procedure for keyboard users.)

21

2:2 0S/2 2.1 Workplace shed progranming

SET VIO_XGA=DEVICE(BVHVGA,BVHXGA)
SET VIDEO_DEVICES=VIO_XGA
DEVICE=D:\OS2\XG£RINGO.SYS
IFS=D:\OS2\HPFS.IFS /CACHE:1024 /CRECL:4 /AUTOCHECK:CDEF
PROTSHELL=D:\OS2\PMSHELL.EXE
SET USER_INI=D:\OS2\OS2.INI
SET SYSTEM_INl=D:\OS2\OS2SYS.INI
SET OS2_SHELL=D:\OS2\CMD.EXE
SET AUTOSTART=PROGRAMS,TASKLIST,FOLDERS,CONNECTIONS
SET RUNWORKPLACE=D:\OS2\PMSHELL.EXE
SET COMSPEC=D:\OS2\CMD.EXE
LIBPATH=C:\CCMAIL;.;D:\OS2\DLL:D:\OS2\MDOS;D:\:D:\OS2\APPS\DLL;F:\TOOLKT21\DLL;F:\lBMWF\
DLL;F:\lBMCPP\DLL:C:\MMOS2\DLL:E:\UTS\UTL;
SET
PATH=D:\OS2;D:\OS2\SYSTEM:D:\OS2\MDOS\WINOS2;D:\OS2\lNSTALL:D:\:D:\OS2\MDOS;D:\OS2\AP
PS:F:\TOOLKT21\OS2BIN;F:\lBMWF\BIN;F:\lBMCPP\BIN;C:\MMOS2;E:\UTS\UTL;
SET
DPATH=D:\OS2;D:\OS2\SYSTEM;D:\OS2\MDOS\WINOS2;D:\OS2\lNSTALL;D:\:D:\OS2\BITMAP;D:\OS2\
MDOS;D:\OS2\APPS;F:\TOOLKT21\BOOK;F:\lBMCPP\LOCALE:F:\IBMCPP\HELP;F:\lBMCPP\SYS;C:\MM
OS2;C:\MMOS2\INSTALL;E:\UTS\UTL;E:\UTS\UTD;
SET PROMPT=SI[SP]
SET
HELP=D:\OS2\HELP;D:\OS2\HELP\TU.TORIAL;F:\TOOLKT21\OS2HELP;F:\IBMWF\HELP;F:\lBMCPP\HEL
P;C:\MMOS2\HELP:E:\UTS\UTL;
SET GLOSSARY=D:\OS2\HELP\GLOSS;
SET IPF_KEYS=SBCS
PRIORITY_DISK_lo=YES

SET UMPATH=E:\UTS\UTL;E:\UTS\UTD;

Fll Fe=?n

Figure 2.1 The OS/2 System Editor is a typical PM application accommodat-
ing a menu bar, a vertical scrollbar; and resizing buttons.

The darker border (which appears dark green in the default PM coloring scheme)
occupies the upper portion of the window shown in Figure 2.1. h this area, there is a
left-aligned text item that corresponds to the program's title and identifies the win-
dow/application. This is known as the fz.fzcb¢r, and is the distinguishing feature
between the windows of the same or different applications. The color of the titlebar is
varied by the system according to the window's status. If the window is active the
default color is green; if the window is inactive, the color is gray.

To the left of the titlebar there is an icon (a bitmap) distinguished by a small arrow
pointing downward and a small horizontal bar. h OS/2 2.1 systems, this image is
often replaced by a colored bitmap corresponding to the application's own icon. To
understandthisdescriptionmoreclearly,justopentheos/2Sysfe77tobject.Ifyouhave
an XGA video adapter, the bitmap will show up as a small circle with ``OS/2" printed
inside. With lower resolution video systems, the image is limited to the circle alone.
Besidestheactualappearanceofthef#Zeb¢rz.co77(thisisitsrealname,eventhoughyou
might be tempted to call it the system menu icon, as in the past), by selecting it with
the keyboard or the mouse, you win see a drop-dozo7t 777e77#. By default, this menu
presents eight options (Figure 2.2). Here we need to distinguish between the CUA 89
and the CUA 91 models.

The Development Model 2:3

Figure 2.2 The structure of a default system menu in PM.

CUA 89 and the System Mere
Theiconthatappearstotheleftofthetitlebarisknownasthesysfe77e777e7t#.Itisactually
a drop-down menu whose contents are consistent from application to application.
Thismenuisdesignedtoprovideeasywindowsmanagementevenforuserswithout
amouse.Thankstothesystemmenuitispossibletomanipulatewindowsdirectlyby
means of keyboard operations. You can change a window's size (Size, Restore,
Mininrize, Maxinrize, and Hide), its on-screen position (Move)-you can even termi-
natetheapplicationrunninginthewindow(Close).YoucanalsoaccesstheWindow
List, a special window listing all tasks that are active in OS/2 at any time.

CUA 91 and the System Mere
CUA 91, on the other hand, assumes that two icons appear to the left of the titlebar:
Of these two icons, the leftmost corresponds to the system menu. The drop-down
menu, displayed by pressing Alt+Spacebar or Shift+Tab, contains the same options
to control the overall size and position of the windows. However, in OS/2 2.1 there is
no application whatsoever with a double icon to the left of the titlebar. The designers
ofwpsdecidedtomergethetwomenuscorrespondingtotheitwoiconsintoonesingle
menu. To be completely accurate, one should distinguish between three styfistic

24 0S/2 2.1 Workplace shell progranming

approaches: CUA 89, CUA 91, and WPS. Chapter 6 will discuss the development of
menus according to these diverse approaches.

The Sizing Icons
To the right of the titlebar there are two icons, one featuring a very small square, and
the other a somewhat larger square. Both images can be replaced under certain
functionsofthewindow,orasaresultofsomechoiceatthedesignlevel.Theiconthat
appears nearest to the titlebar looks like a small square, of which only the comers are
visible.Thesecondiconlookslikeawindowwithtwoverticalbarsalongthesides.It
is impossible to display all four icons simultaneously in a PM window.

The only way to operate these icons is to use the mouse. The action of any of these
icons is summarized in the following table.

Icon Action
• Minimize The window shrinks down to the size and shape of an icon inside

theMinimizeWindowViewerfolderoronthedesktop(andinthis
case it is also bordered by a frame).

Maximize The window expands to cover the whole screen.
Hide The window disappears from the screen.
Restore The window regains the position and size it had before the last

minimize or maximize operation.

The selection of any one of these icons automatically updates the contents of the
window's system menu.

The Menu Bar
Immediately underneath the titlebar (Figure 2.1) is the 7#e7tcf b¢r (sometimes referred
to as the ¢cfz.o7t bar) which lists one or more fopJez7cJ 777e7t#s. By selecting the name of a
top-level menu, you will make appear the corresponding drop-down menu, as you
can see in Figure 2.3.

Theportionofwindowenclosedbytheright,left,andlowersizingborders,andby
the menu bar from above, is known as the cZ€.c7tf cot.7zdozo. The client window corre-
sponds to the area within which an application can perform its output actions on the
screen by displaying text, drawings, and images. In Figure 2.1 the client window is
simply the blank portion of the window.

Now that we have described the basic elements of a PM window (although we will
get back to this subject in Chapter 4), we will now exandne the development model
of a PM application.

Flow Chart
Becauseofthemanyvariablesinvolved,itisimpossibletodeterminetheexactnum.ber
of files needed to create a PM appHcation. We will start to explore by looking at the
development of a generic PM application. By this we mean a typical program that

The Development Model 2:5

Figure 2.3 The File drop-down of the System Editor of OS/2.

creates and displays a window (and possibly other subordinate windows cormected
tothemainwindow).Withthisinmind,theflowchartinFigure2.4isagoodexample,
and demonstrates that six is `the minimum number of files involved in the creation of
a typical PM application.

h Chapter 1 we stressed the need for a header file for any PM application, and we
haveidentifiedthemodelinOS2.H.Itisalsonecessarytohaveasourcemodule(affle
with the extension C) containing the code that has to be compiled into an executable
module. Finally, it is necessary to have a module definition ffle (with the extension
DEF) to be fed to the linker. This file informs the linker about the functional features
of the executable module it is about to create. A DEF file is optional for smaller PM
programs, but it is mandatory for a full-blown PM application or DLL.

The development model usually requires the presence of a specific ffle containing
resources that can be called upon and used on demand by the application during its
execution. This kind of ffle is recognizable by the extension RC.

To complete the list of files involved in the creation of a PM application, we must
notforgetthe777¢ke/3.Ze(whichhastheextensionMAK).Amakefileissimplyatextfile
listingaseriesofdirectivesthataffectthebuildingoftheexecutablemodule,starting
withtheoriginalsourcecodeffleandthepro/.ec£/i.Ze(PRJ).Thus,atypicalPMprogram
is constructed with at least the following six ffle types: PRJ, MAK, RC, DEF, H, and C.

26 0S/2 2.1 Workplace shell progranming

Figure 2.4 Flow chart for the development of a PM application.

The Make File
The construction of a complex program requires the repeated execution of the C
language compiler, the building of traditional code libraries (with static linkage
managedbytheutilitylibraryLIB.EXE)ordynamiclinklibraries,theuseofthelinker
and the resource compiler (Figure 2.4).

Duringthedevelopmentphase,thecompilerisusedfrequentlyandrequiresagreat
deal of time+easily exceeding several hours a day. One way to minindze the time
required is to define a make file; that is, to construct a formal syntax of the various
steps that are needed to build the executable module.

The most useful feature of a make file is that it tests each and every intervention
request on part of the compiler, the linker, and even other utility programs. The tests
verify the existence of the relationship among the ffles that make up the input of the
utilityprograms(1ikelcc.EXEorLINK386.EXE)andtheirrespectiveoutputfiles.The
C compiler (ICC.EXE) needs to access a source ffle (C) in order to produce an object
module (OBJ), as you can see in Figure 2.5.

Themakefilecontrolstheexecutionofthiskindofoperationonthebasisofthetime
stamp (date and time) of the source file (in this case the C source code) compared to
thetimestampofthetargetfile(OBJ).Theactiouswiubeundertakenonlyifthetarget
file has an earlier time stamp than the source ffle.

The Development Modal 2:7

ICC ITi /Ss /G4 T\/VENY.C lwENY.OBJ

Figure 2.5 Transformation of the source code into an object module.

The contents of a make file can be divided into two categories of directives: setting
directives and execution directives. Setting directives contain instructions that set the
conditions for testing every time the make file is executed; to the second group of
directives belong the operations that .have to be executed in order to achieve the
desired result. Listing 2.1 represents a simple make ffle for the development of a
generic PM application.

Listing 2.1 A Generic Make File Constructed According to the Traditional Scheme
Adopted from the Very First Version of OS/2

!F------------------
MACHINE make fi.1e

!F------------------

machi.ne.obj: machine.c
cl -c -G2sw -W3 -Zi.pe -Od machi.ne.c

machi.ne.exe: machi.ne.obj machi.ne.clef
li.nk machi.ne, /CO /all.gn:16, NUL, os2, machi.ne

Amakeffleusuallyismuchmorecomplexthanwhathasbeendiscussedabove;the
C compiler's documentation contains a detailed description of all capabilities of the
NMAKE.EXE uthity.

With the release of the ICC compiler, the role of make files is even more important,
despite the fact that the compiler itself is now able to define the dependencies between
the various modules that make up a program and create a DEP file. Qperating inside
WorkFrame/2, you can take advantage of the environment's abifity to generate a make
ffle,startingwiththedefinitionoftheexeoutablemoduleyouwanttobulldwithrespect
tothevarioussourcefilesthathavebeendeclared.Listing2.2showsamakefilegenerated
withthenewsyntaxintroducedbytheNMARE.EXEuti]ityoftheICCcompfler.

Listing 2.2 A Make File Generated Directly from within the WorkFrame/2
Environment and Valid for the NMAKE.EXE Utility

PROJ = MACHINE

PROJFILE = MACHINE.MAK

DEBUG = 1

Z8 0S/2 2.1 Workplace shell progranming

PWBRMAKE = pwbrmake

NMAKEBSC1 = set

NMAKEBSC2 = nmake

LINKER = li.n\k €

ILINK -l`ll'nk
LRF = echo > N-UL

BIND = bi.nd

RC - rc
IMPLIB -l'mpll`b

LFLAGS_G = /N0I /ST:8192/BATCH
LFLAGS_D = /CO /INC /F /PACKC /PACKD/PMTYPE:PM

LFLAGS_.R = /E /F /PACKC /PACKD /PMTYPE:PM

MAPFILE_D = NUL

MAPFILE_R = NUL

CC - cl
CFLAGS_G = /W3 /G2 /Zp /BATCH /FRS*.sbr
CFLAGS_D = /qc /Gs /Gi.S(PROJ).mdt /Zr /Zi. /Od
CFLAGS_R = /Ot /Oi. /01 /Oe /0g /Gs
ASM =masm

AFLAGS_G = /Mx /T
AFLAGS_D = /Zi.
BRFLAGS = /o S(PROJ).bsc

BROWSE = 1

CVFLAGS = /50

0BJS = MACHINE.obj

SBRS = MACHINE.sbr

all: S(PROJ).exe

.SUFFIXES: .c .sbr .obj

MACHINE.obj : MACHINE.C C:\C600\INCLUDE\os2.h C:\C600\INCLUDE\stddef.h\

machi.ne.h C:\C600\INCLUDE\os2def.h C:\C600\INCLUDE\bse.h\
C:\C600\INCLUDE\pm.h C:\C600\INCLUDE\bsedos.h C:\C600\INCLUDE\bsesub.h\
C:\C600\INCLUDE\bseerr.h C:\C600\INCLUDE\bsedev.h\
C : \C600\INCLUDE\pmwi. n . h C : \C600\INCLUDE\pmgpi. . h\

C:\C600\INCLUDE\pmdev.h C:\C600\INCLUDE\pmavi.o.h\

C:\C600\INCLUDE\pmpi.cf.h C:\C600\INCLUDE\pmord.h\

C:\C600\INCLUDE\pmbi.tmap.h C:\C600\INCLUDE\pmfont.h\
C:\C600\INCLUDE\pmtypes.h C:\C600\INCLUDE\pmmle.h\
C:\C600\INCLUDE\pmshl .h C:\C600\INCLUDE\pmerr.h\
C : \C600\ I NCLUDE\pmhel p . h

MACHINE.sbr : MACHINE.C C:\C600\INCLUDE\os2.h C:\C600\INCLUDE\stddef .h\

machi.ne.h C:\C600\INCLUDE\os2def.h C:\C600\INCLUDE\bse.h\
C:\C600\INCLUDE\pm.h C:\C600\INCLUDE\bsedos.h C:\C600\INCLUDE\bsesub.h\
C:\C600\INCLUDE\bseerr.h C:\C600\INCLUDE\bsedev.h\
C:\C600\INCLUDE\pmwi.n.h C:\C600\INCLUDE\pmgpi. .h\

C:\C600\INCLUDE\pmdev.h C:\C600\INCLUDE\pmavio.h\

C:\C600\INCLUDE\pmpi.c.h C:\C600\INCLUDE\pmord.h\

The Developmerit Modd 2J9

C:\C600\INCLUDE\pmbi.tmap.h C:\C600\INCLUDE\pmfont.h\
C:\C600\INCLUDE\pmtypes.h C:\C600\INCLUDE\pmmle.h\
C:\C600\INCLUDE\pmshl .h C:\C600\INCLUDE\pmerr.h\
C : \C600\ I NCLUDE\pmhel p . h

S(PROJ).bsc : S(SBRS)

S(PWBRMAKE) @<<

S(BRFLAGS) S(SBRS)

<<

S(PROJ).exe : S(OBJS)
!IF S(DEBUG)

S(LRF) @<<S(PROJ).Irf

S(RT_OBJS: -+^
) S(OBJS: -+^
)

S@

S (MAP FI LE_D)

S(LLIBS_G: -+^
)+
S(LLIBS_D: -+^
)+
S(LIBS: -+^
)

S(DEF_FILE) S(LFLAGS_G) S(LFLAGS_D);

<<

! ELSE

S(LRF) @<<S(PROJ).Irf

S(RT_OBJS: -+^
) S(OBJS: -+^
)

S@

S (MA P F I L E_R)

S(LLIBS_G: -+^
)+
S(LLIBS-R: -+^ A
)+
S(LIBS: -+^
)

S(DEF_FILE) S(LFLAGS_G) S(LFLAGS_R);
<<

! ENDI F

!IF S(DEBUG)

S(ILINK) -a -e "S(LINKER) @S(PROJ).Irf" S@

! ELSE

S(LINKER) @S(PROJ).1rf

! ENDI F

S(NMAKEBSC1) MAKEFLAGS=

S(NMAKEBSC2) S(NMFLAGS) -f S(PROJFILE) S(PROJ).bsc

30 0S/2 2.1 Workplace shdl progranming

.c.sbr :
!IF S(DEBUG)

S(CC) /Zs S(CFLAGS_G) S(CFLAGS_D) /FRS@ S<

! ELSE

S(CC) /Zs S(CFLAGS_a) S(CFLAGS_R) /FRS@ S<

! ENDI F

•c.Obj :

!IF S(DEBUG)

S(CC) /c S(CFLAGS_a) S(CFLAGS_D) /FoS@ S<

! ELSE

S(CC) /c S(CFLAGS_a) S(CFLAGS_R) /FoS@ S<

! ENDI F

run: S(PROJ).exe

S(PROJ).exe S(RUNFLAGS)

debug: S(PROJ).exe

CVP S(CVFLAGS) S(PROJ).exe S(RUNFLAGS)

The Project File. Very often an appfication is the sum of one executable module
and one or more DLLs; each module being based on a single make ffle. The whole
collectionofmakefilescanbeeasilymanagedinaprojectfile,whichisacontainerof
oneormoremakeffles.hIBMWorkFrame/2thedistinctionleadstobaseorcompos-
ite project files.

The Module Definition File. A PM application requires a file with the DEF exten-
sion.Thisffletellsthelinkerhowtobehaveduringtheconstructionoftheexecutable.
The linker used to create PM executables is also able to generate character-based
programs as well as DLLs.

Operati.ng System/2 Li.near Executable Li.nker
Versi.on 2.01.005 Mar 161993

Copyri.ght (C) IBM Corporati.on 1988-1993.

Copyri.ght (C) Mi.crosoft Corp. 1988-1993.

All ri.ghts reserved.

The information displayed by the execution of LINK386.EXE varies according to
the version actually installed in the system. The syntax, however, is always the same
and takes five argulnents on the command line.

Argument
Object modules

Run file

List file

Description
List of object modules involved in the construction of the
executable
Name that will be given to the executable (usually corre-
sponds to the first object module listed in the first argument)
Name given to a ffle containing a map of all sources .

Libraries

The Development Modal 31

List of object libraries and import libraries needed by the
linker

Definition file Module definition file

The first four items are well-known by any DOS programmer. What is specified in
the DEF file is actually the result of the general organization of the application in
separate source code modules (i.e. separate.files with the C extension), with respect
to the most probable frequency of usage. The module definition ffle can be written
withaplaintexteditor,andlistsaseriesofdirectivesthataremeaningfultothelinker.
These directives are summarized in Table 2.1. h Listing 2.3 you can see a simple
module definition file.

Listing 2.3 A Generic Module Definition File for the OS/2 PM Linker

MACHINE.DEF module defi.ni.ti.on fi.le

NAME MACHINE

DESCRIPTION `Two wi.ndows and two classes'
PROTMODE

HEAPSIZE 1024

STACKSIZE 8192

CODE PRELOAD MOVEABLE DISCARDABLE

DATA PRELOAD MULTIPLE

EXPORTS

C 1 i. e n t W n d P r o c 1
C 1 i. e n t W n d P r o c 2

ThevaluespecifiedbytheHEAPSIZEdirectivessetstheoverallsizeoftheprogram's
ZocoZ feeap inside the pr£.z7¢£e d¢ffl ¢re¢. h OS/2 1.3, this same directive referred to the
initial local heap size, with a theoretical expansion limit of up to 64KB. You must be
very careful when porting old 16-bit OS/2 code, because an undersized heap might
bring unexpected results.

It is important to remember that when writing a module definition file you must
always fist with an EXPORTS directive the names of all functions declared, such as
EXPENTRYintheapplicationcode.However,ifyouareproducinganEXE,thisstepis
unnecessary. h the module definition files in the rest of this book you will find all
EX P ENTRY functions declared in an EX PORTS directive. This is simply good program-
ming practice. Chapter 9 covers the DEF ffle in great detail.

Resource Files
To create the resource ffle needed in the development of a PM application requires a
specific tool, the resource compiler RC.EXE. The term 71eso#rce refers to modular

92 0S/2 2.1 Workplace shell progranming

Table 2.1 The Directives in a Module Definition File

Directiv e D e scription

DATA

DESCRIPTION
EXETYPE

EXPORTS

IITORTS

HEAPSIZE
LIBRARY
NAME
PHYSICAL DEVICE
PROTMODE
SEGRENTS

STACKSIZE
STtJB
VIRTUAL DEVICE

Generatestheaddressesofallitemsinamoduleonmultiples
of 64KB.
Attributes for the application's code segments:

PRELOAD I LOADONCALL
EXECUTEONLY I EXECUTEREAD
IOPL I NOIOPL
CONFORMING I NONCONFORMING

Attributes for the application's data segments:
PRELOAD I LOADONCALL
READONLY I READWRITE
NONE I SINGLE I MULTIPLE
IOPL I NOIOPL
SIIARED I NONSHARED

Text description enclosed in single quotes.
Identifies the kind of executable:

OS2 I WINDOWS I UNKNOWN
Lists the exported functions that have to be executed with
IOPL.
Lists the imported functions coming from other modules,
usuauy DLLs.
Size, in bytes, of the application's local heap.
Name of the module that will become a DLL.
Name of an executable.
Identifies a physical device driver.
Defines the module as a protected mode executable.
Defines the segment attributes of the segments that make up
the application.
Size, in bytes, of the application's stack.
Adds a DOS stub module to an OS/2 executable.
Identifies a virtual device driver.

portionsoftheapplicationsthatcanbedescribedbymeansofatextualrepresentation
(fe77£pZ¢£e) or other binary ffles generated with specific utilities.

A resource file-which has the extension RC-is a plain ASCII text file containing
twokindsofresources:textualandbinary.Thefirstkindofresourceincludes,among
others, the descriptions (fe7#pJ¢fe) of menus, dialog boxes (dz.¢Zog fc77cpZ¢£e), and

The Developmed Model 83

windows ("€.7tdows fe77cpZ¢fe), blocks of strings of text (sfr€.7®g £¢Z7Ze) or messages
(7#essnge f¢Z7Ze) displayed during the execution of the application. Binary resources,
ontheotherhand,includebitmaps,icons,cursors,and fonts.Listing2.4isanexample
of a generic resource ffle.

Listing 2.4 A Typical Resource File Containing a Menu Template and a Dialog
Template

// TWOMENUS.RC

#defi.ne INCL_WIN

#i.nclude <os2.h>
#i.nclude "twomenus.h"

ICON RS_ICON TWOMENUS.IC0

MENU RS_MENU

{
SUBMENU "~Fi.le" , MN_FILE

[
MENUITEM "~New", MN_NEW

MENUITEM "~Open", MN_OPEN

MENUITEM "~Save", MN_SAVE

MENUITEM "Save ~As...", MN_SAVEAS

MENUITEM SEPARATOR

MENUITEM "E~xl.t", MN_EXIT

I
®®

I
®,,

STRI NGTAB LE

I,
ST_CLASSNAME, "TWOMENUS"

ST_WINDOWTITLE, "Loadi.ng a second menu"

I

The resource ffle is a novelty if you are used to programming in DOS or in OS/2
kemel, but it nright also be an old friend if you have previously programmed in MS
Windows or in OS/21.x. There are two reasons that a resource file is needed in a PM
application.BecausePMisamultitaskingenvironment,itispossiblethatRAMmight
get overloaded with different code and data. The Intel 32-bit processors can manage
up to 4GB of physical memory, but this is only a theoretical quantity. It is far more
likely that an OS/2 machine will be equipped with mtich less memory, usually
between6and8MBofRAM.Minimizingmemoryswappingisimportantforoptimal
overall performance. Applications exploiting resource files may load some module
portions into memory at different times than when they are actually started.

34 0S/2 2.1 Workplace shell progranming

Furthermore, resource files also meet the growing need for intemational versions
of applications. The translation process may be limited to rewriting in the various
target languages all text items that appear in a source file, preserving the basic
directives of the original version as far as memory requirements and program logic
are concerned. By examining Listing 2.4 and Figure 2.4 which shows the flow chart of
the development of a PM application, you can see that the translation process is easy
and safe. No part of the source code is ever modified. Without changing the basic
frameworkofanapplication,youcanintegratenewelementssimplybyactingupon
the program's resources. For instance, you might define new icons, images, bitmaps,
and other resources. Chapters 5, 6, and 8 will discuss the various kinds of resources
that can be described in a RC file.

Header Files
h addition to the header ffles provided by the development kit and the C compiler,
every PM application has one or more header ffles containing defines, macros, and
new data types. A resource file contains several items defined by the prograrrmner,
like those printed in italic in the following code fragment extracted from Listing 2.4:

// MENUAPP.RC

#defi.ne INCL_WIN
#i.nclude <os2.h>
#i.nclude "menuapp.h"

ICON RS_ICON MENUAPP.ICO

®

STRI NGTAB LE

(
ST_CI]ASSNAME, "MENUAPP"

sT_wlNDowTITLE, "A window wi.th a menubar"
1
®®®

The strings in italic are the result of the usage of a preprocessor #d ef i. n e directive.
These strings are used both in the resource file and in the source code. The usefulness
of a header file containing all the descriptions of these text strings is twofold, because
the header file can be included both in the RC file and in the C file. h this way you
can save time by avoiding retyping information and be certain that you have cousis-
tentinformationinbothffles.Listing2.5reportsthedefinespertainingtotheresource
file examined earlier.

Listing 2.5 A Portion of a Typical Header File

// MENUAPP.H

#defi.ne RS_ALL 300

The Developmed Model 35

#defi.ne RS_ICON RS_ALL
#defi.ne RS_MENU RS_ALL
#defi.ne RS_ACCELTABLE RS_ALL

#defi.ne RS_TBMENU 350
*

#defi.ne sT_CLASSNAME 10
#defi.ne sT_wlNDowTITLE 11

®,

The Source Code
SourcecodeplaysthemainroleinaPMapplication.Likeanyotherprogramwritten
inc,itispossibletohavemultiplesourcefilesthatgeneratethesamenumberof object
modules. The OBJ ffles are later linked together in a single executable application. For
the moment we will assume a single source code file.

The development model of a PM application is somewhat complex and requires
some degree of expertise before you can master all its elements. The following list
sunmarizesthevariousessentialphasesneededforgeneratingaPMapplicationfrom
scratch:

1. hclude the OS2.H file at the beginning of the source ffle, following the correct
I N C L_ directive fisted in Appendix A.

2. Write all function prototypes used in the application.
3. Write all the definitions and n}acros useful in the source code.
4. Initialize the application.
5. Create the application's message queue.
6. Register one or more window classes specific to the program.
7.CreatethemainwindowwhichwillidentifytheappHcationonceitisdisplayed

on the screen.
8. Write the message loop.
9. Write as many window procedures as there are class registrations.

10. Pass all messages received in a window procedure to a function that provides
their default processing.

When writing the source code, the first operation is to state which header ffles are
neededbytheprogram.Itisgoodprogrammingpracticetoprecedetheindicationof
OS2.H with one or more of the #defi. ne directives in Appendix A to specify which
portions of the header file should be included.

#defi.ne INCL_WIN

#include <os2.h>
®*

36 0S/2 2.1 Workplace shell progranming

AppendixAlistsalltheINCL_definescontainedintheOS/22.1TooHdtheaderfile.
Beforemovingontotheactualwritingofthefunctionsthatmakeupthecode,itis

necessarytodeclareallidentifierswith/i.Zescape(thosethatarevisiblefromthepoint
of declaration until the end of the file), and denote explicitly the prototypes of au
functionstobefoundintheappfication.Functionprototypingmustbeexplicitinorder
toavoidcompilationerrorsthatwouldhinderthewholecoustructionprocess.

Afunctionprototypeisthecompleteheaderofafunctionfoundintheapplication.
Theprototypealsospecifiestheidentifiersthatwillbeusedintheprogram.

#defi.ne INCL_WIN

#i.nclude <os2.h>

// functi.on prototypes
i.nt mai.n(voi.d) ;

MRESULT EXPENTRY Cli.entwndproc(HWND, ULONG, MPARAM, MPARAM) ;

®®®

The i.denti.fl.ers appearl.ng l.n a functl.on prototype assume function pro-
totyse scope:
®,~,

MRESULT EXPENTRY Cli.entwndproc(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2) ;

®®,

Thissecondkindoflayoutwillmakethesourcecode'sfunctions'syntaxevenmore
readable.Theretumvalueofaz.e#£W7zdproc(),asweuaseachofthefourparameters,
corresponds to one of the data types examined in Chapter 1.

The M¢£.#() Function
TheexecutionentrypointforanypMapplicationisrepresentedbythe77c¢z.7t()function,
asonecanseefromthedeclarationsofthefunctions'prototypes.Justlikeanyprogram
written in C, 77c¢€.7t() requires parameters to catch the command line arguments and to
reference the environment variables defined in the system's configuration ffles or in
other batch files. h this case, the signature of the 77t¢z.7z() function looks like the
following code fragment:

i.nt mai.n(int argc, char *argv[], char *envp[])
I

®®®

),

You might also use the DosGe£J7e/oBZocks() function, which is. part of the OS/2
Control Program API, in order to access the command line arguments as well as the

The Developmerit Modal 87

91obalenvironmentvariables.Tousethisfunction,itisnecessarytoissueanINCL_DOS
directive or, more precisely, I N C L_DOS P ROC ESS so that the appropriate function pro-
totype is readily available and avoids compilation errors. The simplest PM program
can thus be reduced to the following listing:

I.nt mai.n(voi.d)

Theeffectsofthisfistingareobviouslyverylimited.SoisitreallyaPMapplication?
No,becauseaPMapplicationmustatleastshowawindowonthescreenwithwhich
theusercaninteract.AmoreprecisedefinitionofaPMapplicationwouldrequirethe
presence of a 77tess¢ge q#e#e, and, as a consequence of such a queue, a possible co7tfex£
szu€.fch from a character screen group to that of PM.

It is therefore necessary to put some PM API calls inside the body of the 77t¢€.7t()
function in order to create the message queue. These API cans are au characterized by
the W€.# prefix. However, before doing this it is necessary to have an ¢7tcfeor bzock. The
meaning of an anchor block is limited in PM. It is simply the return value of the
Wi.7tr7t€.£z.fizz.ze() function that has to be called as the very fist function in a PM thread.
ThehandieofananchorblockisrequiredasaparameterinmanyotherPMAPIcans,
but it can just as well be replaced by the N U LLHAN D LE definition. In this case it is not
really a piece of information associated with a process, but simply an artifact of the
SAA rules for code and application portability between different platforms.

PMprocesses,just]ikeanyotherOS/2task,areidentifiedbyauniquePIDandaTID
foreverythread.Moreprecisely,thetermprocessforaPMexecutableshouldbereplaced
by the term 1.7ts£#7!ce, which indicates more accurately the uniqueness of execution of an
appfication. This distinction is essential in PM because the EXE is actually executable in
morethanonecopysimultaneously,allofwhichareactiveonthescreenatthesametime.
Figure 2.6 demonstrates the concept of instances, the associated use of a unique PID to
provide a distinct item to each instance, and the presence of one single code segment.
Otherwise, two copies of the same program would be indistinguichable if you were to
referencethembythesameexecutablemodule.

Ind±iahzation of an Instance
The Wz.7tJ7t{.£z.¢Z€.ze() function returns a handle to an ¢7tcfeor b7`ock, provided you specify
a parameter that always has the value zero:

#defi.ne INCL_WINWINDOWMGR

HAB APIENTRY Wi.nlni.ti.all.ze(USHORT fsopti.ons) ;

P arameter D e s cription
fsoptious Initialization option (always zero)

Retunii v alue D e scription
HAB Handle to the application's anchor block

38 0S/2 2.1 Workplace shell progranming

' A1''

DATA CODE DATA DATA
SEGRENT SEGNINT SEGRENT SEGRENT

Figure 2.6 The running of multiple instances of the same application in PM.

It is common practice to declare the identifier h a b having Z7Zock scop`e, that is directly
in the 77t¢€.7t() function, even though its usage spans more than one function in a PM
application. This approach, which is followed in this book, allows you to avoid using
file scope identifiers in the source code. If it were necessary to retrieve again the
process's anchor block in any code fragment different than 77t¢z.7t(), it would be
necessary to resort to the We.7tQ#enyA7cchorBZock() function, which is designed specifi-
cally for this purpose:

#defi.ne INCL_WININPUT

HAB APIENTRY Wi.noueryAnchorBlock(HWND hwnd) ;

p ar aneter D es cription 1
hwnd Handie of a window created in the application

Retw:r`iii value D e s cription
IIAB Handle to the application's anchor block

Here hwnd is the handle of a generic window of the application (as we will see in
Chapter 4, any window can be specified as the parameter to this function).

The Development Model &9

Creating the Message Queue
Once you have the anchor block handle, you proceed by creating the application's
messagequeuewiththeWz.#Cre¢feMsgQ#e#e()function.Sincethisactionrequiresyou
to have h ab readily available, and that the value of this identifier be specific for the
instance at hand, the creation of the message queue is an instance-specific task for
everypMappfication.(Theonesignificantexceptionbeingmultithreadedcode,which
is legitimate and even reco]rm.ended in PM. This approach will be examined in
Chapter 9.) The syntax of Wz.7icre¢feMsgQ#e#e() is as follows:

#defi.ne INCL_WINMESSAGEMGR

HM0 APIENTRY Wi.ncreateMsgQueue(HAB hab, LONG cmsg,);

P ar ameter D e s cription
hab Handle to the application's anchor block
cmsg Application's message queue size: zero means 10 messages

Retw:r'n value D e s cription
HMQ Handle to the application's message queue

Thefirstparameteristheanchorblockhandle;thesecondoneisaL0NGvaluewhich
indicates the size of the queue in terms of number of messages it will be able to
accommodate.Ifyouspecifyzero,thenthedefaultvalueofl0messageswillbeused.
The return value of this function is a handle to the message queue; the number of
message queues is equal to one for every thread in PM.

I

Beforeexpandingonthesubjectofmessages,afundamentalelementintheworking
of PM (that will be discussed in Chapter 3), it is necessary to stress another feature of
W{.7tcre¢feMsgQ#e#e(). This function forces a context switch from a character based
screen group to that of PM every time it might be necessary. In practical terms, this
qualifies the executable module to the system like a PM application.

Registering a Window Class
PM is an environment featuring multiple windows with different sizes and appear-
ances defined by the combination of specific styles and attributes. Each window
created by a program belongs to a cog.7tdozo cJ¢ss, which canbe thought of as a category
of generic window that must be described by the programmer.

To illustrate this concept, 1et's look away from computers for a moment. The term
floweridentifiesseveralthousanddifferentspeciesofflowers,allofwhichsharesome
common morphologic and phenotypical characteristics. Each and every single flower
is a unique materialization of the general idea of a flower.

This same concept exists in PM; the system must be able to deal with the ``idea" of
somekindofwindowinordertobeabletocreatearealwindowthatwillbedisplayed
on the screen.

PMhasfifteenpredefinedwindowsclasses-categoriesofwindowsthatarealready
registered and thus immediately available by means of specific API functions of PM.

40 0S/2 2.1 Workplace shell progranming

This means that PM possesses different ``ideas" of windows, each corresponding to
some kind of window that the programmer creates in the code without having to set
them up through the prelindnary class registration.

hdividual programmers will at some time wish to define new kinds of windows
better suited to their program's specific requirements. The windows belonging to the

[predefined window classes are very useful whenever control windows or dialog
windows (Chapter 8) are involved, and are very seldom used to implement and
display entire applications on the screen.

In order to register a new window class, use the Wz.7?RegisfercJ¢ss() function:

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nRegi.sterclass(HAB hab,

PSZ psz,ClassName,

PFNWP pfnwndproc,

ULONG flstyle,

ULONG cbwi.ndowData);

Parameter
hab

Description
Handle to the application's anchor block, previously returned
byWinlndtidize().

pszclassName Name of the new window class that needs to be registered. This
maybe any name you please, as long as it is unique within each
instance.

pfuwndproc Name of the function that WEL act as the window procedure for
the class being registered.

flstyle Set of styles (defines introduced by the cs_ prefix) that qualify
the behavior and the appearance of the windows belonging to
this class.

cbwindowData Number of bytes available to a buffer reserved for eachwindow
belonging to the class being registered.

Return vahae D e s cription
BOOL Success/failure of the operation.

There is no limit to the name you can assign to a window class, with the exception
of those names already used for the predefined windows of PM. A common practice
is to assign to the class of the application's main window the same name as the
executable module. Thus, if you are writing the application TWENY, you will most
likely have a window class with the same name.

Bydefinition,classesinPMareprivate-visibleandusableexclusivelyfromwithin
an application instance, and not from within any other executable module. Any
attempt to register an identical window class within one same instance produces a
null return value, thus aborting any further attempt.

The third parameter of Wz.7iRegr.sfercJ¢ss() is a pointer to a function, as defined in
PMWIN.H and shown in Table 1.9 of Chapter 1. This identifier is of type P FNWP and
the function to which it points returns a value whose type is M RESU LT. This function

The Development Model 41

takes four parameters of type HWND, U LONG, MPARAM, and MPARAM. The signature of a

generic window procedure is the fouowing one:
MRESULT EXPENTRY xxx(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2)

i

1

where"isthenalnechosenbytheprogrammer.Eveninthiscase,therearenonaming
rules,andimaginationistheonlyreallimitation.hthisbook,however,wewmalways
labelthewindowprocedureofthewindowclasstowhichthemainapplicationwindo-w
belongs to with a name like CZz.e7?fw7!dproc().

The purpose of the pointer in W.7tRegz.sfercz¢ss() is to provide the system (PM) the
addressofthewindowprocedurethatwillreceiveallmessagesissuedbytheinterac-
tions made by a user with a window belonging to that specific window class. This
delivers a high degree of flexibility to the system, as you will better understand once
we get to the chapter on windowing (Chapter 4).

The element that needs to be stressed is the remarkable correlation that exists
between a window class and its own window procedure. All messages generated by
interactingwithanywindowbelongingtothatclasswillinvariablybeforwardedby
the system to the function indicated at the time of registration.

Furthermore, each class has individual attributes that affect the behavior of every
single window created by the program and belonging to that class. The last two
parameters, in fact, allow you to specify styles that are unique to this window class,
as well as any additional memory required by each window.

Class Styles
ThestylesofawindowclassarerepresentedbybitsinaUL'ONGvalue.Therefore,there
are 32 possible values that can be combined in various ways. Table 2.2 lists and
describes the effects of each style currently available. The numeric values in the table
correspond to what is actually defined in PMWIN.H.

Styles primarily govern the behavioral aspects of windows, rather than their ap-
pearance. The setting of a style during the registration phase of a class means that all
windowsbelongingtothatclasswfllautomaticallypossessthecorrespondingattribute.

Window Words
The final parameter, cbwl. ndowDa'ta, defines a number of additional bytes that will
augment the size of a memory buffer available to each window. This aspect of the
development model in PM is examined in Chapters 4 and 11, when we explore how
to develop MDI (Multiple Document Interface) applications. When a window is
created,PMautomaticallyallocatesitamemoryblock.Thisareacontainsinformation

Table2.2TheCS_StylesThatCanBeSpecifiedDuringaWindowClassRegistration

Style Vahae D escription

CS_CLIPCHILDREN 0x20000000L The windows belonging to a class that
has this style flag set will automatically
have the WS_CLIPCHI LDREN style at the
moment when they are created.

CS_CLIPSIBLINGS 0xl0000000L The.windows belonging to a class that
has this style flag set will automaticany
have the WS_CLIPSIBLINGS style at the
moment when they are created.

CS_FRAME OxOO000020L The windows belonging to a class that
has this style flag set win receive the
message WM_FRAMEDESTROY just before
being destroyed.

CS_HITTEST 0xOOOOOOO8L Will force the system to send the
WM_HITTEST message every time the
mouse is moved.

CS_MOVENOTIFY 0xOOOOOoolL Will force the system to send the wM_-
MOVE message every time the window
is moved.

CS_PARENTCLIP 0xO8000000L The windows belonging to a class that
• has this style flag set will automatically

havethews_PARENTCLIPstyleatthemo-
ment when they are created.

CS_PUBLIC OxOOOOOO10L Creates a public window class, i.e. a win-
dow class that is accessible and usable
from within any PM application.

CS_SAVEBITS tox04000000L The windows belonging to a class that
has this style flag set will automatically
have the WS_SAVEBITS at the moment
when they are created.

CS_SIZEREDRAW 0xOOO00004L Will force the system to invaHdate the
entire client window every time the size
of the window is changed.

CS_SYNCPAINT 0x02000000L The windows belonging to a class that
has this style flag set will automatically
have the WS_SYNCPAINT style at the
moment when they are created.

42

The Developmerit Model 43

that qualifies the window in terms of its position on the screen as weu as other
properties.Duringtheregistrationphase,thedesignercandefineandextendthisarea.
The purpose is that of getting a place to store application-specific pieces of data.

®®®

i.f(!WinRegi.sterclass(hab,
szcl assName ,
C1i.entWndProc,
CS_SIZEREDRAW,

OL);

return FALSE :
®®,

The Predefined Window Classes
PM has as many as fifteen predefined window classes. These classes are able to
generate extremely specialized windows that are very useful when dealing with
specificapplicationneeds.Forexample,theclassWC_SCR0LLBARanowsyoutocreate
optirfuzed graphics tools that allow you to command horizontal or vertical scroll
operatiousonthecontentsofawindow.TheclassWC_ENTRYFIELDcontrolstextstring
inputandoutput.Awindowofthisclassishandywhenyouneedtoprompttheuser
forhisnameandpasswordinordertologontoanetworkserver.Adetailedanalysis
of the predefined window classes appears in Chapter 7. Table 2.3 lists all the prereg-
istered window classes available in PM.

Table 2.3 List of Preregistered Window Classes Available in PM

Class Vahae D escription

WC_BtJTTON ((PSZ)Oxffff0003L) Any kind of button displayed in a PM
application belongs to this class: push
buttons, radio buttons, check boxes, and
user defined buttons.

WC_COMBOBOX ((PSZ)Oxffff0002L) The windows of this class are a kind of
combination between an entry field and a
list box, and are a convenient means for
keyboard input with very limited on-
screen space requirements.

WC_CONTAINER ((PSZ)Oxffff0025L) Window to implement folders in wps.
WC_ENTRYFIELD ((PSZ)Oxffff0006L) The windows of this class are specifically

designed to deal with user input of alpha-
nuneric text strings.

WC_FRAME ((PSZ)OxffffooolL) This dass covers any kind of frame window.

(coritinued)

TaLble 2.3 (Contintled)

Clas s V abe D es cription

WC LISTBOX ((PSZ)Oxffff0007L) The windows of this class are specifically
designedfordisplayinganumberoftextor
bitmap items, albeit in a limited on-screen
Space.

WC MENU ((PSZ)Oxffff0004L) All PM menus belong to this class. The
availability of a specific class for menu
allows to insert into the cHent window other
windowsthatarestructuredjust]jkemenus.

WC_MLE ((PSZ)OxffffoooaL) This class encompasses all windows that
deal with input activities. These windows
are similar to entry fields, with the
difference that they can span several lines
of text.

WC_NOTEBOOK ((PSZ)Oxffff0028L) These windows take on the appearance of
a notebook, with several pages.

WC_SCROLLBAR ((PSZ)Oxffffooo8L) These windows are the scrollbars that help
manage the client window, in practice by
extending its size beyond those physically
available on the screen.

WC_SLIDER ((PSZ)Oxffff0026L) These windows can take on different looks
and can represent visually the progress of
time, of task completion or other kind of
measurements.

WC_SPINBUTTON ((PSZ)Oxffff0020L) This kind of window is shilar to an entry
field, with the addition of two arrows,
pointingupanddown,whichcanbeusedto
control the value in the field.

WC STATIC ((PSZ)Oxffff0005L) This kind of window is used to display
statictext;it'susageisverycommoninside
dialog windows (Chapter 8).

WC_TITLEBAR ((PSZ)Oxffffooo9L) Class of windows used mainly as
structural elements to allow the user to
move windows and to display their titles.

WC VALUESET ((PSZ)Oxffff0027L) Windows made of different panes
containing text strings, bitmaps, icons,
colors, or other items defined by the
progra-er.

44

The Developmed Model 45

Why Register Window Classes?
The availability of predefined window classes in PM might make you wonder why
youneedtoregisteranyadditionalclasses.Notethatanpreregisteredclassesreferto
somespecifickindofwindow,1ikeco77tz7oZ7o#esorZis£Z7o#es,whichareusefulinwriting
anapplication'soutputroutines,becausetheyaredesignedforthatkindoftask.The
software designer, however, may need to have more generic windows to fully meet
the requirements of the program. The registration of a window class, that is, passing
topMinformationonanewcategoryofpossiblewindows,meetsthisneed.hessence,
registering a class means transferring pieces of information to PM: these data are
exactly the parameters of W{.7tRegisfera¢ss(). iThe storage of these data does not take
place in the data segment of the application that calls Wc.7tRegisfera¢ss(). Instead, it
occurs directly in the data segment of PM.

The Nature of PM
The graphical user interface of OS/2 systems is implemented by means of a number
of DLLs present in the \OS2\DLL directory of the boot disk. There are more than
twenty,buttheexactnum.bervariesaccordingtothesystem'sconfiguration(version
2.0 GA, iustauation of the service pack, or version 2.1). Among these, you will find
PMWIN.DLL, which is the dy#¢7#z.c Zi.7!k Zz.Z7r¢ny containing all functions that have the
W€.# prefix and that estabfish the API of the windowing interface. Functions like
W€.#C7`e¢fesfdw€.7tdozo() and Wz.7iRegisfera¢ss() are to be found in this module. Other
parts of what one might refer to in generic terms as PM are to be found in different
DLLs. As far as the predefined window classes are concerned, for instance, some of
their window procedures are placed in PMCTLS.DLL (Table 2.4).

An DLLs listed in Table 2.4 are always loaded directly into the system when it is
booted;thusallfifteenpreregisteredwindowclassesareimmediatelyavailable.There
areotherspecificinitializationfunctionsthatdonotappearinTable2.4,andthatissue
calls to Wz.7zRegr.sfera¢ss(). Similar to predefined window classes, those registered
fromwithinapplicationsgetstoredinsidePM,ratherthaninthedatasegmentofthe

Table 2.4 List of Some Window Classes and the Corresponding Names of Their
Window Procedures and the Modules in Which They Are Placed

Class Window procedure Mo dude

WC_BUTTON
WC_MLE
WC_NOTEBOOK
WC_SLIDER
WC_SPINBUTTON
WC_VALUESET

Buttonproc
MULTILINEEDITPROC
BOOKVVNDPROC
SLIDERl/\IN.DPROC
SPINBUTTONWNDPROC
VALUESETVVNDPROC

BUTTON.DLL
P"LE.DLL
PMCTLS.DLL
PMCTLS.DLL
PMCTLS.DLL
PMCTLS.DLL

46 0S/2 2.1 Workplace shell progranndng

process that issued the registration. This solution, as we will see in Chapter 3, is the
foundation of the windowing mechanism of PM.

Strategies for Registering Window Classes
hagenericapplication,youcanregisterseveralclasses,eachoneofwhichisspecial-
ized in delivering a specific kind of window. For instance, 1et's exarfue Microsoft
Excel 3.0 for OS/2. This application is easily recognized by a top-level window with
thetitleMSExcelthatbelongstotheclassXLMAINregisteredbytheapplication.All
worksheets are displayed in a different kind of window (EXCEL4), graph windows
(EXCEL6), and windows for writing macros (EXCEL5). The. reference ceu has a
window class of its own (EXCEL1), and so has the window for setting commands
(EXCEL2), the status bar (EXCEL3) and the client window of the application
(XLDESK).

A class will characterize a number of windows that usually have a window proce-
dureincommon.Anapplicationusuallyregistersseveralwindowclasses.Thewhole
process is outlined in Figure 2.7.

Creating a Window
Cince you have a window class specifically designed for the application you are
developing, you create the window so as to verify the application-window identity.
As you will see later, there are various ways to create a window in PM. The easiest
methodisthroughtheuseofW€.7ecre¢fesfdwz.7tdow().Asthenameimplies,itcreatesa
standard window. The function that should be exalhined first is W€.7tcre¢£ew€.7tdow(),

I!pMI

"ENY.EXE
PMWIN.DLL
DATASEGMENT

int main (void) WC_COMBOBOX
PREDEFINEDVINDOW

(WC_FPAMEWC_LISTBOX,®,Myclass

WinRegisterclass (...,"Myclass",...);),®,
CLASSESAPPLICATIONSREGISTEREDCLASSES

Figure 2.7 Registration of window classes in PM.

TheDevelopmen± Modd 4:7

whichisanevensimplertoolforcreatingawindow.Thismethod,however,requires
youtounderstandsomeconceptsthatwillbediscussedlaterinthebook.Therefore,-we rrow focus on Wincreatestdwindow()..

#define INCL_WINFRAMEMGR
HWND APIENTRY Wi.ncreatestdwi.ndow(

Pa;rameter
hwndparent
flstyle
pflcreateFlags
pszclientclass
pszTitle
styleclient
hmod
idResources
phwndclient
Retwm Vahae
HVVNI

HWND hwndparent,

ULONG flstyle,
PULONG pflcreateFlags
PSZ pszcli.entclass,
PSZ pszTitle,
ULONG stylecli.ent,
HMODULE hmod,

ULONG idResources,
PHWND phwndcli.ent) ;

Description
Handie of the parent window
Styles of the window's frame window
Parameters passed to the window's frame window
Name of the class to which the window belongs
Window title (if the titlebar is present)
Style of the client window
Handle to the resource management module
Resource ID to be associated to the window
Handle of the cHent window

Description
Frame window handle or N U L LHAN D L E in case of error

This function creates a window and returns a handle that win allow references to it
in various circumstances. (Actuauy, the true action performed by this function is to
createmultiplewindowsbycallingW!.7icre¢£ew€.7tdow()manytimes.Forthemoment,
wecanthinkofawindowasasingleobjectthatyoucanmanagesimplybyreferring
to its handle.) By varying the combination of values of the single parameters, you
create windows that are very different from one another in appearance as well as in
function. We will return to this subject in Chapter 4.

The P¢r¢fflefers a/ Wincreatestdwindow()
EveryPMwindowmusthaveaparent;thisexplalnswhythefirstparameteristhere.
h this case we are trying to build a very simple PM application, and thus the only
window that need be displayed on the screen can be thought of as being identical to
theactualprogram.Theparentofthiswindowisthescreenbackground,justlikeany
other top-level window. The value to assign to the fist parameter is therefore
HWND_DESKTOP,whichcorrespondstothePMscreengroup'sbackground,asdefined
in Ph4VVIN.H.

Oncethewindow'sparenthasbeenindicated,itisnecessarytospecifyitsstyleby
determing the attributes that affect both its look as well as its function. The U LONG

48 0S/2 2.1 Wor:laplace shell progranming

type parameter allows you to define the various styles by selectively setting the bits
in this 32-bit value. You can identify the various flags in this parameter by means of
identifiers that have a WS_ (zoz.77dozu sftyze) or FS_ (¢#77te `sfyze) prefix, as indicated in
Tables 2.5 and 2.6.

Table 2.5 Window Styles (WS_) Acceptable by the Wt.#Cfle¢fes*dwt.#doov() Function

Style Vahae D escription

WS_ANIRATE

WS_MAXMZED

ws_MHunzED

WS_SYNCPAINT

WS SAVEBITS

Ox00400000L Enables animation effects when the window is
created.

OxOO800000L Assigns the whole screen area to the window (the
window is maxinrized).

OxO1000000L Reduces the window to its own icon (the window
is mirinrized).

Ox02000000L Alters the default behavior of a generic window
as far as the handling of the WM_PA I NT message is
concerned. This message notifies the need to
redraw some portion of the window's client area.
Byspecifyingthisstyle,awM_PAINTmessageinthe
message queue will immediately invalidate a
portion of the client window.

Ox04000000L Before the window is displayed on the screen, this
flag win store the image corresponding to the
pixels that will be occupied by the new window.
When the new window is moved or closed, the
uncoveredpixelswiubeautomaticallyrestoredto
their previous contents. Menu windows are a
typical example of this.

WS_PARENTCLIP 0xO8000000L Prevents any child window from painting over the
pixels that are exclusively owned by the parent
window.

WS CLIPSIBLINGS 0xl0000000L Prevents a window from painthg any of its pixels
thatarecurenftycoveredbyawindowatthesame
hierarchicallevelinthesystem.

WS_CLIPCHILDREN 0x20000000L Prevents a window from painting any of its pixels
that are currently covered by any of its child
windows.

WS DISABLED 0x40000000L Disables the window so that it will no longer react
I to any mouse or keyboard action.

WS_VISIBLE 0x80000000L Forces the window to display simultaneously to
its creation. PM's API also provides altemative
solutions for solving the problem of displaying a
window.

Table 2.6 The (FS_) Window Styles Acceptable by the Wt.#Cre¢fesfdwi.#dozo() Function

Style Value D escription

FS ICON

FS_ACCELTABLE

FS_SHELLPOSITION

FS_TASRTIST

Fs_sTjunARD

FS_NOBYTEALIGN

OxOOOOOoolL ch icon is assigned to the window. The
iconwillbedisplayedincasethewindow
is minimized. The icon's ID is the same as
that used for the menu and the accelerator
table associated with the windows.

OxOOO00002L Assigns an accelerator table, as described
in the application's resource ffle, to the
frame window.

OxOOO00004L The window's position and size are as-
signed automatically by the system.

OxOOOOOOO8L The window's name, taken from the title-
bar, will be inserted into the Task List
application.

OxOOOOOOOFL Set of the following style flags:

FS_ICON

FS ACCELTABLE

FS_SHELLPOSITI0N

FS_TASKLIST

0xOOOOOO10L The window is positioned on screen with
no byte alignlnent; this solution grants a
greaterflexibilityinthepositioningofthe
window, albeit it will reduce the speed of
screen refresh. Therefore it is advisable to
avoidthisflagwheneverthereisachance
that the application might be installed on
system with slow video adapters.

FS_NOMOVEWITHOWNER 0xOO000020L Will create a window that will not move
even if its owner is moved.

FS_SYSMODAL 0xOO000040L Creates a system modal window that will
capture exclusively the input focus.

FS_DLGBORDER 0xOOOOOO80L Assigns a double border to the window
which is typical of dialog windows and
which does not allow resizing of the
window; message boxes will have this
style set by default.

FS_BORDER OxOOOOO100L Assigns a single border to the window,
whichdoesallowresizingofthewindow.

FS_SCREENALIGN 0xO0000200L Creates a window which is aligned with
respect to the screen (8-bit boundary).

(continued)
49

50 0S/2 2.1 Workplace shell progranming

TaLble 2.6 (Continued)

Style Vahae D escription

FS_MOUSEALIGN

FS SIZEBORDER
FS_AUTOICON

OxO0000400L The window is positioned on the screen
accordingtothecurrentscreenpositionof
the mouse pointer; this solution min-
imizes a user's access time to the struc-
tural items available in the window.

OxOOOOO800L

0xOOOO1000L

The window has a resizing border.
Optimizesthewindow'srepaintingspeed
when it is minimized by not sending the
WM_PA I NT message to the client window.

There are many possible combinations. The WS_ flags occupy the high word of the
value, and the FS_ flags the low word. Some WS_ flags are automatically set by a
previous CS_ specified at the class's registration. The main difference between the
twosolutionsistobefoundinthegreaterdegreeofflexibflitygivenbytheusageofa
WS_ratherthanaCS_flag.Withaclassstyleflagyouforceeachwindowbelongingto
thatclasstoalwayshavethatparticularstyle,andlimitthepossibilitiesofdiversifying
among windows and inplementation designs. Thus, when a class is registered, the
number of styles defined is usually limited, because it is preferable to act at the level
of the creation of every single window. h general, you will usuany specify the style
WS_VISI8LEtodisplaythewindowassoonasitiscreated(in fact,creatingawindow
doesn't necessarily mean displaying it).

One use of Wz.7£Cre¢fesfdw£.7tdozo(), that is suggested by the name assigned to the
returned handle, is that of creating a ¢fl777e wz.74dozo-a window belonging to the
WC_FRAM E class. The flags specified in the second parameter always affect the frame
window (FS_), but can nonetheless be combined with those of a generic window
(WS_). The two styles expressed in the second parameter of Wz.7tcre¢fesfdwt.7tdoov()
aresomewhatgeneral.The(WS_)stylesareusefulbutinducesomewhatfeebleeffects.
hstead, the (FS_) styles are much "stronger." The FS_STAN DA RD style alone can force
Wz.7tc7'e¢fesfdwz.7tdozt7() to search for an icon, a menu table, and an accelerator table
in the application's resource file and to automatically associate these resources to the
window being created. Therefore, as a good programming practice, especially when
you have little experience, it is advisable to use W S_ only, and save the FS_ for special
situations.

The third parameter is a pointer to an U LONG value containing various flags that
affect structural and functional features of the window. These flags are distinguished
by the FC F_ 0}#7#e crc¢£z.o7t#¢gs) prefix, and very often denote the same effects as the
FS_ styles. Table 2.7 summarizes and describes all FC F_ flags present in OS/2 2.1.

Table 2.7 The FCF_ Styles Acceptable by the Wi.7€Cre¢fesfdwt.74dozu() Function

Flag Value D es cription

FCF TITLEBAR

FCF SYSMENU
FCF NINU

FCF_SIZEBORDER

FCF ENBUTTON

FCF MAXBUTTON

FCF MINMAX

FCF_VERTSCROLL

FCF HORZSCROLL

FCF_DLGBORDER

FCF_BORDER

51

OxOOOOOoolL

0xOOO00002L

0xOOO00004L

OxOOOOOOO8L

0xOOOOOO10L

0xOO000020L

0xOO000030L

OxOO000040L

0xOOOOOO80L

0xOOOoolooL

OxO0000200L

FCF_SHELLPOSITION 0xO 0 0 0 040 0L

FCF_TASKLIST

FCF NOBYTEALIGN

OxOOOOO800L

OxOOOO1000L

FCF NOMOVEVITHOWNER Ox00002000L

Creates a window belonging to the
WC_TITLEBARclass.

Creates the window's titlebar menu.
Implies the creation of a new menu
window that appears in the main
window, right under the titlebar.
Assigns a border to the window so that
the user can resize it.
Creates an icon containing a down-
ward pointing arrow (minimize icon).
Creates an icon containing an upward
pointing arrow (maximize icon).
Creates a pair of icons, one with a
downward pointing alfow and one with
anupwardpointingarrow;itisequivalent
to FCF_MINBUTTON I FCF_MAXBUTTON.

Assigns a vertical scrollbar to the
window.
Assigns a horizontal scrollbar to the
window.
Creates a window featuring a double-
border that is typical of dialog win-
dows and that does not allow resizing
of the window.
Creates a window featuring a single
border that cannot be resized; the
border's actual size depends on the
resolutionofthevideoadapterathand.
Establishes that the system will be
responsible for defining the initial size
and position of the window on the
screen.
Adds the current window to the list of
active tasks by specifying its name as it
appears in the titlebar.
The client window of the window
being created will not be byte-aligned;
this may reduce screen refresh speed.
Creates a window that will not move
even though its owner is moved.

(continued)

Table 2.7 (Continued)

Flag Value D es cription

FCF_ICON

FCF_ACCELTABLE

FCF_SYSMODAL

FCF_SCREENALIGN

FCF_MOUSEALIGN

FCF_STANIARD

FCF_HIDEBUTTON

FCF_HIDEMAX

FCF_AUTOICON

Ox00004000L AS`signs to the window an icon stored in
the appficafron's resource file and
recognized by the ID specified as the
eighth parameter to the W!.7tc71g¢£esfd-
W£.7tdozu() function.

OxOOOO8000L Assigns to the window an accelerator
table (Chapter 6) stored in the
appfication's resource file and identified
bythelDspecifiedastheei8hthparameter
to the Wz.7tc7ieefesfdwz.ndozo() function.

OxOOO10000L Creates a system modal window, that
will require special handling as far as
input focus is concerned.

Ox00020000L Establishes thatthe afignmentofawin-
dowwiubecalculatedaccordingtothe
screen's actual dimensions.

Ox00040000L Places the window on the screen
according to the position of the mouse
pointer,thusmakingiteasytoperform
any subsequent selection.

OxOOO8CC3FL Shorthandnotationto indicate au of the
following styles:

FCF_TITLEBAR
FCF_SYSMENU
FCF_MENU
FCF_SIZEBORDER
FCF_MI-
FCF_ICON
FCF_ACCELTABLE
FCF_SIHLLPOSITION
FCF_TASKLIST
FCF_PALETTE_NORMAL

OxO1000000L

0xO1000020L

Substitutes a hiding icon for a min-
inrized icon.
Combines a hiding icon with a maxi-
mizing icon.

Ox40000000L Qptimizes the performance of repaint
operations whenever a window is mini-
mized, without sending a WM_PAINT
message to the cHent window (an
operafronthatwouldjustwastetime).

52

TheDevelopmen± Modal 53

Compa;rison between FS_ and FCF_ Styles
The result achieved by naming a style with a FS_ prefix is often equivalent to what
can be achieved through a FC F_ style, with some notable exceptions, as documented
in Table 2.8.

We have already seen that W€.7tc7`e¢fesfdw£.7tdozt7() is actually a macro function, that
is,apieceofcodethatreallycallsmanyotherAPIfunctionsofPM.Amongthem,the
"osttinportan±iswincreatewindow(),£diowedbywinLoadpointer(),T^{inLoqdMen¥(_),
Wz.7tLo¢dAccez£¢bze() and others. The FC F_ flags, which are applicable only within
W€.#Cre¢fesfdw€.7edow(), will manifest their effects both on the frame window as well

Table 2.8 Comparison between FS_ and FCF_ Styles

Frane creation Flag Frane style

FCF TITLEBAR
FCF SYSRENU
FCF MENI
FCF_SIZEBORDER
FCF hneuTTON
FCF_MAXBUTTON
FCF_MINMjex
FCF_VERTSCROLL
FCF_HORZSCROLL
FCF_DLGBORDER
FCF_BORDER
FCF_SHELLPOSITION
FCF_TASKLIST
FCF_NOBYTEALIGN
FCF NOMOVEVITHOWNER
FCF ICON
FCF ACCELTABLE
FCF SYSMODAL
FCF SCREENALIGN
FCF MOUSEALIGN
FCF STANDARD
FCF_HIDEBurTON
FCF rmEh4AV
FCF_AUTOICON
Absent

Absent
Absent
Absent
FS_SIZEBORDER
Absent
Absent
Absent
Absent
Absent
FS DLGBORDER
FS BORDER
FS SHELLPOSITION
FS TASKLIST
FS NOBYTEALIGN
FS NOMOVEVITHOVVNER
FS_ICON
FS ACCELTABLE
FS_SYSMODAL
FS SCREENALIGN
FS MOUSEALIGN
Absent
Absent
Absent
FS AUTOICON
Fs sTArmARD

54 0S/2 2.1 Workplace shell progranming

as on other components of the window. The FS_ flags, which are applicable both in
W£.7ec7'e¢fesfdw€.7idozo() as well as Wz.71C71e¢£ew€.7tdozo(), affect only the appearance and
the behavior of the frame window.

The FS_ flags are seldom used with Wz.7zcre¢fesfdwz.77dow() because you will find in
the FC F_ more complete altematives. The choice of the FC F_ flags over the FS_ flags
involves some practical considerations. While it is always possible to specify a 0 L in
place of WS_ and FS_ styles (the second parameter to W.7tc7'e¢£esfdw£.7tdozu()), it is
insteadnecessarytoprovidetheaddressofaUL0NGvaluewhenusingtheFCF_styles.
Therefore, as you have to pass a value to the function, it is convenient to specify aJl
flags needed directly in a FC F_. (Also, the FS_ flags have no value for automatically
inserting the application's name into the Window List.)

For the moment we will assign to this parameter the value of FCF_STANDARD ,
althoughsubtractingthethreestylesFCF_MENU,FCF_ICON,andFCF_ACCELTABLE.This
is somewhat different from what one might expect to see with the accumulation of
different styles by using a bitwise or (I), and it is just a lazy progra]rm.er's way of
getting the most done by writing the least amount of code. In fact, FC F_STANDARD is
made up of seven different flags preset for creating a generic window; the chosen
solution allows you to specify only four styles, and avoids some excessive typing:

®,,

ULONG ulFCFrameFlag = FCF_STANDARD &
~FCF_MENU &

-FCF_ICON &
~FCF_ACCELTABLE ;

The definition of FC F_STA N DA RD also contains references to three generic resources
presentinthefflewiththesameID:menus,icons,andacceleratortable.Atthepresent
stage, we win create a PM application ffle without an RC file; therefore, all references
to program items that do not exist must be subtracted from FCF_STANDARD . The
presence of equivalent FC F_ flags together with the absence of resources would cause
a disaster with unpredictable consequences.

The fourth parameter, ps zC 11. en tc 1 a s s, is the name of the window class to which
the new window belongs. It must be a text string that identifies one of the predefined
PM classes (this, though, rarely happens) or one of the programmer-defined classes
that has been registered at earlier stages.

CHAR szclassName[] = "TWENY" .
®®,

The next pointer, to an ASCIIZ string, refers to the title that you wish to display in
the titlebar. It is good practice to store the window's title in an identifier, rather than
specifying it directly in the syntax of W£.7ccre¢fesfdwz.77dezo().

®®®

CHAR szwi.ndowTi.tle[] = "Hi., guys!" :
®®®

TheDevelopmed Model 55

ThefollowingUL0NGvalue,thesixthparameter,isemployedfordefiningthestyles
of the window's cfient window. Once again, you can use the flags introduced by the
WS_prefix,asthisisbyallmeansatruewindow.hthiscase,though,itisunworkable
tospecifyFS_styleflags,becausethecHentwindowisnotawc_FRAMEclasswindow.
Thisparameterwillgainevengreaterimportancewhenyoudevelopapplicationsthat
have active child windows in their client window.

The seventh and eighth parameters, despite being different types, have the same
purpose:defiringwhichresourcesshouldbeassociatedwiththewindow.Thechoice
mightrangefromamenu,toanicon,andanacceleratortable.hChapters,5and6we
win discuss the resources and structure of menus.

hgeneral,thehmodhandletakesontheNULLHANDLE(OL)value.Itindicatesthatthe
possibleresourcestobetiedtothewindowbeingbuiltaretobefoundinthecurrent
executable module. With 1. dResources you can specify an ID that describes one or
more resources of the three kinds indicated (in this case, the resource file will have to
contain a menu template, an accelerator table, and an icon, all of which are indicated
by the very same ID). For the moment, we will specify zero for this parameter, thus
indicating that no resources are to be tied to the window during its creation phase.

The mearfug of the seventh and eighth parameters of Wz.7icre¢fesfdwz.7tdozo() is
exclusivelycomectedtotheFCF_MENU,FCF_ICON,andFCF_ACCELTABLEflags.If one
or more of these flags are indicated as the third parameter, then the following two
conditions must be met:

• You must have a resource ffle that contains the resources equivalent to the FC F
flag indicated (menu, icon, or accelerator table);

• The next to last parameter has to be assigned a nuneric value corresponding to
the ID of the resource or of the resource(s) previously indicated.

The last value to provide the Wz.7£C7'c¢fesfdwz.7tdozt7() function is the address of an
identifier of type HWND that will be used later to manage the client window. To
summarize, let's exandne the fonowing code fragment:

®

hwndFrame = Wi.ncreatestdwi.ndow(HWND_DESKTOP,

WS_V I S I 8 L E ,

&ul FCFrameFl ags ,

szcl assName ,

szWi.ndowTi.t1e,

OL,

NU LLHANDLE ,

OL,

&hwndcli.ent) ;

®®®

The desktop acts as the parent window, and the window is to be made visible. No
resources are tied to this window.

56 0S/2 2.1 Workplace shell progranming

Some Remarks on Wt.#Cre¢fesfdwz.#dozo()
W£.77C7'e¢fesfdwz.7tdezo() is an optimal solution for creating a window with several
structuralelements,likeamenu,anicon,andanacceleratortable.Thedevelopermust
checkthatthehandleretumedbythefunctionisvalid(anypositivenumber),because
this value is the basis for most of the application's logic. Once a window has been
created, it can be displayed on the screen, thus allowing the user to interact with it
and perform the actions desired.

Among the nine parameters of the function, there is no item that sets the window's
size and position on the screen. The FCF_SHELLPOSITI0N flag, included in
FCF_STANDARD , is a workaround that solves the problem by giving the window a
default position, width, and height.

Errors zoi.fie Wincreatestdwindow()
There are many potential appfication errors with the Wz.7tcre¢fcsfdwz.77dozt7() function.
tine of the principal reasons for this is the use of an inexistent window class name or
simply a misspelled predefined window class. The system cannot proceed and create
a window, so nothing appears on the screen. This is why it is important to check the
return value of W€.7tc7`c¢fesfdw£.7tdozo() arid manage any kind of error condition by
terminating the program's execution whenever a zero handle is returned.

Furthermore, when you specify any FCF_STANDARD flag, it is also necessary to
remembertodisabletheflagscorrespondingtoanyresourcethatmightnotbepresent
in the window (menu, icon, or accelerator table), which would otherwise return an
invalid handle and fail to display the window on the screen.

Insomecasesitisevenpossiblethattherearenologicalerrorsataninthefunction's
parameters,butthatyoumighthaveforgottentosettheWS_VISI8LEflagthatbrings
about the actual immediate display of the window on the screen.

Displaying a Window
The WS_V I S I 8 L E style impfies that the window win be displayed at the very moment
ithasbeencreated.Attimes,however,itispreferablenottosetthisflag,anddistinguish
two different phases by delaying the window's actual display to a later time. h this
case you should use W£.7tsfeozuwz.7idozu() orL-even better-W€.7tsc£W€.7tdozt7Pos () :

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nshowwi.ndow(HWND hwnd, B00L fshow) ;

P arameter D escription
hwnd Handle of a frame window
fshow Boolean to state the visibility value
Retun value D escription
BOOL Success/failure of the operation

TheDevelopmed Modd 57

TheeffectofW!.7tsfeozowz.7tdozu()issimplythatofdisplayingorhidingthepixelsthat
make up the image of the window. The second parameter deterndnes whether the
window should be exposed (T RU E) or hidden (FA LS E). Often, it is convenient to have
the two phases, creation and display, occur at the same time-to this end you just
include the flag WS_V I S I 8 LE . At other times, W€.7csfeozow€.7tdozo() is useful because it
is able to make a window disappear from the screen.

If you desire to set the newly created window to a given position, you should use
We.7tse£Wz.7tdozopos(), an API function that adds displaying capabiHties, in addition to
those of setting the size and position.

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nsetwi.ndowpos(HWND hwnd,

HWND hwndlnsertBehi.nd,

LONG x,

LONG y,

LONG cx,

LONG cy,

ULONG fl) ;

Parameter
hwnd
hwndheertBehind
X

y
CX

Cy
fl

Return Vahae
BOOL

Description
Handle of a frame window
Handle of a top-level window
Window lower left comer position on the X axis
Window lower left comer position on the Y axis
Window dimension on the X axis
Window dimension on the Y axis
One or more SWP_ flags
Description
Success/failure of the operation

W!.7£Se£W€.7tdowpos() is easy to use despite being a rather complex function. It is also
very flexible, as it can accomplish different requirements at the same time. We have
stated before that it is not possible to establish a window's size and position at the
time it is created. W€.7ese£Wz.7tdowpos() overcomes this problem and allows a win-
dow to be displayed at a position that is different from the default one chosen by
the system.

Thefirstofthetwowindowhandiestakenbythisfunctionidentifieswhichhandle
you are referring to+in our case, it would be the window newly created with
W€.7tc7ie¢£esfdw€.7edow(). The second handle establishes the display depth position of
thewindowrelativetoallotherwindowsthatmightalreadybepresentonthescreen.
PA4 stacks the windows on the sLcreen in their order of creation. The window created
last will appear as the first. Naturally, the user's interactions might vary the relative
ouscreen positions of the windows.

58 0S/2 2.1 Workplace shell progranming

Table 2.9 The HWND_xxx Defines: Only HWND_TOP and HWND_BOTTOM
Carl Be Used with Wt.#Sefwi.7!dozopos()

D efine Vahae D es cription

Hl/VND DESKTOP
HWND_OBJECT-TOP
HVVND BOTTOM

(-)1
(HWND)2(-)3
(-)4

Handie of the desktop window.
Handle of the base object window.
Handie of the topmost window in
the fist.
Handle of the window at the bottom
of the fist.

HWND_THREADCAPTURE (HWND)5 Definition to identify all windows in
a thread.

The second parameter of Wz.7tsefwz.77dozopos() can take the value of HWND_BOTTOM
and/or HWN D_T0 P, in order to arrange the window as the last or first window among
au active windows at the same hierarchical level. You can be yet more selective by
indicating the handie of a known window in order to establish that the selected
window should appear immediately behind the one indicated. Table 2.9 summarizes
all the HWND_ definitions.

h order to activate the handle given as the second parameter to the function, it is
necessarytosettheSWP_Z0RDERflagamongthoseflagsthatcharacterizethisfunction.

To set the window's position and size, use the two L0 N G pairs (x, y) and (cx, cy). The
first pair will tell the system the position of the lower left-hand comer of the window,
while the second pair denotes the size of the window in the direction of the x and y
axis. All these values have to be expressed in screen-relative coordinates, and thus are
dependent on the screen adapter being used or `on what is actually specified in the
system's configuration file. In order to force the setting of a specific window position
andsize,youhavetosetrespectivelytheSWP_M0VEandtheSWP_SIZE flags.Table2.10
describes the actions performed by each flag available to the W£.7tsefw£.7tdozopos()
function.

Table 2.10 List of Flags Acceptable by the WZ.#Sefwt.#dozopos() Function

Flag Vahae D es cription

SVVP SIZE

SVVP MOVE

OxOool hdicates the change ofthewindow's size
by specifying a pair of cx and cy values
different from those previously assigned
to the window.

Ox0002 Allows modification of the (x, y) coordi-
mate of the window's upper left-hand
corner position.

(coritirmed)

Table 2.10 (Co#fi.##ed)

Flag Value D escription

SWP_ZORDER

SWP_SHOW
SWP_ueE

SWP_NOREDRAW

SWP_NOADTUST

SWP_ACTIVATE

SWP_DEACTIVATE

swp_MnurzE

SWP_MAXMZE

SWP_RESTORE

Ox0004 Modifies the window's position with
respect to the window present on the
screen at that moment.

OxOOO8 Displays thewindow.
OxOO10 Forces thewindowto disappearfromthe

screen, making it invisible.
Ox0020 Doesnotdisplayanychangesmadetothe

window.
Ox0040 Doesnotallowthe wM ADJUSTWI NDOWPOS

message that normally follows the usage
of W€.77Se£Wz.7tdozopos() to be sent, and
thus will not let the window refresh its
position on the screen.

OxOO80 The window is activated. The titlebar
will be colored with the activation color
Glue in the default color settings) and
the input focus will be concentrated on
the window.

OxO100 Deactivates the window, provided itwas
previously active.

Ox0400 This flagindicatesthatthewindowhasto
be minimized. In OS/2 2.x this behavior
usually makes it disappear.

OxO800 This flagindicates thatthewindowhasto
maximizeitspixelextentonthescreen,so
thatitwillcorrespondtothewholescreen
area.

Oxl000 Restores the window's size and position
to those it held before being maximizedorb-ed.

SWP_FOCUSACTIVATE 0x2000 Specifies that the focus is about to be
transferred to the frame window. h this
waytheapplicationthatisprocessingthe
WM ADJUSTWINDOWPOS message can

deTermine whether or not that message
has been produced by a change of focus.

SWP_FOCUSDEACTIVATE 0x4000 hdicates that the frame window is about
to lose the focus.

59

60 0S/2 2.1 Workplace shell progranming

Table 2.11 Messages Generated by Wt.#Sefwi.#dozt7Pos()

Message Description

WM_CALCVALIDRECTS

"_SIZE

"_MOVE

VVM ACTIVATE

Issued so that you can determine the window's size
in order to be able later to restore its original size, if
changed.
Issued if SWP_SIZE is set: contains in mpl the

• updated size of the window.

Issued whenever the window's on-screen size is
changed, but only if the window belongs to a class
for which the C S_M 0 V E N 0T I FY has been set.
Issued whenever there is a focus shift from one
window to another.

WM_ADJUSTWINDOWPOS This message contains the dimensions suggested
with the x, y, cx, and cy parameters to change the
window's size. If the message is intercepted, it will
allow you to make additional changes to the
window'ssize.Iftheflagswp_NOADJUSThasbeenset,
then this message is not issued.

The action of Wz.7tsefwz.77dozt7Pos() affects the behavior of the application by trigger-
ing various messages according to the flags that have been set; the action is in turn
affectedbysomefeaturesofthewindowbeingpositioned.Ifthecs_SIZEREDRAWstyle
has been set, then the use of W£.7tsefwz.7tdozopos() will automatically make invalid the
whole client window of the window, and that will force an immediate on screen
redraw of the window's contents.

Theuseo".#Sefwz.#do"Pos()alsocausestheautomatic-s:i-;ini¥ifiissages
indicated in Table 2.11, addressed to the window procedure of the window indicated
by the function's hwnd parameter.

The Message Loop
h Chapter 1 we stressed the mechanism that governs multitasking in PM; it is no
longerpreemptivelikeinos/2,butsimplyeventdriveninordertocarryouttheuser's
intentions. Every application must thus constantly adapt its own behavior to the
choices made by the user, an operation that is carried out by the system's issuing one
or more messages directly to the application's message queue. Thus, every program
willexaminethecontentsofitsmessagequeue,tryingtoretrieveasquicklyaspossible
all relevant messages (in Chapter 3 we will examine in depth the nature of the
message-based multitasking in PM).

The Development Model 61

For this reason, you must always insert into 7#¢z.7t() the message loop-a set of
functions whose purpose is that of monitoring the message queue, interpreting the
messages found,andthendispatchingthemtotheappropriatewindowprocedure.A
few lines of code comprise the entire mechanism of PM applications. The principal
function of any message loop is Wz.7tGe£Msg():

#defi.ne INCL_WINMESSAGEMGR
B00L APIENTRY Wi.nGetMsg(HAB hab,

PQMSG pqmsg,

HWND hwndFi.lter,

ULONG msgFi.lterFi.rst,
ULONG msgFilterLast) ;

Parameter
hab
Pqms8
hwndFilter
msgFilterFirst
msgFilterLast
Retttrm Vahae
BOOL

Apart from the

Description
Handle to the anchor block
Address of a QMSG structure
Handle of the window for which the messages are to be retrieved
Lower (numerical) limit of the message range to be ffltered
Upper (numerical) limit of the message range to be filtered
Description
Success/failure of the operation

anchor block handle, the remaining four parameters perfomi a
selective action on the messages found in the queue. The address of a QMSG structure
identifies the memory area where the information packet associated with every
message found in the queue is stored. The seven members of the QMS G structure fully
describe all pieces of information needed by the application in order to qualify the
message, the receiver, and the event that has generated it:

#defi.ne INCL_WINMESSAGEMGR
typedef struct _QMSG
I // qmsg

HWND hwnd ;

ULONG msg ;

MPARAM mpl ;

MPARAM mp2 ;

ULONG ti.me ;

P0INTL ptl ;
ULONG reserved ;

I QMSG ;

The hwnd member corresponds to the window that should receive the message. h
msg you will find the actual message, as it is described in PMWIN.H. A message is
simply a number that corresponds to a symbol defined in PMWIN.H. For instance,
themessagethatindicatesthepressingofakeyboardkeyisWM_CHAR,anditisdefined:

#defi.ne WM_CHAR 0x007a
®®®

62 0S/2 2.1 Workplace shed progranming

ThetwoMPARAMparametersarethetruememoryareainwhichtheissuedmessage's
associatedinformationisstored.TheUL0NGtimeindicateswhenthemessageactually
took place, expressed as the number of milliseconds since the system was turned on.
The ptl structure contains the mouse pointer's position on the screen when the
message was generated. This information provides a clear picture of what happened
in the system at the moment when the message was produced.

Every hardware event is transformed by the system into one or more messages
posted into the queue of the appropriate application. For instance, the enlargement of
a window's surface causes the system to generate a series of messages to notify a
changing of dimensions to the correct window. Figure 2.8 summarizes this mecha-
nism.

The third parameter of W.74Ge£Msg(), the handle of the filter window, will usually
take the value of NU LLHANDLE. This indicates that the function should capture any
message addressed to any window of the application. Should you want to focus on a
particular window and its possible children, you have to specify its handle as it was
produced by W£.7tc7ic¢£esfdw£.77dozo(). Such a change to the message loop also implies
that` a PM application can have more than one loop for retrieving messages from the
queue (one for each PM thread).

Finally, the last two parameters deterndne which messages should be retrieved
fromthequeuebyindicatingthefirstandthelastoneinarangeofpossiblemessages.
These parameters take the value of zero to indicate that the request has been made to
retrieve a message fr.om the queue. PMWIN.H contains several constants that define
message ranges and that can be used in Wz.77Ge£Msg(). For instance, to retrieve mouse
messages only, you can specify respectively WM_MOUSEFI RST and WM_MOUSELAST
corresponding to the parameters ms g Fi.1 te r Fi. rs t and ms g Fi.1 te r La s t. Similarly,
WM_D D E_F I RST and WM_D D E_LAST allow you to identify only those messages belong-
ing to the DDE communication protocol.

Figure 2.8 A hardware event like the movement of the mouse pointeor is
transformed by the system into a message posted to the message queue of the
application involved in the operation.

The Developmerit Model 63

Once a message has been retrieved, the only thing that has to be done is to post it
forfurtherprocessingtotheappropriatewindowprocedure.TheAPIofPMprovides
Wc.7tDz.sp¢fchMsg() for managing this chore.

#defi.ne INCL_WINMESSAGEMGR

MRESULT APIENTRY Wi.nDi.spatchMsg(HAB hab, PQMSG pqmsg) ;

P arameter D escription
hab Handie to the anchor block
pqmsg Address of a QMSG structure
Retun vahae D e s cription
MRESULT Window procedure return value

Wz.7tDz.sp¢£c%Msg() performs its action based on two parameters alone without any
indication of which window procedure is the addressee.

When you register a window class, you have to indicate a window procedure for
that class. This was accompHshed by providing the name of a function. h the C
language, this kind of identifier actually corresponds to a pointer that holds the
address of the code segment where the function body is actually stored.

Therefore, when you register a window class you are also telling the system where
it can find the associated window procedure. W.7iDisp¢fcfeMsg() needs to reach this
window procedure. It will take advantage of the first member of the QMSG structure,
that is, the handie of the receiver window. Through this window handle, the system
is able to discover the class to which it belongs, and thus the name of the window
procedure that was established at registration time. It can then transfer execution
precisely to that window procedure. With such a scheme, the message loop becomes
an extremely flexible tool, especially if you consider that an application can have
several window classes, each one of which possesses its own window procedure.
Callingawindowproceduredirectlywouldmeanbeingabletoexecutenomorethan
one window class registration alone.

As we will discover in Chapter 4, where all issues related to windowing will be
treated in depth, the information pertaining to the wind_ow procedure is stored not
onlyattheclasslevel,butevenwithineachsinglewindow.Therefore,everywindow,
or rather every hwnd , contains in its own reserved memory space this piece of
information that is really critical for the Wc.7tDz.sp¢fchMsg() function and menu other
window-related tasks. .

®®®

whi.le(Wi.nGetMsg(hab, &qmsg, NULLHANDLE, OL, OL))

Wi.nDi.spatchMsg(hab, &qmsg) ;

®

Once we get this far in the code of 77t¢€.7t(), the window is displayed on-screen ready
to interact with the user and to answer any actions.

64 0S/2 2.1 Workplace shell programming

Living in the Message Loop
So far we have exandned the 77c¢z.7t() function and performed all preliminary and
preparatoryactionforaPMaction.Themessageloop,ontheotherhand,istheengine
that powers the event-driven multitasking so typical of the PM screen group, which
isabletosuspendtheexecutionofanapplicationwhenanykindofmessageisdetected
in the message queue.

The value returned by Wz.7tGe£Msg() determines the runtime duration of the wh i 1 e
loop. Whatever message is extracted from the queue will produce a nonzero value,
with the exception of WM_a,UIT that breaks the loop and signals the end of the
program's existence, as it will no longer be able to access the message queue, its
primary and vital source of information.

The system immediately issues a WM_QU IT message whenever a window is closed
throughadouble-cHckonthetitlebar'sicon.Theapplicationachievesthissameresult
alone by issuing the WM_QU I T message directly into its own queue.

Execution Ter`iihination
Once you have exited from the message loop, you must terminate the application by
destroying all resources that have been created in the code. The message queue is
destroyed with a special function, Wz.7tDcsfrnyMsgQ#e#e():

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nDestroyMsgQueue(HMQ hmq) ;

P ar ameter D es cription
hmq AppHcation's message queue handle
Return vahae D escription
BOOL Success /failure of the operation

To destroy the window corresponding to the application, you have to use W£.7e-
Destroywindow()..

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nDestroywindow(HWND hwnd) :

P arameter D escription
hwnd Valid window handle
Return vahae D e scription
BOOL Success/failure of the operation

To terndnate program execution, you can call W€.7tTer77e£.7t¢fe(), which has the effect
of canceling the handle to the application's anchor block.

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nTermi.nate(HAB hab) :

The Development Model 65

P ar ameter D e s cription
hab Handie to the anchor block
Retw:in value D escription
BOOL Success/failure of the operation

The M¢t.#() Function for a Generic PM Application
Now that we have described the single elements that need to appear in the 77z¢£.7e()
function, we proceed by tying together all lose ends and produce the code shown in
Listing 2.6.

Listing 2.6 The Mat.#() Function of a Generic PM Application

// MAIN.C -A typi.cal PM appli.cati.on
// only the mai.n() functi.on
i.nt mai.n(voi.d)

I
HAB hab ;

HMQ hmq ;

HWND hwndFrame, hwndcli.ent :

QMSG qmsg ;

ULONG flFrameFlags = FCF_STANDARD &
~FCF_MENU &

-FCF_ICON &

~FCF_ACCELTABLE ;

ULONG flFramestyle = WS_VISIBLE ;
CHAR szclassName[] = "Machi.ne" ;

hab = Wi.nlni.ti.all.ze(0) ;
hmq = Wi.ncreateMsgoueue(hab, 0) ;

Wi.nRegi.sterclass(hab,
szcl assName ,
Cl i entwndproc ,
OL,

0);

hwndFrame = Wincreatestdwi.ndow(HWND_DESKTOP,
f l Framestyl e ,
&fl FrameFl ags ,
szcl assName ,
"MACHINE Program",

OL,

0,
0,
&hwndcli.ent) ;

66 0S/2 2.1 Workplace shell progranming

whi.le(Wi.nGetMsg(hab, &qmsg, NULL, 0, 0))

Wi.nDi.spatchMsg(hab, &qmsg) ;

Wi.nDestroyMsgQueue(hmq) ;

Wi.nDestroywi.ndow(hwndFrame) ;

Wi.nTermi.nate(hab) ;

return 0 ;
}

The Window Procedure
The term zoz.7tdozo z7roced#re identifies a function that performs a very special duty
within a PM appfication. A typical PM executable always requires a piece of code
specifically designed for the window procedure, although the actual name assigned
is determined by the programmer. When defining the function prototypes present in
the code, we have assigned to the window procedure the conventional name CZz.-
e7ifw7tdproc(). This function will be called by Wz.7tDz.sp¢fchMsg() according to the
mechanism described every time that Wz.7tGe£Msg() retrieves a messa.ge belonging to
the class associated with this window procedure from the message queue. Since our
first PM application win have only one window belonging to a class that has been
registered before entering the message loop, any interaction with the window on the
screen will generate a message posted to CZz.e7tfw7zdp7`oc(). This is a somewhat simpli-
fied explanation, because true applications will ordinarily register more than one
class. The parameters of a generic window procedure correspond to the first four
members of a QMSG structure.

®®

MRESULT EXPENTRY Cli.entwndproc(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2)

(I

®®®

)

In general, the body of a window procedure is quite complex, as it has to deal with
the processing of several different messages. In this first example, we limit our efforts
to simply returning a value from the function, as required by its prototype. You can
use the W£.7tDe/W.7tdozoproc() function, the default window procedure that is part of
theAPIofPM,toaccomplishthis.Theparametersofthisfunctionareexactlythesame
as those of a window procedure, since its purpose is that of providing a default
processing for all those messages that are not captured directly in the function. By
setting:

return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2) ;

The Development Model 67

you can force the default processing provided by the system on any message that
reaches the window procedure. The role played by the window procedure is critical
inthedesignofaPMapplication,asallmessagesgeneratedbytheinteractionbetween
theuserandawindowarepassedtothiskindoffunction,withinwhichthetruelogic
of the program is implemented. The 77z¢€.7t() function is used almost exclusively for
setting up the application. Once the set-up phase is over, the message loop-window
procedure takes over the real work and characterizes each PM application.

Let'ssunmarizethemainpointsthatpertaintotheframeworkofaPMapplication:
•EachwindowprocedurepresentinthecodewillalwaysbeanEXPENTRYfunction

andwillbeexportedtothemoduledefinitionfilecorrespondinglytotheEXPORTS
directive.

• The number of window procedures is always equal to the number of window
classes registered, provided that you don't reference a class like CS_PUB LI C, or
that more classes share one window procedure.

A Sample Appucation
Let's now exalnine the entire code that constitutes our first PM application. h Listing
2.7 you will find the make file, in Listing 2.8 the module definition ffle, and finally in
Listing2.9,thesourcecode.Theheaderfileandtheresourcefilearenotlisted,because
they are not necessary in a simple program. -
Listing 2.7 The Make File MACHINE.MAK

PROJ = machi.ne
PROJFILE = machi.ne.mak

DEBUG = 1

PWBRMAKE = pwbrmake

NMAKEBSC1 = set

NMAKEBSC2 = nmake

LINKER = li.nk

ILINK -l.ll'nk
LRF = echo > NUL

BIND = bi.nd

RC - rc
IMPLIB -l.mpll.b
LFLAGS_G = /STACK:8192 /N0I /BATCH

LFLAGS_D = /CO /INC /FAR /PACKC /PACKD /PMTYPE:PM

LFLAGS_R = /EXE /FAR /PACKC /PACKD /PMTYPE:PM

MAPFILE D = NUL

MAPFILE_R = NUL

CC - cl
CFLAGS_a = /W3 /G2 /Zp /BATCH
CFLAGS_D = /qc /Gs /Gi.S(PROJ).mdt /Zr /Zi. /Od
CFLAGS_R = /Ot /Oi. /01 /Oe /0g /Gs

68 0S/2 2.1 Workplace shell progranming

ASM = masm

AFLAGS G = /Mx /T

AFLAGS_D = /Zi.

OBJS = machi.ne.obj
SBRS = machi.ne.sbr

all: S(PROJ).exe

.SUFFIXES: .c .sbr .obj

machi.ne.obj : machi.ne.c

machi.ne.sbr : machi.ne.c

S(PROJ).bsc : S(SBRS)

S(PWBRMAKE) @<<

S(BRFLAGS) S(SBRS)

<<

S(PROJ).exe : S(OBJS)

!IF S(DEBUG)

S(LRF) @<<S(PROJ).Irf

S(RT_OBJS: -+^
) S(OBJS: -+^
)

S@

S (MAP F I LE_D)

S(LLIBS_G: -+^
)+
S(LLIBS_D: -+^
)+
S(LIBS: -+^
)

S(DEF_FILE) S(LFLAGS_G) S(LFLAGS_D);

<<
! ELSE

S(LRF) @<<S(PROJ).1rf

S(RT_OBJS: -+^
) S(OBJS: -+^
)

S@

S (MA P F I L E_R)

S(LLIBS_G: -+^
)+
S(LLIBS_R: -+^
)+
S(LIBS: -+^
)

S(DEF_FILE) S(LFLAGS_G) S(LFLAGS_R);

<<

The Development Model 69

! ENDI F

!IF S(DEBUG)

S(ILINK) -a -e "S(LINKER) @S(PROJ).1rf" S@

! ELSE

S(LINKER) @S(PROJ).1rf

! ENDI F

.c.sbr :
!IF S(DEBUG)

S(CC) /Zs S(CFLAGS_G) S(CFLAGS_D) /FRS@ S<

! ELSE

S(CC) /Zs S(CFLAGS_G) S(CFLAGS_R) /FRS@ S<

! ENDIF

.c.Obj :
!IF S(DEBUG)

S(CC) /c S(CFLAGS_G) S(CFLAGS_D) /FoS@ S<

! ELSE

S(CC) /c S(CFLAGS_G) S(CFLAGS_R) /FoS@ S<

! ENDI F

run: S(PROJ).exe
S(PROJ).exe S(RUNFLAGS)

debug: S(PROJ).exe
CVP S(CVFLAGS) S(PROJ).exe S(RUNFLAGS)

Listing 2.8 The Module Definition File MACHINE.DEF

MACHINE.DEF module defi.ni.ti.on fi.le

NAME MACHINE

DESCRIPTION `Stefano Maruzzi.,1993'
PROTMODE

HEAPSIZE 8192

STACKSIZE 8192

EXPORTS

Cl i entwndproc

Listing 2.9 The Source Code File MACHINE.C

// MACHINE.C -A basi.c PM appli.cati.on

// Li.sti.ng 02-09

// Stefano Maruzzi. 1993

#defi.ne INCL_WIN

70 0S/2 2.1 Workplace shell progranming

#i.nclude <os2.h>

// functi.on prototypes
I.nt mai.n(voi.d) ;
MRESULT EXPENTRY Cli.entwndproc(HWND hwnd, ULONG msg, MPARAM mpl,

MPARAM mp2) ;

i.nt mai.n(voi.d)

I
HAB hab ;

HMQ hmq ;

HWND hwndFrame, hwndcli.ent ;

QMSG qmsg ;

ULONG flFrameFlags = FCF_STANDARD & ~FCF_MENU & ~FCF_ICON &
~FCF_ACCELTABLE ;

CHAR szclassName[] = "Machi.ne" .
CHAR szwi.ndowTi.tle[] = "Bast.c PM appli.cati.on" ;

hab = Wi.nlni.ti.all.ze(0) ;
hmq = Wi.ncreateMsgQueue(hab, OL) ;

Wi.nRegi.sterclass(hab, szclassName,
C 1 i. e n t W n d P r o c ,
CS_SIZEREDRAW, 0) ;

hwndFrame = Wi..ncreatestdwi.ndow(HWND_DESKTOP,

OL,

&fl FrameFl ags ,
szcl assName ,
szWi.ndowTi.t1e,
OL,

NU LLHANDLE ,

OL,

&hwndcli.ent) ;

Wi.nshowwi.ndow(hwndFrame, TRUE) ;

whi.le(Wi.nGetMsg(hab, &qmsg, NULLHANDLE, OL, OL))

Wi.nDi.spatchMsg(hab, &qmsg) ;

Wi.nDestroywi.ndow(hwndFrame) ;
Wi.nDestroyMsgQueue(hmq) ;

Wi.nTermi.nate(hab) ;

return OL ;
I
MRESULT EXPENTRY Cli.entwndproc(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2)

i

The Development Modal 71

swi.tch(msg)
[

defaul t :
break;

1
return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2) ;

I

Some AItemate Soha±ions and Enhancemeuts
h Listing 2.9, showing the C source code, the style WS_V I S I 8 LE has been set so that the
windowwfllbedisplayedautomatica]lyduringitscreationphase.Analtematesolution
wouldbeinser{inginthecode,afterthecantoW€.7ic7ic¢£esfdwz.7tdozt7(),acalltoW£.7tsfeozo-
W{.7zdezo(),specifyingthebooleanvalueofTRUE.
r An even more interesting solution is to use W1.7tse£W€.7£dozopos(), allowing a much
greater degree of fle*bifity than the two preceding solutions.

hthefirstcase,thecodeof77t¢z.7t()showninListing2.6wouldbechangedasfo11ows:

®®®

hwndFrame = Wi.ncreatestdwi.ndow(HWND=DESKTOP,
OL,`

&fl FrameFl ags ,
szcl assName ,

I szwi.ndowTi.tle,
rl

OL,

NU LLHAND LE ,

OL,

&hwndcli.ent) ;

Wi.nshowwi.ndow(hwndFrame, TRUE) ;

whi.le(Wi.nGetMsg(hab, &qmsg, NULLHANDLE, 0, 0))
Wi.nDi.spatchMsg(hab, &qms\g) ;

®®®

whi.le wl.th winsetwindowpos() thl.ngs are completely different:

®®®

hwndFrame = Wi.ncreatestdwi.ndow(HWND_DESKTOP,
OL,

&fl FrameFl ags ,
szcl assName ,
szWi.ndowTi.t1e,
OL,

NULLHANDLE,

OL,

&hwndcli.ent) ;

Wi.nsetwi.ndowpos(hwndFrame, HWND_TOP, OL, OL, OL, OL, SWP_SHOW) ;

whi.1e(Wi.nGetMsg(hab, &qmsg, NULLHANDLE, OL, OL))

WinDi.spatchMsg(hab, &qmsg) ;

72. OS/2 2.1 Workplace shell progranming

h the former example, both the position as well as the size of the window remain
unchanged. This code fragment works on the assulnption that the FC F_SH E L LPOS I -
T I 0 N flag has been set. To set the window at a specific position when it is displayed,
you must specify pixel coordinates relative to the screen's physical dimensions, and
also you must add the flags SW P_S I Z E and SW P_MOV E to Wz.#Se£W€.7tdozopos£(), which
informs the function that it will be responsible for performing those two actions. h
thiscase,itissuitable,butnotnecessary,todisabletheFCF_SHELLP0SITI0Nflag,since
its purpose is that of estabfishing a random position on the screen for the window.

The Look of Windows
Figure 2.9 shows how the MACENE applicafron would appear at the center of the PM
screen group. The cfient window has exactly the same color as the desktop window. A
real-world situation might be very different, though, as is shown in Figure 2.10.

Some objects of WPS appear inside the cHent window of the MACIHNE appficafron.
Youcanthinkofthisasifthepixelsofthedientwindowweretransparent,thusallowing
youtoseetheunderlyingobjects"through"thewindow.Figure2.10showsanunaccept-
able situation, since now there appear to be two OS/2 System folders in the desktop.

Clearly this behavior of MACHINE is abnorm.al. It occurs because the contents of
theclientwindowarenotcontinuouslyrefreshedanditscHentwindowistransparent.
The pixels of WPS have ``exposed" the client window, without any means to refresh
it. To solve this sort of problem, it is necessary to master the painting techniques of
PM, a subject that will be described in Chapter 3.

The Appucation Title
When the fifth parameter of W3.7?C7'e¢fesfdw{.74dozo() is set to NU LL, the titlebar of the
window shows the name of the project containing the application, provided the
FCF_TASKLIST flag is set. Without FCF_TASKLIST the window would have no title
whatsoever. The change or assignment of the titlebar can take place at a different time
than when the window was created by using the W€.77Se£W€.7idowTex£() function:

#defi.ne INCL_WINMESSAGEMGR
B00L APIENTRY Wi.nsetwi.ndowText(HWND hwnd, PSZ pszText) ;

P arameter D escription
hwnd Window handle: usually a frame window or a window of a

predefined class
pszText String of text shown in the application titlebar or in a control

window
Retwn vahae D escription
BOOL Success/failure of the operation
It is necessary to be careful with the value of the first parameter-it has to be the

handle of the frame window, not the handle of the client window. As we will see in
the following chapters, the use of Wt.77Se£Wz.7tdozoTcx£() is very convenient even for
tho.se windows that belong to predefined classes.

The Development Model 73

fi GRE fiE fi %`? ffi EEE]
BOOK DBOPINFO IBMWorkFronere

RE123GEX=-•riffFIGEXERE`rl+YEXE-Sun-SNOOPEREXEEEfiill`ng?!"E@Templates IThemCse
ag,colI++

&iBMcro++Tool

~J"^
_,.,.,,Ir,I, REE]

f''RE '-'.I..f'5``.'.`i``.i.` ' '-._.-.-,`_ `.``'`.`,.'!`OS¢System

ii\iEffi

fi
RIntor WNSH: E>[

eiiiF
Shredder

Figure 2.9 Inside the client window of MACHINE you can see portions
of other applications.

Figure 2.10 A portion of OS/2 System has been frozen in the client
window of MACHINE.

Messages

ThefirstPMapplicationthatwedesignedinthepreviouschapterallowedustodefine
the basic structure or backbone of a program. As we have stated, it is the window
procedure that takes on the central role in the code, receiving all messages issued by
thesystemorgeneratedbyotherapplicationsandaddressedtoacertainwindow.The
window procedure in histing 2.9 is very simple, and only returns a value after
performing the default processing for any message it might receive. More often,
however,awindowprocedurewillcontaincodefragmentsdesignedbytheprogram-
mer devised for the specific processing needed for the messages being sent. The
structure of a window procedure can be imagined as a kind of sieve that filters some
messages and lets others flow directly to a W1.7tDe/WZ.77dozoproc(). So a reasonable
question is: Which messages should be caught and which should be sent to W£.7tDe/-
Wt.7tdozt7Proc()? What criteria should be applied? There is no precise answer to these
questions, because it au depends on the developer, and on how well the developer
knows the PM's API functions and the strategies fonowed in writing the code.

One criterion that will be followed in all applications presented in this book is that
of always passing on any message received by the window procedure to Wz.7tDe/M.7t-
dozoproc(), even if these messages have been caught inside the procedure's body. h
this way, any message sent to a window will at least be subject to the system's default
processing, and thus will avoid any kind of side effect in the application's working.
Very seldom will a message be prohibited from reaching a Wc.7tDe/W€.7tdozoproc().
Figure3.1sketchestheactionperformedbyawindowprocedureonthemessageflow
generated by PM or by other PM applications.

h order to perform this message capture, you have to act on the second parameter
of the window procedure, the U L0 N G type identifier that is commonly indicated with
thenamemsg.Itisamessagegeneratedasaconsequenceofinteractionwithawindow.
Naturally, the four specific identifiers of a window procedure can have different
names; but a convention that is almost universany followed will invariably use the
labels hwn d, ms g, mp 1, and mp 2. This happens both in the sample listings of the Toolkit
as well as in the articles that appear in programming magazines.

The msg identifier contains the numeric value of the message that, at that very
moment,isbeingpassedtothewindowprocedure.hPMWIN.H,thisvalueisdefined
by a text string so that it is easier to deal with it. To do this a #def i. n e preprocessor
directive is used:

75

76 0S/2 2.1 Workplace shell progranming

MRESULT EXPENTRY Cli.entwndproc(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2)

I
swi.tch(msg)

I
case WM_xxx:

®®®

break ;

case WMvyy:
®®®

break ;

defaul t :
®,®

` break ;

)
return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2)

}

Figure 3.1 The message flow in a PM application.

®,,

#defi.ne WM_CREATE 0xOOO1
®®®

+

Appendix C lists all WM_ messages currently available in OS/2 2.1. Therefore, to
discover which message has been sent to a window procedure, just examine the
contents of in s g and differentiate the application's behavior according to what condi-
tion is assessed.

However,inmanycases,thiskindofinformationisavailabledirectlyinthemessage
loop, before you ever proceed to dispatching the message with Wz.7iDisp¢£cfeMsg(). h
such a context, the We.71Ge£Msg() function needs the address of a QMSG structure that
contains among its seven members a U LONG identifier called msg-the message that
win eventually be received by the window procedure.

hside a window procedure, you can implement customized processing for the
various messages that need to affect the application. Catching all messages passing
by would not be useful and would be a nuisance for the programmer. The typical
organization of a window procedure will therefore bear a swi. tch statement on the
ms g identifier, with one or more c a s e conditions. Each c a s e branch corresponds to a
separate message that you intend to process. Due to the great number of messages
that are present in PM (Appendix C fists only those referring to on-screen window
management, introduced by the WM_ prefix), it might seem impossible to settle on

Masap/es 77

criteria for deciding which message should be processed directly by the application
in its window procedure and which should be passed on directly to Wi.7tDc/W€.7tdow-
Proc().Practiceandexperiencewillhelpyoumakeinformeddecisionsonaumessages
generated by the system when managing windows (WM_). The diverse categories of
messages that are part of PM's API are listed in Table 3.1.

Of all these messages, only the WM_ messages actuany reach a window procedure,
in direct response to what the user does to the application's window or by the
functions and operations performed intemally by the code. The dr¢ggdrop messages
aresomethingofanoveltyinos/22.x,andareusedmainlyfordealingwiththeuser's
selecting, dragging, and dropping objects between windows (Chapter 12).

Table 3.1 The Various Categories of Messages in PM's API

Pref tx D es cription

Window message: a message that refers to managing the position,
output, and size of a window on the screen.
Class WC_ENTRYFIELD: a message for managing the user's input of
alphanumeric strings in an entry field window.
Class WC_BUTTON: a message for controlling push buttons, check
boxes, radio buttons, and other kinds of buttons.
Class WC_LISTBOX: a message for dealing with all activities involved
in using a list box.
Class WC_MENU: a message for inserting new menu and new options
into existing menus.
ClassWC_SCROLLBAR:amessagefordealingwiththemovementsof
a horizontal or vertical scron bar's thumb.
Class WC_TITLEBAR: a message to set or retrieve any text contained
in an application's titlebar.
Class WC_NOTEBOOK: a message to customize the look and behavior
of an object that looks like a notebook.
Class WC_CONTAINER: a message for defining the contents and
appearance of a folder.
Class WC_SLIDER: a message for customizing the behavior and
appearance of a slider.
Class WC_SPINBUTTON: a message for defining the range, text
alignlnent, and contents of a spin button.
Class WC_VALUESET: a message used to query and set the cells in a
valueset.
Dragmessage:amessagegeneratedinresponsetoauser'sdrag&drop
actions.

78 0S/2 2.1 Workplace shed progranming

The other messages are sent from the applications to windows belonging to the
predefined PM classes (Chapter 7). This means that these messages will never be
caughtbyawindowprocedureofaclassregisteredbytheprogrambecausetheywfll
never reach it. h fact, their destinations are the respective window procedures of the
predefined classes. The only way to allow the developer's code to deal directly with
messages, such as LM_ or VM_, is through subclassing. This powerful technique,
described in Chapter 10, lets you modify the natural flow of messages addressed to a
window of a predefined class.

Painting
Uhlikeacharacter-baseduserinterfaceprogram,aPMapplicationdisplaysitsoutput
in a unique way. ArtyJZ scree7t executable simply assumes that all of the screen's 80
columns and 25 rows are at its complete disposal. h the case of PM, this is not true,
because it is a graphical user interface completely disengaged from the very concept
of rows and columns. Furthermore, since PM is a multitasking environment, it has to
be able to deal simultaneously with several appfications occupying different parts of
the screen, giving rise to situations where windows will overlap. The logic that
governs output is generauy referred to as p¢z.7tfz.7€g.

Among the structural components of a window, only the cfient window is conven-
tionauy used by the application to perform its drawing and text display operations,
implementing a kind of dynamic and iterative form of output. h other words, it is
possible to regenerate the output within an application's client window at any time.
Thereareanumberofconditiousthattriggerarefreshoftheclientwindow'scontents.
Themostcommonarethoseduetosomeresizingoperationofawindow'soutputarea
or to some kind of interaction between different windows. This last category is
represented, for example, by windows overlapping each other or by closely related
windows (parent/children). Both situations produce a variation in the quantity of
pixelsavailabletoanapplication(window)foritsoutput.hordertonotifyawindow
that it is time to refresh its output, the system posts into the application's message
queue-the queue created by calling Wz.7tcre¢£eMsgQ#e#e()-the W M_PA I N T message,
whenever that might be necessary. The application retrieves the WM_PA I NT message
fromthequeuewhileinitsmessageloop,andthensendsitdirectlytotheappropriate
window procedure-that is, to the window procedure of the class to which the
window in need of regeneration belongs.

All of the application's output logic is conected in the case WM_PAI NT statement
that the programmer writes inthe swi. tch block based on the ms g identifier. It is in
this portion of the code that all of the window's output management functions are
called. Therefore, a generic window procedure will ¢Zzt7eys contain a case WM_PA I NT
condition, and that code fragment takes care of all activities involved in generating
the program's output. Accordingly, we will change our window procedure's frame-
work by admitting a ca s e branch for dealing with all the program's output chores
(Listing 3.1).

Messages 79

Listing 3.1 Processing of a Message in a Window Procedure

MRESULT EXPENTRY Cli.entwndproc(HWND hwnd,
ULONG msg,

MPARAM mpl,

MPARAM mp2)

(
swi.tch(msg)

(
case WM_PAINT:

I
®®®

)
break ;

defaul t :
break ;

)
return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2) ;

1

All messages received in the window procedure in Listing 3.1 enter the swi. tch
block.Allofthem,exceptWM_PAINT,arehandleddirectlybythedefaultbranchwhich
forwards them to the processing of Wz.#De/Wz.7zdozoproc().

WM_PAINT 0x0 023
mp 1 Res erve d
mp2 Reserved
Return value Reserved

The WM_PA I NT condition must be set in such a way that when this message (Ox0023
in PMWIN.H) is received, the corresponding piece of code is executed (indicated by
the ellipses in Listing 3.1), instead of being passed straight to the default processing
in W.7tDe/W£.7tdozoproc(). Actually a break statement, as in Listing 3.1, does not
produce any functional difference because no concrete action is performed on the
interceptedmessage.However,itdoesdelimittheareainwhichtheprogrammercan
make code changes or additions.

Our exercise will be that of painting the window's background-the client win-
dow-in color. This kind of task is usually performed by calling the Gpz.£r¢se()
function, which is part of the GPJ portion of PM's API:

#defi.ne INCL_GPICONTROL
B00L APIENTRY Gpi.Erase(HPS hps) ;

P ar ameter D e s cription
hps Handie to the presentation space
Retwr`n v alue D e scription
BOOL Success or failure of the operation

80 0S/2 2.1 Workylace shell progranming

TheonlyparameterrequiredbyGpz.Erase()isahandletoapresentationspace,anew
kind of information, specific to output operations. Another solution is that of using
the Wz.7tFe7ZRec£() function that takes on the fouowing syntax:

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nFi.1lRect(HPS hps, PRECTL prectl, COLOR clr) ;

P ar ameter D es cription
hps Handle to a presentation space
prectl Address of an identifier of type RECTL inside which you must

supply the window's dimension
clr Numeric define corresponding to the selected color
Retw:riii value D es cription
BOOL Success or failure of the operation

After the presentation space's handle, you have the address to a RECTL structure
and a code value corresponding to one of the predefined colors used to paint the
window background. W€.7tFz7ZRecf() fills that rectangle with the given color. The
function is applicable in different contexts; in this specific case, the rectangle corre-
sponds to the entire surface of the client window. A co]rm.on method by which to
retrieve this data is by calling the Wz.7zQ#c7rywz.7tdozt)Rec£() function:

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nQuerywi.ndowRect(HWND hwnd, PRECTL prectl) ;

P arameter D escription
hwnd Handle of the window of which you want to know the dimen-

sions
prectl Address of a R E CT L structure inside which the window's dimen-

sions will be inserted
Retw:in value D escription
BOOL Success or failure of the operation

Wz.77Q#e7tywz.7tdozt7Rec£() can be used any time you need to know the size of an
on-screenwindow.Thisfunctionmustbegiventhewindow'shandleandtheaddress
to a RECTL identifier. This structure features four LONG members that describe two
vertexes of a rectangle: the upper left and the lower right. The purpose of W.7tQ#e7ty-
Wz.7tdozoRecf() is to compute the number of pixels taken on the screen by the surface
occupied by the window. The RECT L structure, as described in PMWIN.H,looks like
this:

typedef struct _RECTL
I // rc

LONG xLeft ;
LONG yBottom ;
LONG xRi.ght ;

LONG yTOp ;

I RECTL ;

Mcssngcs 81

0nceyouhavethisinformation,youcaninstructthesystemtopaintinagivencolor
all pixels enclosed by that rectangle. Like Gp€.Er¢se(), Wz.77F#ZRccf () requires as its first
parameter a handie to a presentation space. This is a common feature of all PM
functiousinvolvedintheproductionofanykindofoutput.Theinformationcontained
in a presentation space handie is absolutely critical for PM in order to perform any
kind of window output operation, such as displaying a text string, a bitmap, or a
drawing.

Output Techniques in PM
One of PM's distinctive traits is that it anows the development of applications that
haveadez7z.ce-£.7tdepe7tdc7tfoutputlogic.ThismeansthatwhenyouarewritinganOS/2
application,anydisplayoperation(textorimages)isnotdirectlyrelatedtotheactual
features of the hardware adapter installed in the system. Naturally, the software
designer has to consider the screen's dimensions in order to position any window
appropriatelyandmakeitvisible.However,itisnotnecessarytosetanyspecificsizes
on the sides of a square to ensure that proportions are kept right on both axes.

Thismeansthatthesamecodetransferredtoasystemwithdifferentresolutionwill
continue to operate correctly and adapt itself dynamically to the new situation.
Drawing a circle on a Personal Computer equipped with a VGA adapter will achieve
the same result if you decide to change to an XGA resolution (obviously, the ratio
betweenthexandyaxis,aswellasthephysicalscreenareacanvaryaccordingtothe
greater resolution that one adapter might have over another). All painting activities
performed by PM follow some special rules, shown in Figure 3.2.

Exarfue Figure 3.2 starting from the bottom. The video adapter installed in the
system is handled by OS/2 through specific dez7z.ce dr2.z7ers, which are identified in the
CONFIG.SYS configuration file. The following lines, extracted from CONFIG.SYS,
show how-in this case-the system is set up to take advantage of a video adapter
capable of the XGA standard.

®®®

DEV ICE=C : \OS2\XGARI NGO . SYS

DEV I CE=C : \OS2\XGA . SYS

SET VIDEO_DEVICES=VIO_XGA

SET VIO_XGA=DEVICE(BVHVGA,BVHXGA)

®®

The DEVINFO directive in CONFIG.SYS is employed to prepare a device for using
a certain code page. In this case, the VGA resolution and the file VIOTBL.DCP are
selected for managing the code page.

®®,

DEV I N FO=SC R . VGA , C : \OS2W I 0TB L . DCP

®®,

The actual device drivers that make the system hardware independent are intemal
system items, and can be thought of as software tools used by OS/2 for interacting

82 0S/2 2.1 Workplace shell progranming

IIARDWARE ADAPTER

Figure 3.2 Functional scheme of output operations performed by a pM application.

and communicating with the underlying hardware. The greater the proficiency in
exploitingthehardware'spotentialperformance,thegreaterwilltheadvantagebefor
the application in terms of available resolution and colors. The information returned
byadevicedriverisaccessibletoanapplicationbymeansofadcz7z.ceco7zfe#£.Adevice
contextisasetofdatastoredbythesystemthatdescribesthefunctionalandstructural
features of some hardware component. Device contexts are not limited to video
adapters; they are produced by any kind of device driver that can interact with
adaptersorotherhardwareequipmentcapableofgeneratingoutput,1ikeprintersand
plotters.

A device context is strongly related to a hardware device. When an application has
access to a device context, it has already established which output device operations
willbeaddressed.Despiteitsimportance,itisnotthekeyelementtogenerateoutput.
As you can see in Figure 3.2, an application's code is only marginally interested in a
device context, because an functions regarding any output activity will operate on a
presc7tf¢£z.o7tsp¢ce.Apresentationspaceisoneofthesystem'smanyintemalstructures;
itdescribesthecharacteristicsoftheareainwhichthegraphicalfunctionsareallowed
to operate. The GFT functions of PM's API generate their output in a presentation
space, which, in turn, is associated with a device context.

Messages 83

To understand the relationship existing between a presentation space and a device
context, imagine the first one as the negative film exposed to the images framed by a
camera at the very moment a snapshot is taken (action produced by GFT and some
WIN functions).Thenegativefilmisusefulbyitself,butitcarmotbeconsideredatrue
formofoutput.Toobtainthefinalresult,youneedtoprinttheimageonphotographic
paper that has its own size, texture, weight, and capability in rendering true colors.
Thetransferofthepotentialpictureintosomethingtangibleisthetrueoutputprocess.

Theapplication,thus,drawsonapresentationspace,referringtowhatevercoordi-
natesystem,resolution,andunitofmeasureitpleases.Thisactivitydoes74ofproduce
the display of any image, because the presentation space is not directly connected to
any physical device in the computer. Once an image has been created in the presen-
tation space, and once the actual media that will display the resulting.work has been
chosen(screen,printer,plotter,etc.)youonlyneedtoassociatethepresentationspace
withtheappropriatedevicecontext.Thislastpointalsoinvolvessomeconversionand
amappingprocessofthevirtualimagedrawingunitsdefinedbytheprogrammerinto
physical points that can be handled by the device.

Distinction between Preseritat4on Space and Device Couteut
Theadvantageofseparatingavirtualimage(PS)fromitsconcreterepresentation(DC)
istobefoundinthegreaterflexibilitygainedbyallofPM'soutputoperations.hfact,
you nright draw a circle on a generic PS and then associate selectively that PS with
three or more distinct device contexts, so as to obtain the rendering on the screen, on
a laser printer, or on a plotter.

The adoption of a presentation space, in addition to a device context, is new to the
painting model used in MS Windows, where the DC is the only layer between the
application and the hardware. The reason for this additional intermediate layer is to
make the drawing phase of an output process as independent as possible from its
actual display. Without a presentation space, the application has to get a valid
reference (a handle) to a device context, and thus decide even before producing any
output at all, what the final target media should be. In PM the presence of a presen-
tation space allows the selection of a physical output device to be deferred, and still
allows the drawing to be generated. With the behavioral model adopted by MS
Window,whenyouwanttoreproduceanimageontwodifferentdevices(forinstance,
thescreenandaprinter),youareforcedtogeneratetwodifferentinstancesofthesame
drawing, one for each device context, and to execute the whole set of drawing
functions twice. This can be avoided with the PM distinction of PS and DCs.

The presentation spaces t
hpMtherearethreetypesofpresentationspaces:c¢cfeeczJ77t€.crops,77tz.crops,and77or77z¢Z
PS. Very often, in the Toolkit's support documentation or in other texts on OS/2
programming, the distinction is linrited to the last two categories, since the cached

84 0S/2 2.1 Workplace shell progranming

micro PS is a very simple and fast solution with limited potential. h the following
pages we will always use a cached micro PS to solve output problems in the client
window,becausetheexampleswewillexandneperformverylimitedpaintingactivi-
ties. In these cases a cached micro PS is always the best approach.

The Cached Micro PS
The main advantage of the cached micro PS is that it can provide a handie to a
presentation space (hps) that is directly associated to a screen device context. All
information needed to perform the output is available at once. The term c¢ched refers
to the nature of the PS returned. The presentation space is not created by the applica-
tion, but is predefined in the system. A cached micro PS is automatically associated
only with the device context related to the video adapter present in the system.
Therefore, it is a simple and optimized tool for performing output operations directly
in the appfication's window on the screen. To obtain a cached micro PS from PM, you
need to call the Wz.74Ge£PS() function:

#defi.ne INCL_WINWINDOWMGR

HPS APIENTRY Wi.nGetps(HWND hwnd) ;

P ar ameter D es cription
hwnd Handle of the window of which you want to get a presentation

Space

Retwn vahae D escription
HPS Handle of a presentation space

Oncethehandieofawindowhasbeenspecified,thesystemautomaticallyprovides
the application with a presentation space valid for generating simple output.

Due to the cached nature of this object, it is necessary to release the presentation
spaceonceyouhavefinishedusingit.ReturningaPShandietoPMmakesitaccessible
to other applications. The operation is performed with W£.77Rezc¢seps() which invali-
dates the handle referring to the presentation space previously obtained through
WinGetps().

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nReleaseps(HPS hps) :

P arameter D escription
hps Handie of a presentation space
Return vahae D escription
BOOL Success or failure of the operation

AcachedmicroPScanberetumedtothesystematanytimeduringtheapplication's
execution. h PM there is no need to request and release a cached micro PS within the
code fragment that deals with a single message. It is possible to obtain a handle to a
presentation space correspondingly to a generic WM_ message, and to release it back
to the system when you are processing another message. Naturally, this implies that

Messages 85

the hps identifier be declared with a statl. c storage class. h general, however, it is
advisabletousethefunctionsWz.7tGe£PS()andWz.77Reze4zseps()entirelywithinthecode
fragment dealing with a single message. This helps you write understandable and
easy to maintain code.

®,,

case WM_xxx:

i
HPS hps ;

hps = Wi.nGetps(hwnd) ;

®

Wi.nReleaseps(hps) ;

I
®,,

The pair of functions Wz.7tGe£PS() and Wz.7tReze¢seps() can be employed in the code
fragments dealing with any message inside a window procedure, with the exception
of WM_PA I NT. h this case you must use the W£.7tBegr.7tp¢z.7t£() and Wz.7tE7tdp¢z.7t£() func-
tions to obtain the best possible performance from the system and to avoid output
problems.

The Micro PS
Thiskindofpresentationspaceisalsocalledsf¢7td¢rd77tz.crops,inordertodistinguish
itfromthec¢cfeed77t€.crops.Anapplicationcannotrequestapresentationspacehandie
from the system, as was possible for the cached micro PS. hstead, the presentation
space needs to be built directly in the program's code by calling Gpz.Crc¢feps(). This
function returns a presentation space once it has been given a handle to a device
context, the units of measurements of the presentation page, and one or more options
referring to the creation mode selected.

#defi.ne INCL_GPICONTROL
HPS APIENTRY Gpi.Createps(HAB hab,

HDC hdc,

PSIZEL psi.zlsi.ze,

ULONG flopti.ons) ;

Parameter
hab
hdc
psizlsize

floptious
Return Vahae
ITS

Description
Handle to the anchor block
Handle to a device context
Address of a S I Z E L structure containing the dimensions of the
presentationpage
Flags defining the attributes of the presentation space
Description
Handie to a presentation space

86 0S/2 2.1 Workplace shell progranming

The main difference with respect to a cached micro PS is the presence of a handie
to a device context previously obtained through a call to Dez70pe7tDC(). The presenta-
tion space must be associated with a device context; this estabfishes a link between
the two elements, even before the output operations are started. Not all of the GPJ
functions can be exploited by using a micro PS; to access all of the graphics services
present in PM it is necessary to use a normal presentation space.

The Normal PS
A normal PS is the only presentation space of PM that allows the implementation of
the schema depicted in Figure 3.2. To create a normal PS, you must use the Gpz.-
C7'c¢£cPS() function, however, you don't have to indicate the handle of a device
context. A normal presentation space can work without a device context. Once you
need to display on any device the output image produced in the presentation space,
you can establish the association between the two elements by calling the function
GpiAssociate()..

#defi.ne INCL_GPICONTROL

B00L APIENTRY Gpi.Associ.ate(HPS hps, HDC hdc) ;

P arameter D escription
hps Handle to a presentation space
hdc Handle to a device context

Retw:r'n v ahae D es cription
BOOL Success or failure of the operation

The high degree of functional flexibility of a normal PS naturally involves a greater
consumption of memory space with respect to the other two types of presentation
spaces. When you use standard micro or normal presentatio~n spaces, you need to
specify a handle previously returned by the Gpz.Cre¢feps() function, as the second
parameter of W£.7tBeg£.7tp¢z.7tf() in the code fragment Processing the WM_PA I NT message.
Thus, a WM_PA I NT message code looks like this:

®

case WM_PAINT:

i
WinBegi.npai.nt(hwnd, hps, NULL) ;

®,,

Wi.nEndpai.nt(hps) ;

1

®,,

The handie to the presentation space is not returned by W1.7?Begr.7tp¢£.7t£(), but it has
been created in another portion of the window procedure (likely during the intercep-
tion of the WM_C REAT E message).

Messages 8;7

The WM_PAINT Message
All the logic governing the appHcation's output operations is couected aroun.d the
WM_PA I NT message. Keeping in mind what we have seen so far, the first operation is
to gain access to a presentation space. Whatever kind of presentation space you will
bedealingwith,youwillalwayshavetouseWz.7tBegz.7tp¢z.7tf()andWz.7tE7tdp¢z.7tf()inside
the WM_PA I NT message:

#defi.ne WINWINDOWMGR

HPS APIENTRY Wi.nBegi.npai.nt(HWND hwnd, HPS hps, PRECTL prectl) ;

P ar a;meter D e s cription
hwnd Handie of the window within which output operations are to be

performed
hps Handle of a presentation space
prectl Address of a RECTL structure
Retwm vahae D escription
IIfs Handle to a presentation space

By looking at the parameters of this function, you can see that a presentation space
is actually a set of data associated with a particular window, since it is necessary to
specify that window's handle as the function's first parameter.

The second parameter refers instead to a presentation space. If you intend to obtain
an h p s, then you need to assign a N U L LHA N D L E to this value. You'11 get a cached micro
PS. hstead, provide a handle to a PS when -dealing with a standard micro PS or a
normal PS.

The last parameter defines the surface that will be used by the application for its
painting operations. The value of N U L L as the third parameter indicates the applica-
tion'spurposeofredefiringtheoutputportionofthewindowthatcorrespondstothe
#pd¢fe regz.o7t (described below). After having terndnated the painting activities, you
have to release the handle to the presentation space by calling Wz.7tE7zdp¢z.7t£():

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nEndpai.nt(HPS hps) ;

P ar ameter D es cription
hps Handie to a presentation space
Retwrn value D escription
BOOL Success or failure of the operation

It is always mandatory that the presentation space used in response to a WM_PA I NT
message be provided to the application through a call to Wz.7tBegz.7tp¢z.7tf().

The Update Region
The presentation space returned by Wz.7tBegr.7tp¢£.7tf(), although theoretically the same
as the one provided by WinGetps(), exhibits fundalnental differences in its inner

88 0S/2 2.1 Workplace shed programming

workings for generating the output. It has already been stressed that an OS/2 appli-
cation must be able to cope with very frequent changes to its own output surface (the
client window) whenever the window is resized or overlapped by the pixels of some
other window. Both of these two events generate a WM_PA I NT message in the applica-
tion'smessagequeue.TheWM_PAINTmessageisanunusualmes°sage,bothfortherole
itplaysinanapplicationslogic,aswellasforitsownnatureandbehavior.Itspresence
in an application's message queue impfies the need to refresh some portion of the
client window, an operation that can be very complex and computer intensive. To
understand this statement, notice how the mouse's cursor disappears from the screen
ifithappenstobeoveraclientwindowengagedinprocessingtheWM_PAINTmessage
(it is the WinBeginpaint() function that acts on the mouse's cursor).

The presence of multiple simultaneous windows on the screen and the ease with
which the user changes the size of any of those windows implies that the WM_PA I NT
message is an event that happens often in any OS/2 application. Consequently, a lot
of CPU time might be spent in perforrfung painting operations which are often time
consuming and complex.

On the basis of these considerations,1et's examine the nature of the WM_PAINT
message. First of au, the presence of a WM_PA I NT message in an application's message
queueimpliestheneedtorefreshpartoftheclientwindow.TherectangleofthecHent
window that is in need of refreshment is called the update region to indicate that the
underlying pixels need to be updated. The update region is handied intemally by the
system and corresponds to the smallest rectangle that can possibly encompass all
pixels that have been invalidated for some reason by the system or the application
itself. The update region can grow in size very quickly (as more pixels become
invaHdated), for the very reason that repaint operations can be requested very often
in PM. This means that the message queue of an application will often contain several
WM_PAI NT messages that would all involve many update regions (that might even
overlapeachother).Theseconsideratious,togetherwiththeneedtominimizethecpu
overhead in repainting operations, have inspired the designers of the system to give
special characteristics to the WM_PA I NT message.

The presence of invalidated pixels will not automatically generate a WM_PAI NT
message unless the application's message queue is empty. Moreover, overlapping
areas of invalidated pixels are consolidated into one larger, cumulative region to
update.

Followingthiscriterion,eachOS/2applicationwillavoidimmediateupdatingany
invalidatedregion.Thereisalsoanotherreasonforthis.Theflowofmessagesalready
present in the queue could bring about yet more changes that partially or totally
invalidate what has already been updated immediately after receiving the first few
WM_PAINTmessages.Forthisreason,aWM_PAINTmessageissometimesconsideredas
a ``1ow priority" message. It might be more helpful to consider WM_PAINT like a
message that shows itself in the queue only if there is an area of pixels that needs to
be updated ¢7td the message queue is empty (Figure 3.3).

Messages 89

Figure 3.3 Generation of a WM_PAINT message in the message queue of an
application.

Forcing a WM_PAINT Message
The concentration of all output activities around one WM_PA I NT message also implies
a development model that is based on different criteria from a simple application
with a character-based user interface. h this case, whenever you need to display text
on the screen, simply insert a pr£.74f/() statement in the code, being careful not to
overwrite portions of the screen that are already in use. In an OS/2 application such
an approach is impossible, due to the strict rules that govern output, concentrating
it around the WM_PAI NT message. So how can you possibly force an application to
perform its output activity even when there is no WM_PA I NT message showing up in
the queue? You simply simulate the sending of this message in such a way that the
desired output statements, which are coded in the WM_PAI NT handling code, get
executed and thus produce the desired results on the screen.

The tool that is most often used to achieve this is the function Wz.74J7tz7¢Zz.d¢feRec£():

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nlnvali.dateRect(HWND hwnd,
PRECTL prectl ,
B00L flncludechi.ldren) ;

Parameter
hwnd
prectl

fhcludechildren

Rctum Value
BOOL

Description
Handie of the window to invalidate
Address of a RECT L structure corresponding to the rectangle
that needs to be invalidated
Boolean that indicates whether all child windows need to be
included in the operation
Description
Success or failure of the operation

90 0S/2 2.1 Workplace shell progranming

Thewindowhandlereferstotheclient,whiletheaddressofaRECTLstructureallows
the identification of the rectangle that you want to invalidate. The boolean parameter
indicates if the process of invalidating should involve all child windows of the
window identified by the first parameter of the function.

The second parameter is often replaced by a NU LL value, meaning that the entire
client has to be invalidated. The action performed by W€.7iJ7tz7¢Zz.d¢feRec£() is creating
an update region as large as that indicated by the second parameter, and then posting
awM_PAINTmessageintheapplication'smessagequeue.Thismessagewilleventually
be retrieved by the message loop and passed to the appropriate window procedure,
ensuring that the desired action occurs. Figure 3.4 summarizes the logic necessary to
invalidate an area of pixels with Wz.7tJ7tz7¢Z€.d¢feRec£().

PM's API also has the Wc.#Lrpd¢fewz.7tdozu() function, which refers to the handling of
generating the output of the entire client window:

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nupdatewi.ndow(HWND hwnd) ;

P arameter D escription
hwnd Handle of the window within which all output operations are

to be performed
Return value D escription
BOOL Success or failure of the operation

This function sends a WM_PAINT message directly to the appropriate window
procedure, bypassing the message queue. However, this is not an altemative to
W€.7tJ71z7¢Zz.d¢feRec£(). In fact, Wc.7eLZpd¢£ewe.7tdow() will perform its task only if there
alreadyexistsaninvaHdatedareaforthewindowindicatedbythehandleandforany
possiblechildwindowsthatmightbepresent.Ifthereisnoupdateregion,the function

Figure 3.4 Contrivance for forcing a repaint of the whole or part of the client
window®

Messages 91

has no effect and does not issue the WM_PA I NT message. Very often, it is convenient to
co"bhaWinlmalidateRect()armdWinupdatewindow().

®,®

Wi.nlnvali.dateRect(hwnd, NULL, TRUE) ;

Wi.nupdatewi.ndow(hwnd) ;

With the first function you define the invaHdated region by inserting a WM_PA I NT
messageintothemessagequeue.ThesubsequentcalltoWz.7tLrpd¢fewz.77dozo()retrieves
the WM_PAI NT message from the queue and delivers it to the appropriate window
procedure, thus updating the invalidated area. Using this method, you can be sure
that the repainting of the client window will take place almost instantaneously, since
the message handled by Wz.7eLIpd¢few1.7tdozo() will immediately reach its processing
code.

Output Synchaondz ation
ThecombinedeffectofaWz.7tJ7tz7¢Zz.d¢feRec£()fo11owedbyaW£.7qLrpd¢fewe.7!dozo()allows

youtooverridethenormal,asynchronouspaintingactivitiesperformedbyPM.There
is another means by which to make the painting activities synchronous that does not
require you to resort to the combination of Wz.7tJ7tz7¢Zz.d¢feRec£() and Wz.7zLZpd¢£ewz.7e-
dozo().Thissolutioncanalsobeextendedtoallthoseconditionsnotdirectlycontrolled
by the application code (a window's overlapping a portion of a client window or
resizing).

Among the registration styles of a class of windows there is also CS_SY N C PA I NT. Ih
the API we find also the analogous WS_SYNCPAI NT used when a window is created.
Thepresenceofthisstyle(attheclassleveloratthesinglewindowlevel)modifiesthe
behavior of Wz.7iJ7tz7¢Z€.d¢£eRec£(), so that it sends a WM_PA I NT message directly to the

appropriate window procedure rather than ``parking" it near the application's mes-
sagequeue.hthiscase,allpaintingoperationswillbeterrfunatedbeforethefunction
returns, thus making WM_PAI NT behave like any other PM message. h other words,
WM_PA I NT will not be penalized in the message queue. (Actually a WM_PA I NT message
will not even appear in the message queue of an application that employs windows
belonging to a class registered with the CS_SY N C PA I NT style or windows created with
thews_SYNCPAINTstyle.)

The software designer is thus free to choose between implementing the output
operations with a successive consolidated update region and placing a WM_PAI NT
messageinthemessagequeue,providedthequeueisempty(asynchronouspainting),
or with a direct immediate processing that successively deals with all update regions
(synchronous painting) in sequence.

Both solutions are valid. The choice depends on how ``heavy" and complex the
output task is. If you are sure that the size of the update region is limited, and that it
will seldom happen that any nearby pixels might be invalidated, then it might be
worthwhile to adopt a synchronous painting technique. Cia the other hand, if the
appHcation changes the client window's pixels often and generates complex images,

92 0S/2 2.1 Workplace shed progranming

then it is better to follow PM's standard approach, asynchronous painting. Figure 3.5
summarizes the different behaviors of Wz.7tr7tz7¢Zz.d¢feRec£() and W.77Lrpd¢fewz.7tdozt7()
according to the altemative painting techniques employed.

Output Handling
PM optimizes the presence of the WM_PAINT tmessage in order to minirfuze any
ineffective repainting operations that could happen due to the high frequency of
interactions of the multitasking environment. The concentration of all painting in-
structions inside the block enclosed by the Wz.7tBegr.77P¢z.7tf() and W€.7t£7tdp¢z.7zf() cans in
the WM_PAI NT means that all output statements have to be contained between these
two]inits. The application can control, through some flags, whether certain portions
of these output statements are executed or not. For example, imagine you're writing
a program to draw some circles with a Dr#zoCz.7`cze() function you have designed.
Dr¢zuCz.rcze() is caned only if the user has selected an appropriate menu option in the
program. The fonowing code fragment reproduces this hypothetical situation:

INVALIDATED
RNA

SYNCHRONOUS
PAINTING

int main(void)

(

message loop
•.. Inside the queue

(CS_SYNCPAINT)

ASYNCHRONOUS
'

PAINTING

int main(void)

(

message loop EiiiiRE
Clientwndproc(...)

(

WinlnvalidateFlect(...);

Winupdatewindow(...);

case wM _ PAI NT:

)

F±gure 3.5 Winlnv audateRect() and. Winupdatewindow().

Messages 93

®,®

case WM_PAINT:

I
HPS hps ;

hps = Wi.nBegi.npai.nt(hwnd, NULLHANDLE, NULL)

DrawxMasTree(x, y, sHei.ght) ;
l.f(fBalls)

Drawci.rcle(xl, yl, sDi.ameter, clrcolor) ;
®,,

Wi.nEndpai.nt(hps) ; '
I

break ;
®®®

The Dr¢zt7"¢sTree() function displays a Christmas tree with no ornaments. These
will appear only if the boolean identifier fBal 1 s is nonzero. h our hypothetical
program, fBal 1 s takes on the value of TRUE only if the user makes a determined
selection, which will cause the client window to become invalid. Eventually the
windowprocedurewiureceiveaWM_PAINTmessageandwilltakecareofdrawingthe
Christmas tree with all ornaments in place.

This type of control actions to be performed within the governing logic of the
WM_PA I NT message-that is, when the application is about to generate its output-re-
1iescompletelyonhowtheapplicationhasbeencoded.However,thereisalsoanother
criterion for determining which statements should be executed when processing the
WM_PAI NT message. Despite the fact that the entirety of the code for displaying text
andimagesiscontainedinthisportionofthewindowprocedure,theappficationdoes
not have to execute ¢ZZ of these statements.

This is not a programmer-defined criterion, rather it is something governed by the
valueandthesizeoftheupdateregion.PMiscleverenoughtoimplementaselective
execution of all basic statements that make up the block of code contained between
Wz.74Begz.7ep¢€.7t£()andW€.77E7?dp¢€.7tf().Tofullyunderstandwhatthismeans,remember
that all of the Gpz. and the Wz.7t functions that deal with output generation-for
instance, Wz.7zF€.ZZRcc£()-require as their first parameter a handle to a presentation
space. The h ps used during processing of the WM_PA I NT message is a handle that is
``update-region aware." This means that amid all information contained in a presen-
tation space+information that might not be directly accessible to the application-
there are some pieces of data identifying the update region. When PM needs to
execute a Gp!. or a Wz.7t function that requires an h p s as its first parameter, its intemal
logic will test whether the output produced overlaps the area invalidated by the
system.

Thus, it can often happen that, although present in the code processing the
WM_PA I NT message, one or more functions will not be executed, because their output
wouldnotaffecttheinvalidatedarea.Weretheyexecuted,theresultwouldbeexactly
the same as what is already displayed in the window. We will test this in Listing 3.7.

Let's apply this concept to the Christmas tree example. You can now imagine that
theappearanceofdecoratiouswinconcemonlylimitedportionsoftheentiredrawing,

94 0S/2 2.1 Worlcplace shell progranming

and therefore it would be ineffectual to redraw the entire picture. The function
Dr¢zoXM¢sTree() will not be executed by PM for each addition made to the drawing.
ItwiubecalledonlywhensomepixelscoveredbytheChristmastree'simagehappen
to be in the invalidated area. This action, which is completely transparent to the
application, anows the reduction to a bare mirimuni of any intervention on the part
ofthesystemforperformingallpaintingoperatious,andthusavoidsoverloadingthe
processor. Figure 3.6 sumlnarizes the behavior of PM as far as the handling of the
WM_PA I NT message is concerned.

The behavior of PM when generating output in a window's client area clarifies
unequivocally why Wz.7eBegr.7tp¢z.7t£() rather than Wz.7tGe£PS() is used to obtain a pres-
entation space handle. This second function returns a presentation space handie that
is not ``update-region aware," and therefore would not allow for an appropriate and
optimal execution logic of output generation. This means that the presentation space
handieobtainedthroughwc.7tBeg!.7tp¢z.7zf()mustbepassedbacktothesystembymeans
of Wz.77£7tdp¢z.7t£() only within the block of code handling the WM_PA I NT message.

Erasing a Window's Background
Nowweknowaboutanelementsneededtopaintanapplication'sclientwindow.The
changestomaketothecodeareconcentratedonlyinthewindowprocedure.The first

Figure 3.6 Logical scheme governing the painting mechanism in PM applications.

Messages 95

solution(Listing3.2)presented,isalsothemorecomplicated,andisbasedontheusage
of Wz.7tFz.ZZRec£(); therefore it is necessary to declare an identifier of type HPS and
another one of type RECTL.

Listing 3.2 The Processing of the WM_PAINT Message Now Permits You to Color
in White the Application's Client Window

MRESULT EXPENTRY Cli.entwndproc(HWND hwnd,
ULONG msg,

MPARAM mpl,

MPARAM mp2)

{
swi.tch(msg)
{

case WM_PAINT:

I
HPS hps ;

RECTL rc ;

hps = Wi.nBegi.npai.nt(hwnd, NULLHANDLE, &rc) ;

Wi.nFi.llRect(hps, &rc, CLR_WHITE) ;
Wi.nEndpai.nt(hps) ;

I
break ;

defaul t :
break ;

)
return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2) ;

I

The presentation space handle returned by We.7tBegz.77P¢€.#f() is aware of the invali-
dated area that is stored in the RECTL structure specified as the function's third
parameter. This change, in comparison to the W£.7tBegr.7tp¢z.7tf(), makes the rectangle
that needs to be filled with the function W€.7tFz7ZRec£() immediately accessible. The
following list shows all the defines for colors that are usable with W£.74Fe7ZRec£() and
other PM API functions.

Define
CLR VVHITE
CLR_BLACK
CLR_BACKGROUND
CLR BLUE
CLR RED
CLR PINE
CLR GREEN
CLR CYAN
CLR_YELLOW

96 0S/2 2.1 Workplace shell progranming

CLR NEUTRAL
CLR DAREGRAY
CLR_DARKBLUE
CLR_DA±D
CLR DARRTINK
CLR DAREGREEN
CLR DARECYAN
CLR BROVVN
CLR PALEGRAY

E
In Figure 3.7 you can see the final result produced on the screen by the ERASE

applications.
Listing 3.3, instead, presents the alternate solution, given by the usage of the

Gpz.Er#se()function.hthiscase,itisnecessarytoinsertthe#defi.neINCL_GPIC0NTR0L
directive in the first few lines of the application in order to have readily accessible the
function's prototype.

h the case of Gpz.£r¢se(), the selected color corresponds to the system default,
CLR_BACKGROUND,.ThesolutionpresentedinListing3.3isoneofthemostcolrm.onin
OS/2 applications. With this second approach it is not necessary to declare a RECTL
structure as in the preceding example.

Figure 3.7 ERASE with its client window colored in white.

Messages 97

Message Flow in PM
ThemessageWM_PAINThasallowedustosolveapracticalproblemwiththesample
MACHINE application. However, we have also noted that it features some unusual
characteristics not found in most of the WM_ messages of PM's API.

Queued Messages
Before exanrfug other messages, it is necessary to discuss a distinctive element
representedbythedifferentarrivalmodesofamessageinawindowprocedure.Up
tothispoint,wehaveseenthatthefinalreceiverofamessageisthewindowprocedure
of the class to which the target window belongs. (Remember that an application can
havemorethanoneclass.)Moreprecisely,thepresenceofamessageinPMisalways
¢ddressedtoawindow,thatis,toitshandle.Theprocessingofthemessagetakesplace
inthewindowprocedureoftheclasstowhichthewindowbelongs.

Ifawindowprocedureisinancasesthefinaladdresseeofanmessages,theycanreach
the window via. two different paths: by means of the appHcation's message queue, or
direcftyskippingthemessagequeuealtogether.Figure3.8representsthefirstmethod.

Bythismethod,amessagepassesfromthesystem'smessagequeuetothemessage
queueoftheapplication,whereitisreadandretrievedbythemessageloopandfinauy
passedtothewindowprocedure.Thisiscauedposf€.ngamessage,sometimescalled
queued messages or asynchionous xpessagfs.

The first definition corresponds to the idea of physically posting a letter in a mail
box (a message in the system queue), and to deliver it through the addresse.e's local
post office (the application's message queue). The address of the ?ddressee is repre-
sentedbythehandleofthewindowtowhichthemessagerefers;malmostallcases,
though, the sender of the message is unknown.

Figure 3.8 Flow chart of queued messages reaching a window procedure
through the application queue.

98 0S/2 2.1 Wor:Iaplace shed progranming

This type of message is also known as an ¢ey#chro7eo#s message, because its proc-
essinginthewindowprocedureoftheaddresseewindowwiuhappenatsomelater
moment when the message is posted into the queue. There is an interval-which is
difficulttomeasureduetothehighdegreeofvariabilityoftheenvirorment-between
themomentwhenamessageisinsertedintoandthemomentitisrecoveredfromthe
application's message queue.

Figure3.9illustratesthislastpoint.ImaginethattheuserpressestheAkeyonthe
keyboard. The physical action is interpreted by the keyboard driver and it is then
passed on to PM. PM will in turn translate the data it receives into the WM_CHAR
message,andthentakescareofpostingthaLtmessageintheapplicationthatwasactive
inPMatthatverymoment.ThefunctionWc.#Ge£Msgowiuretrievethemessageand
transfer it by means of W{.7tDz.sp¢£chMsg() to the window procedure of the class to
which the addressee window belongs. The message win wait for a variable amount
oftimeinsidethewindowprocedure,accordingtothekindofprocessingthatitwfll
besubjectto.Itcanbejustafractionofasecond,orasignificantamountoftime.

Naturally, you wifl try to develop apphicafrous that minindre the in'teIval between a
message'sentranceintoandexitfromthequeue.Toavoidsituatiouswithlongerwaithg
times of the various messages in their respective queues, it is necessary that an PM
appHcatioussticktosomestructuralandbehavioralrules,sothattheydon'ttieupthe
CPUforlongerperiodsoftime.Wewi]lexaminethesetechniquesinChapter9.

Beforegoingintomoredetafl,youneedtoknowmoreabouttheaddresseeofaposted
message.Itwhlinvariablybeawindowbelon`gingtotheappfication.coos/2appfication

Figure 3.9 Message processing scheme for a message retrieved from anrappli-
cations message queue.

Messages 99

usually registers different classes, each Of which can be represented by several win-
dows. Here are the possible scenarios:

• Message passing between two windows of the same class
• Message passing between two windows of different classes
•Messagepassingwhereboththesenderandthereceiverarethesanewindow

The Wi.7tpos£Msg() function is the tool you will use to post a message:

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY WinpostMsg(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2) :

P ar ameter D e s cription
hwnd Handle of the message's addressee window
msg Nurneric value of the message
mp 1 Additional information
mp2 Additional information

Retwm vahae D escription
BOOL Success or failure of the operation

Youmayhavenoticedhowtheparameterstothisfunctionareexactlythesameas
thoserequiredbyagenericwindowprocedure.Thisshouldnotcomeasasurprise,
since a window procedure is in any case the final target of any message. The usage
of Wz.7tposfMsg() requires you to know the handle of the addressee window. This
piece of information is obviously available when the receiver is the same as the
sender. However, it should not be difficult to know the sender handle even when
two different windows are involved, simply because they will be related one to
another in some way.

ThesolutiongivenbyW1.7£Pos±Msg()camotbeexploiteddirectlybyPMforimple-
mentingacommulcationmeansbetweenwindowsbelongingtotwodifferentappli-
cations. For this type of problem, you need to resort to the communication protocol
known as DDE (explained in Chapter 11).

The W.7tpos±Msg() function returns a boolean value that indicates the success or
failure of the insertion operation of the message into the queue. It is good program-
mingpracticetoalwaystestthisretumvalueinordertomakesuretheoperationwas
successful. h general, the size of a PM application's message queue will not be a
linritingfactorfortheprogram'sexecution.Thetenmessagesthatastandardmessage
queue can accolrmodate are more than adequate for most applications. Only those
appHcatiousthatmakeheavyusageoftheDDEcommunicationprotocolmightneed
a larger queue.

100 0S/2 2.1 Wor:laplace shell progranming

The Paraneters of w±npost:Mss()
ThefourparametersofthewinpostMsg()functionmustincludetheappropriatedata:
the handle of the target window, the type of message, and possibly some additional
information.

AnyofthemessagesHstedinTable3.1canbepostedwithwinpostMsg().hgeneral,
WM_ messages are those used most frequently to respond to most situations. h
Chapter 7, we will examine the predefined windows classes and see what specific
message can be used with the various kinds of windows.

Eachmessagecontainssomeadditionalinformationthatisinsertedinthetwo32-bit
MPARAMidentifiers.TheToolkitdocumentationwiuindicatewhatkindofinformation
should be inserted into mpl and mp2. h some cases, one of the two parameters is
reservedordoesnotconveyanyspecialmeaningforthemessage'sirmerworking.

When to Post a Message
The messages explicitly posted into the application queue by means of Wz.7z-
PosfMsg()areasynchronous.Whyshouldyoupostamessage?Asidefromthefinal
receiver, posting a message into the application's queue follows the guideline of
executing a particular portion of code of a window procedure-precisely that
portion of code of the class to which the destination windows belongs.

A window procedure is a function that is characterized by having its code
divided in several smaller ``blocks" corresponding to the various messages that
need to be caught. If, during the processing of a message you need to call Wz.7t-
PosfMsg(), then it means that the application's logic will have to execute the code
fragment associated with the posted message. But when is this to happen? Later,
at some moment after the current message's processing. Posting a message is like
scribbling a note and attaching it to someone's PC screen. You wish to communi-
catesomething,andmaybeevenaskthatsomethingbedone(1ikemakingaphone
call) within a reasonable amount of time-certainly later than when you actually
stick the note to the screen. Let's look at Figure 3.10.

A generic window procedure has received a WM_XXX message that has been
intercepted correctly. The logic behind its processing implies various operations
(theellipses)andacalltoW2.7cPosfMsgotoposttheWM_YYYmessageintothequeue.
Once the operation is complete, WM_XXX's processing goes on and eventuany ternri-
nates with the b rea k keyword that yields to Wz.7tDe/W€.77dozt7Proc(). Exiting from the
windowprocedurehappenswiththeretumvalueofWe.7zDe/WZ.7tdozoproc(),andreen-
tersthemessageloopin7#¢z.71().Here,afterwz.77Dz.sp¢fchMsg()returns,anotheriteration
callingWz.74Ge£Msg()isexecuted.Wedon'tknowwhichandhowmanymessagesare
present in the queue. However, it is certain that the WM_YYY message is there, Simply
because it has been inserted there by the can to W{.7tpos£Msg(). Let's assume that
WM_YYY is preceded in the queue by two other messages. After those `two messages
have been processed, it will be WM_YYY's turn. The message reaches the window
procedureoftheclasstowhichthetargetwindowbelongs(intheexample,thesame
windowprocedureinwhichWM_XXXwaspreviouslyintercepted).

Messages 101

Figure 3.10 Posting a message.

Whatwehavejustdescribedcorresponds,inbroadterms,tomostoftheoperations
neededtoterminateanapplication.hthiscase,themessagetobepostedisWM_QUIT
(correspondingtowM_YYYintheabovedescription).Theonlydifferencetobefound
intheinvalidationofthemessageloopwhenWM_QUITisrecoveredisinitsnotbeing
passed to a window procedure.

Non-Qtteued Messages
Thesecondsolutionforsendingmessagesisbyreachingthetargetwindowprocedure
directly, skipping the application's message queue altogether, and therefore bypass-
ingtheapplication'smessageloop.ThetoolusedforthispuaposeistheWc.7£Se#dMsgo
function of PM's API, a function that takes on the same syntax as Wt.7tpos£Msg():

#defi.ne INCL_WINMESSAGEMGR

MRESULT APIENTRY Wi.nsendMsg(HWND hwnd,
ULONG msg,

MPARAM mpl,

MPARAM mp2) ;

102 0S/2 2.1 Workplace shell progranming

int main (void)

(

message loop

)

APPLICAHON
QUEUEe

NI{REsgNN:::WITMRT_xC::rvAIpr°"jNI(RTF:MET:w°vNIENunrou/

switch(msg)

(
> case WM_YYY:

break;

)
return WinDef\/Vindowproc(...);

I

fw

Figure 3.11 Flow chart of a non-queued message sent via Wi.#Se#dMsg().

Parameter
hwnd
msg
mpl
mp2

Retwm Value
RESULT

Description
Handle of the message's target window
Numerical value of the message
Additional information
Additional information

Description
Retumvalueofthewindowprocedurethatprocessedthemessage

ThedistinctivefeatureofW{.77Sc7tdMsg()isthatitwillsendthemessagespecifiedin
msgdirectlytoawindowprocedure.Thereforeitiscorrecttospeakaboutsynchronous
processing, because this function does not return any value until the target window
procedure has terminated all operations triggered by the message. Figure 3.11 sum-
marizes the situation.

ThereceptionofaMRESULTretumvaluecorrespondstotheretumtypeofageneric
windowprocedure.AlsoW.7tse7!dMsg()istobeusedlikeacommunicationtoolwithin
oneapplication.Butwhatisthetargetwindowofamessagebeingsentthisway?Can
thereceiverandthetargetwindowbethesame?hthiscasethereareseveralpossible
scenarios:

Mcss¢ges 103

• Sending and receiving windows belong to different classes
• Sending and receiving windows belong to the same class
• Sending and receiving window are the same

JustasforW.7tpos£MsgoandW.71Se#dMsgo,awindowcansendamessagetoitself,
or to another window of the same or another class. The fundamental difference
betweenW.#Se#dMsg()andW.71Pos£Msgoisinthecertairtythattheactiontriggered
bythesentmessagewiubeperformedbytheapplication,andthatthiswmhappen
assoonasthemessagehasbeensent.Ingeneral,thisfunctionisusedmorefrequently
than Wz.74Pos£Msg().

When to Send a Message
The following discussion will help you to better understand how to take advantage
ofmessagepassingviaw£.#Se#dMsgo.hiseveralos/2applications,especiallybefore
theadventofWPS,thereweredialogwindowstoaccessthefilesystemandtoloada
fileintomemory.Thechoiceofafiletakesplaceinahitbox,andtheconfirmationofthe
userselectionisdonebypressingtheOKbutton.Youcanalsodouble-cfickonafilename
without pressing the OK button. h practice, you can achieve the same result via two
differentactioris.Adouble-clickorthepressingoftheOKbuttonaretwodisthctevents,
andtheyareprocessedintwodifferentcodefragmentswithintheappficatious.However,
the actions performed in those two code fragments are very sindlar, but not the same.•Whenyoudouble-cfick,theappHcationmustretrievethefile,openit,andloadit.When

youpresstheOKbutton,autheseactionsmustbeprecededbyatestthatafilenameis
selected. A very common solution to this problem is to perform the test in the code
fragmentdea]jngwiththeoKbutton,andthentheprogramsimplysendsitsel£amessage
thatsimulateswhatwouldhappeninthesystemwhentheuserdouble-cHcks.hthisway,
theprogramcangrantthatthecodeprogrammedforthedouble-dick-theloadingofthe
file+is executed. Figure 3.12 illustrates this process.

S one Message-Sending Cons4derat4ons
Atthispoint,thewholepicturemightseemsomewhatcomplicated,especiallyifyou
arenewtoPM.Whenshouldamessagebesentandwhenshoulditbeposted?What
criteriashouldgovemthefirstmechanism,andwhatthesecond?

There is no simple rule that can determine whether some kind of message should
bepostedorsent;onlyexperienceandcarefulstudyofsamplelistingswillgiveyou
a set of rules that can help you. The solution given by W1.7tse71dMsg() is the most
common,becauseitallowsoneormoreactioustotakeplaceimmediately.Theresult
is sinular, in a certain sense, to making a direct call to a code fragment of the same or
of a different window procedure, as if it were a function or a jump (like the GOSUB-
RETURNparadigmofBASIC).Eachcodefragmentcorrespondingtoanintercepted
messageinawindowprocedurecanbethoughtofasaseparatefunctionthatcanbe
calledbysendingthecorrespondingmessagewithWc.7tse#dMsgo.

104 0S/2 2.1 Wor;laplace shell progranming

DOUBLECLICKmessage
OK message

MRESULT EXPENTRY Clientwndproc(...)

(

switch(msg)

(

case OK:
2

WinsendMsg(hwnd, DOUBLECLICK„ .,...);

break;
case DOUBLECLICK:

break;

return WinDefwindowproc(...);

Figure 3.12 Scheme of message passing to minimize writing new code.

Functions and Messages
The MACHINE application developed in Chapter 2 is limited to displaying on the
screen a window characterized by a few structural elements, like the titlebar, icons,
and the sizing border. This isn't much compared to industrial strength programs
which are available. However, the few lines that make up MACHINE do indeed
generateagreatmanymessagesthatareallsenttotheonlywindowprocedurepresent
inthecode.Themessageflow,atleastfornow,iscompletelyhiddentotheappfication,
due to the action of Wz.7tDe/W€.7idozoproc() that conects all messages. Your best shot at
discovering what is happening inside the application when you create a window is
by using the IPMD debugger. For this purpose MACHINE must have been compiled
and linked with appropriate switches. From WorkFrame/2 you can then use the
acceleratorCtrl+DtoaccesstheIPMD'sinterfacewindows.Thebestpointofviewfor
seeing the message going to a window procedure can be established by setting a
breakpoint exactly on the statement:

®,,

swi.tch(msg)

®®,

Messages 105

TosetabreakpointwithIPMD,justdouble-cficktheleftmousebuttonontheline
number of the source code under examination, as in Figure 3.13.

To evaluate what goes on inside the program, you execute the code step-by-step,
with the trace functionality activated by pressing the right mouse button or through
hot keys like Ctrl+O or Ctrl+I. The execution of the code proceeds statement by
statement, showing on-screen what is actually happening in the PM screen group in
reaction to the execution of every code statement.

The function W€.7tc7'c¢fesfdw£.7tdozo() is an important step in the logic flow of our
appfication because it corresponds to the first appearance on the screen of the pro-
gram's main window. Cince you press the right mouse button, when the horizontal
cursorbarispositionedonthefrstparameterofWi.7tcre¢£esfdw3.7tdozu(),youwillfind
yourselfdirectlyinsidetheclass'swindowprocedure.

Thisjunpfrom77t¢£.7t()to,CZz.e#fw7tdproc()wasnotcausedbyadirectcall,orbythe
passingofanyexplicitmessage(asthereisnoW}.7lse#dMsgocauinsight).Thejump
in the execution flow into the window procedure is due to Wi.7tc7ie¢fesfdwi.7tdozo().

ThedebuggingperformeduptothispointsuggeststhatitistheWz.74Crc¢fesfdw€.7t-
dozt7() function that produces ,as a side effect the passing of one or more messages
directly to the window procedure of the class to which the window belongs. This
measthatthemessagescanarriveatawindowprocedurenotonlyonbehalfofthe
programmer's choice, as the programmer calls functions like Wi.77Se7tdMsg() and

G@
Temp'tltes

fi
Miscelloneous RE ffi

DiIvt3 A Shredder

Figure 3.13 IPMD with a breakpoint set right in the window procedure.

106 0S/2 2.1 Workplace shell progranming

Wz.7€Pos£Msg(),butalsoasadirectconsequenceofusingseveralofPM'sAPIfunctions.
This point is critical to PM programming.

In general, within the category of non-queued messages, there are two cases:
• Messages explicitly sent by means of the Wz.74Sc7tdMsg() function
• Messages generated as a side effect of the usage of some of PM's API functions

The application's flow of execution moves into the window procedure specified at
class registration time in a call to Wz.7zRegz.sfcra¢ss(). The parameters given to the
windowprocedurearethesameasthefirstfourmembersofaQMSGstructure,butthey
donotoriginatethere,sinceatthismomentnoreadoperationfromthemessagequeue
has been performed. The type of message sent directly from an API to a window
procedure of the window's own class as a consequence of a side effect can vary from
function to function and are part of the side effect chain itself.

Thisconsiderationbecomesafundamentalpieceinthedevelopmentmodelof PM.
Itisnecessarythattheprogrammerknowthesetofsideeffectsthatareproducedby
PM's API function cans in order to take advantage of them. However, very often, the
messages generated by the API functions are not described in the technical documen-
tation.Togetholdoftheseinvaluablefacts,thebestmethodistoexplorestepbystep
the evolution of a running application and retain the series of messages received by
the window procedure.

To determine which message actually arrives in the window procedure, you can
open IPMD's Program Monitor List window and ask it to keep track of the msg
identifier. The most convenient representation is the hexadecimal format, the same
used in PMWIN.H to describe every single message (see Appendix C for a quick
reference to these numeric codes).

Asyouproceedwiththedebuggingphase,youwillseethatwithW£.74Crc¢£esfdwe.7i-
dozt7() only two messages are sent to the window procedure. The reception of the first
message of the flow causes Wz.7tDc/WZ.77dozoproc() to generate other related messages.
This behavior is not fixed-it depends on the flags set when the class was registered
orthewindowwascreated.Table3.2summarizeswhathasemergedfromtheanalysis
through IPMD of the code reproduced in Listing 3.4, without changing the structure
of the module definition ffle (Listing 2.8) or the makefile (Listing 2.7).

Even before returning the value of the window's handle, the Wz.77C7igflfesfdwz.7tdezt7()
functionsendsthewM_CREATEmessagetoitsownwindowprocedure.hrespousetothat,
Wz.7tDe/W€.77dozoproc()sendsawM_ADJUSTWINDOWPosmessage,asshowninTable3.2.

Table 3.2 The Wi.7£Cre¢fesfdwt.#dozo() Function, as defined in Listing 3.4, generates
this pair of messages sent directly to the window procedure.

Nwmeric vahae Mess age

OxOO1

0xOO8

VVM CREATE
WM_ADJUSTWINDOWPOS

Messages 107

Eventually,theflowofexecutionretumstothe77t¢z.74()function,whereitreachesthe
execution line of W€.77Sfeozowz.7tdozo(). This function, in turn, win send the WM_F0 RMAT -
F RAM E to the window procedure and generate the sequence shown in Table 3.3.

ThesequenceofmessageslistedinTables3.2and3.3wouldhavebeenuniqueand
wouldcontinueorfuttingtheWz.7tsfeozt)W£.7tdozo()functionandsettingtheWS_VISIBLE
flag in Wz.7tc7'e¢£esfdwt.7tdozo(). Therefore it is not possible to establish a clear-cut
criterion that allows you to determine what messages pertain to a particular API
function, because the role played by the various style flags affects them a great deal.
In many cases, the only tool by which to discover what is actually happening inside
an application is IPMD.

Messages, Windows, and Window Procedures

i -#± :

ThecreationofawindowhappenswithWz.7tcrc¢fesfdw€.7tdozo().Thisfunctionretums
a handle to the frame window and the handle to the client window appears in the last
parameter.InthesampleListing3.5,thatmeansthatthehandleoftheframewindow
is a known entity in 77z¢£.71() once W£.7icre¢fesfdw€.77dozt7() has terndnated its execution.
However, due to side effects, some messages arrive at the class's window procedure
before the function returns.

Rememberthatamessagemustbesenttoatargetwindow-evenWz.7tc7`e¢£esfdw€.7z-
dozt7() must fonow this rule. Which window? It can only be the application's window
(i.e.theapplication'sclientwindow).Awindow'shandleisfirstknowninthewindow
procedure of the class to which the window belongs, rather than in the function that
causW1.74C7'e¢fesfdwz.77dozt7().Therefore,itisnotnecessarytodeclareasourcefilescope
identifier for storing a window's handle, because this is always passed automatically
by PM when a message is sent to the window procedure. Keep in mind:

• A message is always addressed to a window (there can be some variations like
sending a message to an application queue)

• Messages are always processed in a window procedure
• h each application instance there will be a window procedure busy processing

one message at a time, and it always knows to which window that message is
addressed

Table 3.3 Messages Generated by Wi.#Sfeozowt.#dozu() in Listing 3.5

Numeric value Message

0 x0 041 WM_FORMATFRAME
0x0 0 5 5 WM_WIND OWP O S CIIANGED
0x0 0 0 7 WM_SIZE
0x0 0 05 WM_SHOW
0x0 0 4F WM_ERASEBAC KG ROUND
o xo o2 3 WM_pAn\IT

108 0S/2 2.1 Workplace shell programming

Functions That Use Messages
The analysis of the preceding output techniques allowed us to conclude that the
Wz.7ez7tz7¢Zz.d¢£cRcc£() function has as a default side effect the posting of a WM_PAI NT
message in the application's queue. h addition to functions that send messages
directly to the appropriate window procedure (like Wz.7tc7'c¢£csfdwz.7tdozt7(), Wz.7t-
Createwindow() , Winupdatewindow() , Winshowwindow() , Winsetwindowpos() irmd
others),thereareotherfunctiousthathaveasasideeffectthepostingofamessagein
thetargetapplication'smessagequeue.TheflowofinformationinPMisthereforethe
direct consequence of at least four different events:

• Sending messages
• Posting messages
• Use of API functions that send messages
• Use of API functions that post messages

hspecialcases,somefunctionscanattimespostamessageandatothertimessend
it directly (that is what happens with W£.77J74z7¢Zz.d¢£eRcc£(), according to the painting
techniquechosenforthewindow).Despitethesource,theaddresseeisawindowand
the final destination a window procedure.

The Messages of the Predefined Cl,asses
hTable3.1youcanseealistofthemessageprefixesrelatedtothepredefinedwindow
classes. It's just a series of numerical defines that are different from generic WM
messages. In Chapter 7 we will examine in greater detail the messages of each single
class. Each of these messages follows the rules discussed in the previous paragraphs
with a preference for the sending mechanism.

Defining New Messages
h addition to the standard WM_ messages and those belonging to the predefined
classes, there is also the possibifity of defining new messages to satisfy particular
application requirements. In PMWIN.H there is the message WM_US E R that takes on
the value of Oxl000, greater than that of any other message. WM_US ER is the starting
pointfordefiningnewmessagesthattheprogrammercanpasstowindowsbelonging
to the same program. The definition of a new message is based on a simple system
that takes advantage of the C compiler's #def l. ne preprocessor directive. h several
places in this book the WM_PASS P ROC will be defined in the following way:

#defi.ne wM_PASSPROC WM_USER + 0

In general, this define will be placed in the application's header file or in the first
few]inesofsourcecode.WM_PASSPR0Cbecomesamessagethatcanbetransferredvia
functioncauslikeWz.77Pos£Msg()orWe.7tse7tdMsg().Naturauy,thetargetwindowmust
be of a class that is capable of catching and processing the message(s) defined by the

Messages 109

appfication.ThemessagesdefinedinthecodewfllneverbesentbysomeAplfunction,
not even as side effects.

Messages defined in your code follow the same standard rules. You send them
through Wt.7tse7tdMsg() or you post them via W€.77Pos£Msg().

Some Enhancements
hterceptingthemessageflowdirectedtoawindowprocedurebysettingabreakpoint
withIPMDisaveryrewardingwaytoleamhowaPMapplicationworks.Thedisplay
ofamessage'shexadecimalvaluealone,however,isnotcompletelyself-explanatory.
It would be much more convenient and useful if it were possible to show in IPMD's
ProgramMonitorListwindowthenameassignedtothemessageinPMWIN.H.This
canbedonebydeclaringabidimensionalarrayofcharacterscontainingthetextstring
ofeachsinglemessage.However,itisnotthebestapproachasfarasCprogramndng
isconcemedorforthedevelopmentmodelinPM.Abettersolutionistodefineastring
table inside the resource ffle, and then read the strings from within the code at
execution time. In Chapter 5 we win see all the elements that will allow us to build
such a solution.

Message P arameters

RE
In Listing 3.5 the flow of execution in the window procedure goes through the
WM_PA I NT case branch when the value of the ms g identifier is equal to Ox0023. Once
thatpieceofcasecodehasbeenexecuted,afterabandoningtheswi.tchcodeblock,
execution returns to Wz.71De/W£.77dozoproc() and then to 77t¢z.7t(). In the case of
WM_PA I NT, we face a very special situation, because this message is involved with
all of the application's output activities. However, the rule extends generally to au
messages. A window procedure will always receive at least once the WM_CREATE
message, issued by the W1.71C7'e¢£esfdw£.74doztJ() function. We will now change the
structure of the window procedure in Listing 3.4, in order to test for a WM_C REATE
condition (Listing 3.5).

The WM_C REAT E message contains some interesting information in the mp 1 and mp 2
parameters.Thisconsiderationisvalidforalmostallofthemessagesimplementedin
PM(someofthemwinhaveanemptyparameter,butmostofthemwillexploitall32
bits available for describing the nature of the message involved).

The technical documentation of the Toolkit indicates that the WM_C REAT E message
subnrits in the mpl parameter a type PV0I D parameter. The area to which it refers
containsdatathatisspecifictothatwindow.WhenaWM_CREATEmessageisreceived,
the program is engaged in executing the W£.74C7'e¢fcsfdwz.7tdozu() function for generat-
ing a window. The WM_C REATE message is sent to the window procedure of the class
to which that window belongs. Via mpl the programmer has a chance to access
information critical for the window's creation. The syntax of Wj7?C7`e¢£esfdwz.#dow()

110 0S/2 2.1 Workplace shell progranming

does not allow the specification of any information to be retrieved by means of the
mpl parameter of WM_CREATE. So, if we intercept the WM_CREATE sent by W€.7tc7`e¢fe-
Sfdwz.7tdew(), mp 1 will be N U L L.

h the case of Listing 3.5 we have not dealt with any piece of information that is
critical for the window's creation.

It is far more interesting to examine the value of mp2 (Figure 3.14). This second
parameter is a pointer to a CREATESTRUCT structure. By using IPMD to review the
memory area pointed to by mp2 you will discover some values related to the Wz.77-
C7'e¢£csfdw€.7tdozt7() function. h Chapter 4 we will discuss the contents of the
CREATESTRUCTstructure.Itisevidentthateveninthewindowprocedureyoucanfind
some data relating to a window's parent. The member hwndparent of the
CREATESTRUCTstructuretakesonthesamevaluethatthehwndFrameidentifierhasin
the777¢z.#()function.Furthermore,astheflagFCF_SHELLP0SITI0Nhasnotbeenset,the
window will not have any data regarding its position and size on the screen.

The example of the WM_CREATE message allows you to learn about a way of
exploiting the macros present in PMWIN.H. If you wish to extract parameters from
theidentifiersmp1andmp2,youcantakeadvantageofanappropriatemacro,andeven
perform a casting if necessary.

ist GRE E E@ = RE Fit EEE
HPLaserjetllD Multlmedla Vfl:trmo? Folder SNOOPEP.EX= jaefiREffRE DROPINFO IBMWorkFranere

E@
Templates

E@
Miscelloneous

4 ffiHffi

Figure 3.14 IPMD allows you to examine the memory area pointed to by the
mp2 parameter in the WM_CREATE message.

Mcss¢ges 111

Sending Messages
PM's Toolkit documentation and the on-line help explain how to retrieve the infor-
mationpresentinmp1andmp2.Veryoften,however,itisnecessarytosendorposta
messagewhendealingwithdialogwindow,orinanormalwindowhandledthrough
its appropriate window procedure.

The passing of a message to a window procedure is often the consequence of an
exphicit call to the Wz.7tse7tdMsg() or Wz.7tpos£Msg() function, or a call to one of PM's
API function. Let's explore what happens in a window procedure when it receives a
message. We win examine the simple case of creating a window on the screen, the
client window of which win change color on two occasions:

• When the window is activated
• When the window is resized

Tomaketherequiredchangestothecodethusfar,itisfirstnecessarytocousideryour
objectiveanddeterminewhichmessageismostappropriate.BylookingatAppendix
C,youcanspotseveralpotentialcandidatesthatcouldstandinacaseconditionand
complete this exercise. The two messages that we will use are WM_ACTIVATE and
WM_SIZE,respectively,forhandthgthewindow'sactivationanditsresizing.

The WM_ACT I VATE message is issued by PM to a window every time the window's
activationstatuschangesviaacquisitionorloss.WM_ACTIVATEisnottheonlymessage
thatgetssentinthissituation.ItisfollowedbyWM_SETSELECTI0NandWM_SETF0CUS
whenitisactivated,andprecededbythosetwomessageswhenitisdeactivated.

WM_ACT I VAT E 0xO o o d Descr£.pfi.offl

mpl USHORT usActive :gni:Ft£E:iLSE to indicate the activa-

Fep=Value uLngNDGh#ly =eTed:ee:f thefranewindow
Foroursimpleapplication,youwillinterceptWM_ACTIVATEandseeifthewindow

isabouttobeactivatedordeactivated.TheinformationiscontainedinthelowerSH0RT
of mp 1 and thus can be obtained through the S H0 RTI F ROMM P macro:

®,,

case WM_ACTIVATE:
i.f((B00L) SHORTIFROMMP(mpl))

I
// acti.vati.on of the wi.ndow
®®,

1
else
i

// deacti.vati.on of the wi.ndow
®®®

1
break ;

®,

T12 0S/2 2.1 Workplace shell progranming

Ofthetwopossiblesituationsintheabovecodefragment,weareinterestedonlyin
the first one, that is, when the window is activated. Every time that execution fans
through with a WM_ACT I VATE message and a TRU E value in mp 1, we win assign a new
colortothewindow'sclientarea.Therefore,itisnecessarytodeclareastati.cstorage
class identifier, because an output operations must be performed in the code block
handling WM_PA I NT , as optinal PM development rules dictate.

The program makes use of the c 1 rB c k identifier, which indicates the current color
code. Once the counter gets beyond the value of C LR_PALEGRAY (15L), it is restarted
from C LR_WH ITE. The switch to the next color, or the increment of the counter, is an
operation performed by the code for the WM_ACTI VATE message. The second task is
thatofinvalidatingtheentirechientwindowoftheapplication,thusforcingtheissuing
of a WM_PA I NT message with an update region corresponding to the entire window:

®®®

case WM_ACTIVATE:

i.f((B00L) SHORTIFROMMP(mpl))

i
// window i.s acti.vated
(clrBck > 14) ? clrBck = CLR_WHITE : clrBcki+ ;
Wi.nlnvali.dateRect(hwnd, NULL, FALSE) ;

I
break ;

®,®

By calling W€.7tJ77z7¢Zz.d¢£eRcc£() you indicate that a WM_PA I NT message will be deliv-
ered to the application. The logic governing a WM_PA I NT message prescribes that the
Wz.7tFz7ZRcc£() function be caued to paint the invalidated area (as a direct consequence
of a resizing or activation).

®,®

case WM PAINT:

I
HPS hps ;

RECTL rc ;

hps = Wi.nBegi.npai.nt(hwnd, NULLHANDLE, &rc) ;

Wi.nFi.llRect(hps, &rc, clrBck) ;

®®

Wi.nEndpai.nt(hps) ;

I
break ;

®,,

Whatevervalueisgivenasthesecondparameter(theaddressofaRECTLstructure),
Wz.7eF€.ZZRec£() will paint only the invalidated area. This information is characteristic
of a presentation space, and will be used by W£.riFz.ZZRcc£() without evaluating the
rectangle described by the second parameter. This behavior cannot be changed by
any of PM's API cans. The possible querying of the client window's size through

Mcss¢gcs 113

W.7tQ#enyw£.7tdozoRec£()andthepassingoftheresultingrectangletoWz.7tFz.ZZRcc£()will
always override the value of the second parameter of the fill function.

Theseconsideratiousforceustofo11owapreciseplanwhenimplementingthecode
handling any WM_PA I NT issued by the system, but is not due to any direct resizing or
activation action. h fact, it might happen that some other window will overlap our
appficationwindow.Whentheoverlappingwindowisremoved-andthusthestatus
of the underlying window is in no way modified directly-the pixels that were
previously covered become invalidated. The application will therefore receive a
WM_PA I NT message with an update region that corresponds exactly to the rectangle
that was previously hidden (Figures 3.15 and 3.16).

h this case, the invalidated area is less than the size of the client window, and it is
necessary to perform the repaint with the previously used color. The change of the
backgroundcoloriscalculatedoutsidethecodehandlingtheWM_PAINTmessage,and
inthecodehandlingtheWM_ACTIVATEandWM_SIZEmessagewithastatementlikethe
following one:

®®®

(clrBck > 14) ? clrBck = CLR_WHITE : clrBckH ;

®

The WM_S I Z E message is received when the window is resized in any direction.

Figure 3.15 The CLIENTCL window is partially covered by OS/2 System.

L14 0S/2 2.1 Workplace shell progranming

Figure 3.16 When the OS/2 System window is moved, CLIENTCL receives a
WM_PAn`IT message with an invalidated area that corresponds to the covered
rectangle.

WM SIZE 0x0007

mpl SHORT scxold
SHORT scyold

mp2 SHORT scxnew
SHORT scynew

Return value ULONG flreply

i:

Description

Previous size along the X axis
Previous size along the Y axis
Current size along the X axis
Current size along the Y axis
Reserved

However, as far as WM_S I ZE is concerned, it is redundant to invalidate the client
window because the class to which the window belongs has the C S_S I Z E R ED RAW flag
set.Thismeansthattheentireclientwindowwillbeinvalidatedautomaticallyforany
type of resizing operation it might be exposed to. Listing 3.6 shows the source code.

The functionality of the application shown in Listing 3.6 is certainly limited, how-
ever, if you compare it to the very first PM application, it is more complex. What you
shouldnoticeistheverylimitedamountofcodethatwasneededtochangethesimple
program framework into a ``personalized" application.

Mcss¢ges 115

Execution of Painting
We will conclude the analysis of messages and painting with an example that sum-
marizes the two concepts. The PAINT application will display in the client window
three text strings, as shown in Figure 3.17.

Changingthesizeofthewindowwinnotvaryitscontents.However,ifyoupressthe
rightmousebuttonanywhereinsidethecfientwindow,youwfllnoticeachange.Thetext
Mlan is replaced with Paris. There is a Paris in Texas, but not in Italy! So we certainly
haveaprobleminFigure3.18whenitasksifyouhaveeverbeentoMilan,France.

Actually, this error is intentional. Pressing the right mouse button generates the
messageWM_BUTT0N2D0WN,whichiscaughtinthewindowprocedure.hthispieceof
code the second and third strings are replaced:

®,®

strcpy(szstri.ng[1], "Pari.s,") ;
strcpy(szstri.ng[2], "France") ;
®,®

and part of the cfient window is invalidated. To be more precise, the rectangle
containing the second string (Milan) is invalidated before it is replaced. The call to
W€.7zJ74z7¢Z£.d¢feRec£() issues a WM_PAI NT into the application. The code dealing with

Figure3.17TheclientwindowofthePAINTapplicationshowsthreetextstrings.\

L16 0S/2 2.1 Workplace shell programming

Figure 3.18 Variation in the second string of PAINT's client window after the
right mouse button has been pressed.

WM_PAINTtakescareofdisplayingthethreestringscallthreetimestheGpz.Ch¢rsfrz.7zgAf()
function.

®,,

Gpi.Charstri.ngAt(hps, &pt, si.zeof(szstri.ng[0]) szstri.ng[0]) ;
®®

Gpi.Charstri.ngAt(hps, &pt, si.zeof(szstri.ng[1]) szstri.ng[1]) ;
®®,

Gpi.Charstri.ngAt(hps, &pt, si.zeof(szstri.ng[2]) szstri.ng[2]) ;
®®

You might thus expect to see the three strings as they should appear after pressing
the right mouse button. However, that does not happen (Figure 3.18). The reason is
tobefoundinthebehaviorofthefunctionsthatperformoutputonthescreen:o#fp#£
chipping.

All of the Gp€. functions, and some of the Wz.7t functions like Wz.7tF#ZRec£() take as
their first parameter a handle to a presentation space. The h p s returned by Wc.77Begz.7t-
P¢z.77£()isawareoftheupdateregion.Thismeansthatthefunctiongeneratesitsoutput
when it falls within the invaHdated area, and thus avoids any changes to the screen if
the output surface is not affected by the change. This is the reason why the word

Mcss¢ges 117

``France'' appears on the string after a right mouse button click. The first call to
Gz7z.Cfe¢rs£#.7tgAf(), which handles the string ``Have you ever been to," is entirely
outside the invalidated area and thus a self-censorship condition is induced, whose
only purpose is that of optimizing the system's performance. The same criterion is
also applied to the third text string, even if it is changed with respect to the previous
screen display. Ihtemally, in the system's memory, you will have France; but on the
screenthestring``Italy,mytown?"willremain.inthecaseofthesecondstring,there
isacompletematchbetweentheinvalidatedareaandtheoutputsurface,andthusthe
associated text is displayed. This is why you see ``Paris''. The source code of PAn\IT
(Listing 3.7) illustrates the output clipping mechanism of PM.

h order for the output of the PAINT window to correspond to what is actually in
thecomputer'smemory,itisenoughtochangethesizeofthewindow.Thisoperation
invalidates the entire client window, and thus all three strings get refreshed.

ThissamplepAINThasbeenpresentedtoclarifythebehavioralmodelfo11owedby
the functions of PM that generate output. This choice is made to minimize CPU time
dedicatedtoperforingoutputoperations.Figure3.19showspAINTafterithasbeen
resized.

Figure 3.19 The new whting in PAINT after a complete resizing of the window.

windowing
WestartedusingtheW£.7tcre¢fesfdw€.7idozt7()functiontocreateawindowinChapter2.
Actually, as you might have seen in Chapter 3 by inspecting the source code with
IPMD, the W£.7tc7'c¢fesfdw£.7tdozu() not only creates a simple window, but several
windows simultaneously. We know about a window called the¢¢7#e zoz.7tdozo, identi-
fiedbythehandleretumedbytheW€.#Crc¢£esfdwz.#dozu()functionandweknowabout
the handle that identifies the cZz.e7tf zui.7tdozt7, which is specified as the last parameter in
the same Wi.7tc7'cflfesfdwt.7tdozt7() function. However, the final outcome of using Wi.7t-
Cre¢£csfdw€.7tdozu()ismuchmoreelaborateandcomplex.Usuallytherewillbeasetof
five or six windows, including the ¢#77te zt)I.7tdozu and the cZz.c7tf zoz.7tdozti First we will
analyze exactly what happens when the Wz.7tc7`c¢fesfdw£.77dozo() function is called.

Creating a Window with Wi.#Cre¢fesfdwi.#doco()
TheeffectofWz.7tcreflfesfdwz.7zdozu()asithasbeenusedsofar,isthatofsimultaneously
creatingfivedistinctwindows,asshowninFigure4.1.Thesefivewindowsarecalled
the f raine window, the titlebar window, +ha titleba{ men¥,_ the 5izi.pg i?on, aT± the cl.lent
zoz.7zdozti The user will see one single thing, with no direct indication of the' various
components. For instance, a double-click on the titlebar will maximize the window.
A second double-click on the maximized window will restore its previous size and
position. Let's now examine in detail the properties of a window created by Wi.7t-
Createstdwindow().

The Frame window '
The return value of Wz.7tcreflfesfdwt.7tdozo() is a handle to the frame window
(hwndFrame). PM contains a class of predefined windows, WC_FRAME , to which all
standard frame windows creat`ed in application programs belong. Even what is
createdbytheWz.7zcre¢fesfdwz.7cdow()functionbelongstothisclass.LookingatFigure
4.1 it is quite difficult to discern the frame because it does not correspond to any
distinctive and visible item of the window. (Actually, only the sizing border can be
thought of as the outermost portion of the frame window.) The purpose of the frame

119

L2J0 0S/2 2.1 Worlaplace shed progranming

Figure 4.1 A typical PM window with its various components revealed.

window,is that of coordinating all other windows seen as a single window on the
screen by the user. Furthermore, the frame provides a screen area within which all
these items are contained. Figure 4.2 shows the relationship between the frame win-
dow and the other four windows produced automaticauy by the Wz.7tc7'e¢fesfdwz.77-
dozo() function.

It is clear that there is a hierarchical relationship among the frame window and the
other windows created by Wz.7tc7`c¢fesfdwz.7tdozu(). The frame window acts as the
parent and supervisor of the other four windows. This allows us to introduce two of
the most fundamental concepts in PM programming, which will help clarify the
relationship among the various windows created by the Wz.7tc7'e¢fesfdwz.7zdozo() func-
tion. These two concepts are those of p¢re7tffeood and ozo7zersfez.p.

Parenthood
Every window produced in the PM screen group is a child window of another
window.Thisisanabsoluterule.Therefore,itisalwayspossibletofindanywindow's
parent window, knowing that the originator is represented by the screen's back-
ground,knownasthedeskfopwindow(definedinpMWIN.HasHWND_DESKTOP).From

Wc.7zdozoz.7tg 121

Figure 4.2 Relationship scheme between all windows created by the
Wincre atestdwindow() function.

a strictly theoretical point of view the ancestor window is HWN P_D ES KT0 P; b{ut really,
thedesktopofaPMscreengroupisvisibleonlybrieflywhenthesystemisbooted.h
fact,allnostimmediatelythescreenisentirelycoveredbytheWorkplaceShel1,which
appearsasaslightlymodifiedwindowbelongingtotheWC_C0NTAINERclass.Theuser
carmotmovethiswindow,andthusitisimpossibletoaccesstheHWND_DESKTOP,even
by using such ``intelligence" tools as PMSPY.EXE or SNOOPER.EXE (the first one is
found in the OS/2 2.1 Development Toolkit and the second is presented in Chapter
7). From the point of view of programming, however, it is correct to refer to the
definition of HWND_DESKTOP when you need to create a window to identify a PM
Prooran.

The window shown in Figure 4.1 is the system editor. The first parameter to
Wz.77Crc¢£esfdwz.7zdozt7() has been set to HWND_DESKTOP to indicate that the parent
windowshouldbethedesktop.Allthedesktop'schildwindowsareknownasfop-Zez)ez
zoz.7tdows; therefore, the frame window of the window that appears in Figure 4.1 falls
into this category.

Theparent/childrelationshipisfundamentalforallprogrammingpurposesinPM,
because it is always the parent window that provides the pixels to the various child
windows.Theon-screenspaceoccupiedbyatop-1evelwindow,1ikeaframewindow,
isdeliveredbytheparentwindow,thedesktop.Thep¢re7tffeoodrelationshipisacrucial
condition that allows a window to exist on the screen by providing a certain amount
of pixels. This pixel-providing relationship between a parent window and a child
window is extended further even to lower hierarchical levels, including that one
between the desktop and the top-level windows, as we will see shortly with frames.

The frame window behaves unsuauy, as it owns a portion of the screen, without
using most of it. hstead, it delivers this area to the other four windows created with
Wz.77Crc¢fesfdwz.7tdozo(). The exact number of windows created by this function de-
pends on the style flags that have been set by the programmer: four is typical of a PM
window.

The four windows generated by W€.77C71e¢£esfdwz.7tdozt7()-titlebar, titlebar menu,
sizing icon, and client window-are effectively all child windows of the frame

T2:2 0S/2 2.1 Wor;laplace shell progranming

window, and thus they hold a second generation relationship with respect to the
system's desktop. The relationship existing between a frame window and its child
windows is depicted in Figure 4.3.

TheWi.7tc7'cflfesfdw€.7tdezu()functionallowsyoutoestabfishthedegreeofparenthood
existingbetweenthevariouswindowsbymeansofthevaluegiventoitsfirstparame-
ter. Up to this point, we have only created top-level windows, that is, child windows
ofthedesktop.Itisnonethelesspossibletospecifyanyvalidhandie+referringtoany
other window-as the first parameter to generate a frame window and all its controls.
Atypicalexampleiscreatinganewframewindowwhoseparentisaclientwindowof
another window that has already been generated with Wz.7tcre¢fesfdwz.7tdow().

The use o£ Wz.7tcrc¢fesfdwz.77dozo() with the FCF_STANDARD flag, from which the
FCF_MENU, FCF_ICON, and FCF_ACCELTABLE have been subtracted, will create the
window's remaining structural elements, which are in turn children of the frame
window.

The cfient window handle will thus identify a child window, and corresponds
effectivelytothesoleobjectthattheprogrammercanmanagedirectlywithouthaving
to resort to any kind of intervention on the normal flow of messages. The client
window is the only window over which the developer has complete control.

Withthisunderstanding,registeringaclassthatformsthebasisofmultiple-window
structuresbecomesmuchclearer.WhenyouuseWz.7tRegz.sfera¢ss(),youactuallygive
PM the address of a zoz.7tdozo proced#re created by the programiner. Specifically, you

Figure 4.3 Relationship between a frame window and its child windows.

windowing T2:3

inform PM of the wi ndow procedure that refers to the application's client window,
and to that window only. All other constituent elements of a window, as they appear
on the screen, reauy belong to other predefined windows classes in PM and access
window procedures of their own, physically located in other modules of PM.

Class registration is thus a vital operation, as it is the only means of providing an
application with a client window that is the only legitimate receiver of the messages
generated by the user/application interaction. Listing 4.1 shows how to build two
windows with a parent/child relationship.

TogettoknowthedefaultIDsassignedbytheframewindowtoitschildwindows,
you have to look in PMWIN.H at the defines that have the F I D_ prefix, summarized
in Table 4.1. and Figure 4.4.

The order of the IDs in Table 4.1 is significant for the way the application will
behave. After any resizing operation, the frame window will arrange its child win-
dows starting with the first ID. The API of PM contains a very handy function that
provides the handle of any child window starting with its ID.

#defi.ne INCL_W.INMESSAGEMGR

HWND APIENTRY Wi.nwi.ndowFromlD(HWND hwndparent, ULONG i.d) ;

P arameter D escription
hwndparent Handle of a window that has child windows
id ID of a window
Return value D escription
HWND Handle of the child window corresponding to that ID or NULL-

IIANDLE in case of error

Thehandleidentifiestheparentwindowofthechildwindowyou'retryingto find;
the ID refers to the child window. h the case of a frame window, you can obtain the
handle of the corresponding window by indicating one of the IDs in Table 4.1. Here
is how to get the handle of the titlebar menu of a window:

Table 4.1 List of IDs Used by the Frame Window to Identify the Windows That Act
Like Frame Controls

Def unit IDs for the
Frame w:indow Value D escription

FID_SYSMENI
FID TITLEBAI
FID_MINMAX
FID NINE

Ox8002
0x8003
0x8004
0x8005

FID VERTSCROLL 0x8006
FD_HORZSCROLL 0x8 0 0 7
FID CLIENT 0x8008

Titlebar's icon
Titlebar's ,ID
Sizing icon's ID
Possible menu bar's ID
Possible vertical scrollbar's ID
Possible horizontal scrollbar's ID
Client window's ID

T2:4 0S/2 2.1 Workplace shed progranming

®®®

hwndsysMenu = Wi.nwi.ndowFromlD(hwndFrame, FID_SYSMENU) ;
®®

W!.7twz.7zdozuFro77zJD() operates with any pair of parent/ child windows, and is very
useful even when dealing with dz.¢Zog zoz.7idews (Chapter 8). By knowing the dialog
window'shandleandtheIDofanyofitscontrols,youcangettothatcontrol'shandle.
Quite often, in addition to Wz.7ew£.77dozt7Fro77tJD(), you can use Wz.7tQ#e7tyw.7tdozo() to
obtain further information associated with a particular window.

#defi.ne INCL_WINMESSAGEMGR .

HWND APIENTRY Wi.nouerywi.ndow(HWND hwnd, LONG cmd) ;

P arameter D escription
hwnd A window handle
cmd Flag to indicate the item sought for
Retunit vahae D escription
HWND Handle of the window being sought for or NULLHANDLE in

case of error

After indicating the handle of the window about which you want to know more, it
isnecessarytoprovideoneoftheindexesdefinedinPMWIN.H.Table4.21istsallvaHd
indexes for this function.

Figure4.4ListofIDsassignedbytheframewindowtoeachofitschildwindows.

Windowing 12:5

Table 4.2 Flags Accepted by Wt.#Q#enywt.7£dozu()

Flag Vahae Description

QW_NEXT

QW_PREV

QW_TOP
QW_BOTTOM

QW_OWNER
QW_PARENT
QW_NEXTTOP

0

1

2
3

QW_PREVIOP 7

QW_FRAMEOWNER 8

Returns the window that comes immediately after
the one indicated.
Returns the previous window, which is also above
the window indicated.
Returns the handle of the foreground window.
IndicaLtes the bottom-most child window, according
to the screen's arrangement.
Returns the handie of the owner window.
Returns the handie of the parent window.
Returns the next fop-Zez)ez window, according to the
arrangementmanagedbythesystem;itcorresponds
to the window that would be activated by pressing
ALT+ESC.
Returnstheprevioustop-1evelwindow,accordingtothe
arrangementmanagedbythesystem.
Retunis the owner of the window indicated by the
first parameter, changed so as to share the same
parent as hwnd.

Using Wz.7twz.7tdozt7F7'o77tJD() and Wz.7tQ#enywz.7!dozu() together, you can trace any
framecontrolwindowstartingwithaclientwindow.hfact,thehandlepassedbythe
system to the window procedure's first parameter always corresponds to the client
window,aswehaveseen.ThroughWz.7zQ#enywz.77dozu()itispossibletogetbacktothe
clientwindow'sparentwindow,andthustotheframewindow.Fromthis,yougetto
know the handle of any other frame control that might be present. Let's imagine that
thefollowingoperationstakeplacewhentheWM_CREATEmessageisdetected:

®®

case WM_CREATE:

I
HWND hwndFrame, hwndMenu ;

hwndFrame = Wi.nQuerywi.ndow(hwnd, QW_PARENT) ;

hwndMenu = Wi.nwi.ndowFromlD(hwndFrame, FID_MENU) ;

®®®

)
break ;

®®,

h this example the handie of the menu window associated with the application is
being retrieved, probably because the program win need to send some message to it

T2:6 0S/2 2.1 Wor:laplace shell progranming

eventually.Thesameapproachcanbetakenwithanyotherframecontroloranyother
child window that possesses an ID. Therefore, IDs are crucial for child windows.

Aswewfllseeinthefollowingchapters,usingwz.7iQ#enywz.7tdezo()andwz.7twz.7t¢ozu-
Fro77tJD() together is very common. Thus, it is practical and convenient to create the
following two preprocessor macros:

x) Wi.nQuerywi.ndow(x, QW_PARENT)

x) Wi.nwi.ndowfromlD(x, FID_MENU)

Sibling Windows
The description of the Wz.7twz.7zdozt7Fro77tJD() and Wz.7tQ#enywz.7tdozo() functions would
not be complete without touching upon another common windowing concept-sib-
ling windows. While the strongest relationship is that between a parent and a child
window, like a frame and a cHent window, there is another significant relationship
thatcanbethoughtofas'brotherhood"amongwindowsthatarechildrenofthesame
parent. The client window and the titlebar are both generated by Wz.7?C7'e¢fesfdwz.7t-
dozo(), and are a typical example. We usually say that the two windows are sz.Z7Zz.7tgs.
The WS_CLIPSIBLINGS flag or the class level flag CS_CLIPSIBLINGS refer to the
management of screen area between windows at the same hierarchical level, in the
case that at least one of them is moveable and might overlap the other.

All the frame controls are children of the frame window, and thus are siblings.
Often,itishelpfultotraversethefinilytreeofawindowverticauy,orevenhorizon-
tally, to track down all kinships. The two functions, W£.7twz.7tdozoFro77tJD() and Wz.7t-
Q#e7tywz.7zdozo(), meet this need. Starting with the handle of a generic window, the
programmer has at hand all the tools needed to discover any preceding generation,
and eventually get to the system's desktop. Starting with any window handle, it is
possible to assess all windows present in the system at any given moment. Figure 4.5
gives the whole picture.

The13thcentury'sltalianpoetDanteAlighieristatedinafamousverseofhisDz.I)I.7z¢
Co777777ed!.¢that``...Godistheuniverse'sPrimeMover,"thatis,thecenterofeverything.
Using his words in terms of PM programming it turns into ``a window handie is the
PrimeMoverofPMprogramming."ThekeystoneinPMprogrammingisgivenbythe
handieofanywindow.Cinceyougetholdofawindowhandie,youcancontrolalmost
any aspect of PM's behavior.

Ownership
The second unique feature of managing windows in PM is given by the ozo7zersfez.p
relationship that exists between two windows that do not necessarily have to be in a
direct parent/ child relationship. The ownership relationship is expressed by a notifi-
cation given by a window to another window. It is the establishment of a relationship
among windows that is comparable to what happens in a military structure with a

windowing T2:7

Figure 4.5 Wt.#Q#enywi.#dozo() and Wt.#Wt.#dozoFrofflJD0 are used for exam-
ining the list of windows present in PM.

rigid reporting mechanism. h the Wz.7cC7'c¢£esfdwz.7tdozo() function there is no specific
provision for defining which window should be the supervisor of the windows that
will be created. This means that all of the frame's child windows will consider it their
owner, with the exception of F I D_C L I ENT . The titlebar, the titlebar menu, the menu
bar, and the sizing icons are all instances of predefined classes. h their respective
window procedure there is some kind of notification logic implemented by the
system'sdesignersthatreferstotheirowner.Inthecaseofaclientwindow'swindow
procedure,itisuptothesoftwaredesignertoestablishwhetherthisbehavioralmodel
should be followed.

T2:8 0S/2 2.1 Workplace shed progranming

Each of the frame's child windows will notify any activity to their owner-the
frame-thusauowingittotakeanyappropriateaction.Toclarifywhattheownership
relationshipmeans,1et'slookatanexampleofwindowmanagement.Whenyoumove
the mouse over any of the window's sizing borders, press the left mouse button, and
drag the mouse pointer, you will resize the window. Now that we know about the
relationship that exists between the frame window and the four child windows, it is
evident that the movement of any of the window's borders must be notified to the
frame, because it must be able to adapt itself to the screen area being covered. (This
meansthattheframemustrequestagreaternumberofpixels.)Bybeingnotifiedabout
thenewsize,theframewintakecareofrepositioningofallofitschildwindows,while
maintaining the original structure and layout.

Another example: A double-click on the titlebar generally indicates that the user
wants to maximize the window. Actually, the physical action of detecting the mouse
inputtakesplaceonawindowbelongingtotheWC_TITLE8ARclass.Thiswindowwfll
be responsible for notifying its owner about the action. The frame will in turn react to
thisbyseizingthewholescreenarea,repositioningitscontrolssoastocoverthewhole
of the available area.

The Wz.77C7'c¢fesfdwz.7?dozo() function will not indicate an owner when a window is
being created; but this problem is solved by the Wz.77Se£Ozo7tcr() function. By default,
a top-level window produced with Wz.7tcre¢fcsfdwz.77dozu() has no owner.

The syntax of Wz.7tse£Ozu77er() is the following:

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nsetowner(HWND hwnd, HWND hwndNewowner) ;

P arameter D escription
hwnd Handle of the window whose owner you wish to refer to
hwndNewowner Handle of the new owner window
Return vahae D escription
BOOL Success or failure of the operation

The first handle indicates the window being referenced by the action of ownership
change;thenewownerisindicatedbythehwndNewownerparameter.hordertoforce
a client window to have its frame window as its owner, you have to proceed in the
following way:

®,®®

Wi.nsetowner(hwndcli.ent, hwndFrame) ;
®,,

Youcanputtheseconceptsintopracticeatoncebycreatingtwowindowsbelonging
to two different classes, and naming them Owner and Owned. Immediately after the
creation of the second window, you change its owner by assigning the frame window
of the first window. Once the windows are displayed (Figure 4.6) you will see the
effects of ownership.

ThefirstconsequenceofthisrelationshipisobviouswheneveryoumovetheOwner
window. A similar movement will take place automatically for the Owned window

windowing T2J9

grffiRE-gri§a ..« `,€ S`r#~ I--„ RE'8i--

Figure 4.6 Two fop-Zez7ez windows related by ownership.

sothatitwillmaintainunchangeditsrelativepositionwithrespecttoitsowner.There
is no mystery about this; it is simply the result of the passing of the WM_OWNER-
POSCHANGE message, issued by the owner window whenever there is a change in its
position on the screen.

WM_OWNERPOSCHANGE 0x0052

mpl PSWP pswp

mp2

Description
Address of a SWP structure that the
receiverwillhavetochangebyindi-
cating its new position and size,
with respect to the corresponding
variation in its owner

PSWP pswpowner Address of a swp structure that con-
tains the size and position of the
Ormer

Return value ULONG flreply Reserved

The complete message sequence received by the owned window will contain the
following messages whenever there is a movement of its owner:

WM_OWNERPOSCHANGE

WM_ADJUSTWINDOWPOS

L30 0S/2 2.1 Workplace shell progranming

EI

WM_OUERYTRACKINF0

WM_QUERYB0RDERSIZE

WM_a U E RY B 0 RD E RS I Z E

WM_MOVE

WM_WINDOWPOSCHANGED

Furthermore, whenever the owner window is minimized, a corresponding action
will occur in the owned window. Even more interestingly, in the Mz.7tz.77tz.zed Wz.77dozu
Vz.ezoerfolderyouwillseeordytheiconoftheowner.Naturally,noneoftheaforemen-
tioned behavior will take place if the owned window is to be moved, restored, or
minimized. Listing 4.2 shows the source code of this example.

The subordination relationship of the owned window with respect to the position
and size of the owner window is a default property of the ownership relationship. In
ordertoaLvoidthis,theownedwindowonlyhastosettheFCF_NOMOVEWITHOWNERflag;
it will then be able to move freely in relation to its owner.

An OS /2 2.1 application that takes advantage of the ownership relationship among
windows is the GZoss¢ny. Whenever a subject is selected, a new window will be
displayed on the screen, at the right-hand side of the application. Any movement of
the Glossary will be reflected automatically even on its subordinate window.

Yetanothersourceofexamplesofownershipisgivenbythedevelopmentofdialog
windows, a subject that will be investigated in Chapter 8.

The Frame Control Window
The presence of frame controls is governed by the FC F_ flags specified as the third
parameter to the Wz.7tc7'c¢fesfdwz.7cdozo() function. This API is a very simple and
practical way to obtain a complete window, but it can be partitioned into its various
basic components to better satisfy the software's design requirements.

In certain cases, however, you will have to create a window according to some
application-specific criteria, and you might want to manage it like a frame control
window,inordertogainalltheadvantagesofthiscondition.Wehavealreadystressed
how the titlebar menu of an OS/2 window is quite variable, as a direct consequence
of the various design interpretations like CUA 89, CUA 91, or WPS. The titlebar menu
produced by PM's API as a result of a call to Wz.7tcrc4zfesfdwz.7tdozo() adheres to what
is called for by CUA 89 as well as by CUA 91. However, the generation of the titlebar
menuthatisinducedbytheFCF_SYSMENUflaginWz.7tc7'e¢£esfdwi.77dozo()isnotalways
welcome; for example, if you want to create a menu more similar to those of WPS
Objects.

To do this, you will have to generate the window without the FC F_SYSMENU flag, ~
so that the titlebar menu will not be created. (It is also possible to destroy a frame
controlonceithasbeencreatedandthenreplaceitwithanother,newwindow.Ihany
case, the operations to perform are equivalent.) You can then proceed by creating a
window with the Wz.7tcrc¢£ewz.7idozu() function (which will be examined shortly) or by
other means. After that, you need only to insert the new object into the window, and

Wt.7zdozoz.7tg 131

:---------

Window originally
without a titlebar

menu

case WM_CREATE:

• loading a menu with hwndFrame as the owner (1st param);
• set some specific menu styles;
• impose the FID_SYSMENU ID through Winsetwindowushort();

Figure 4.7 Scheme of creation of a window like a /raffle co74froz and its
subsequent activation.

assign it the role of the titlebar menu; to do this, you will need to act on setting the
parent or owner and assign an appropriate ID (Figure 4.7).

Remember that all frame controls with the exception of F I D_C LI ENT will have as
their parent and owner the frame window. When you are dealing with the titlebar
menu, this situation might be set with a pair of functions: W£.7tsefpflre77f() and Wz.7tse£-
Owner().

#defi.ne INCL_WINMESSAGEMGR
B00L APIENTRY Wi.nsetparent(HWND hwnd,

HWND hwndNewparent,

B00L fRedraw) ;

P arameter D escription
hwnd Handle of a window the parent of which you wish to change
hwndNewparent Handle of the new parent window
fRedraw Flag to indicate any possible refresh of the windows involved

in the change of parent
Return vahae D escription
BOOL Success or failure of the operation

The third parameter, if set to TRU E, implies the execution of all redrawing opera-
tions, if needed, in the windows indicated by the two handles. The assignment of the
owner is through W€.7zse£Ozt77ter(), as previously described. PM does not provide any
specific function to set an ID, but you can resort to the more generic and flexible
W£.7tsefw£.77dozoLrshor£(). The last operation is that of assigning an appropriate ID to
the window that will have the role of frame control window. Table 4.1 lists all
appropriate values.

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nsetwi.ndowushort(HWND hwnd,
LONG i.ndex,

USHORT us) :

L32. OS/2 2.1 Workplace shell progranming

Parameter
hwnd
index
uS

Return Vahae
BOOL

Description
Handleofawindowtheparentofwhichyouwishtochange
Position where to store a USHORT
Two-byte value to be stored
Description
Success or failure of the operation

Reserved Memory
Every window has a piece of reserved memory that stores all data that identifies and
qualifies itself. When a window is created, a block of memory is allocated intemally
in the PM modules, just like we have seen in Chapter 2 for window classes. This
reservedmemoryareaisaccessibletoapplicationsonlybyusingappropriatePMAPI
functions,andrepresentsasomewhatunusualsystemprogrammingdomain,because
notaurelevantinformationisdocumented.Table4.31iststhefunctionsthatactupon
the reserved memory area of each single PM window.

Theoverallschemeofthereservedmemoryareaofeachwindowclarifieswhythis
storage area is useful (Figure 4.8).

The portion below the horizontal line represents the private area of each window;
it is this area that can be accessed only through the functions listed in Table 4.3, by
specifying appropriate indexes. These values are referred to as 777¢gz.c cookz.es, simply
because they are quite often negative indexes, as the following portion of PMWIN.H
shows (Table 4.4).

Table 4.3 Functions for Accessing Data Present in the Reserved Memory Area of
Each PM Window

Function D es cription

WinQuerywindowushort()

Winsetwindowushort()

WinsetwindowuLong()

WinQuerywindowuLong()

Winsetwindowptr()

WinQuerywindowptr()

Retrieves information from a pair of bytes in the
reserved memory area of a window.
Sets information from a pair of bytes into the
reserved memory area of a window. .
Sets information from four bytes into the reserved
memory area of a window.
RetrievesinformationfromfourbytesinthereseIved
memory area of a window.
Sets a pointer to the reserved memory area of a
window.
Retrieves a pointer to the reserved memory area of a
window.

Windowing 133

Figure 4.8 Scheme of reserve memory area of each PM window.

Table 4.4 Indexes Used to Access Information in the Reserved Memory Area of a
PM Window

Flag Value D e s cription

QWS_USER
QWS_ID
QWS_EN
QWL_USER
QWL_STYLE
QWP_PFTOw

QWL_I"Q
QNI_RESERVED
QWL_MIN
QWL_HREAP
QWS_FLAGS
QWS_RESULT
QWS_XRESTORE
QWS_YRESTORE
QWS_CXRESTORE
QWS_CYRESTORE
QWS_xnAlrurzE
QWS_YMI~E
QWL_DEFBUTTON

Area available to the programmer.
Window ID.
Position occupied after being minimized.
Area available to the programmer.
Window styles.
Address of the window procedure associated
with this window.

(-4) Handle of the message queue.
(-5) Reserve d.
(-6) Position occupied after being minimized.
Ox0004 Handle to the heap (obsolete).
OxOOO8 Frame or dialog state indicator.
OxOooa Value set by wz.7tDis77cz.ssDzg().

OxOOOc Restore position along the x axis.
OxOooe Restore position along the Y axis.
OxOO10 Restore size along the x axis.
Ox0012 Restore size along the Y axis.
Ox0014 Minimize position along the x axis.
Ox0016 Minimize position along the Y axis.
Ox0040 Default button in a dialog window.

L34 0S/2 2.1 Workplace shed progranming

It is not possible to fully describe the contents of the memory area associated with
awindowwhenthatwindowiscreated,becauseitisaportionofthesystemthatcould
or should be subject to some structural changes in forthcoming releases. Therefore, it
is strongly advisable to access to this area exclusively through the magic cookies
defined in PMWIN.H, and avoid using any random values that might not be docu-
mented at all.

Let's assume we need to know which style flags are associated with a particular
window. This information takes up four bytes in W{.7tcre¢£esfdwz.77dozo() as well as in
W£.7ic7'c¢fewz.7tdozt7(), as we will see shortly. For this, you have to use the Wz.7tQ#enywz.7t-
dozoLELo7tg() function to retrieve all the style flags.

#defi.ne INCL_WINWINDOWMGR

ULONG APIENTRY WinQuerywi.ndowuLong(HWND hwnd, LONG i.ndex) ;

P arameter D escription
hwnd Window handie
index Position of the reserved memory area to which you need to

access

Return vahae D escription
ULONG 4 byte information containing the data requested with the sec-

ond parameter

The first parameter picks out the window to investigate, and the second parameter
is the index into the r,eserved memory area allocated by PM when the window was
created.Theretumvaluecontainsthefour-byteinformationrequested.If,forinstance,
you were interested in assessing the setting of the W S_V I S I 8 L E flag, and setting it if it
were turned off, you would have to write:

®®

i.f(!((ul Style = Wi.nQuerywi.ndowuLong(hwnd, OWL_STYLE))

& WS_VISIBLE)))

Wi.nsetwi.ndowuLong(hwnd, OWL_STYLE, ulstyle I WS_VISIBLE) ;

®®,

Some of the PM API functions define a proper working logic by examining the
contents of the subarea determined by the value of OW L_STY LE. This is the case, for
instance,inWi.77Sfeowwz.77dozo()andWz.7trswi.7tdozovz.s€.Z7Ze().Thefirstfunctionselectively
inserts and removes the WS_V I S I 8 LE style flag in a window's reserved memory area.
On the other hand, Wz.71JsWz.77dozt7Visz.Z7Zc() returns TRU E when the WS_V I S I 8 L E flag is
turned on. h practice, the i. f statement of the previous example is essentially equiva-
lent to calling Wz.77Js Wz.77dozovz.sz.bze().

h Figure 4.8, an additional memory area is assumed to be present in the portion
abovethehorizontal1ine.Thisareacorrespondstothenumberofbytesdefinedbythe
programmer when registering the window's class.

The operation of changing one or more bits in a four-byte object of a window's
reserved memory area is often performed with the Wz.7ise£W!.74dozt7B£.fs() function.

Windowing 135

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nsetwi.ndowBi.ts(HWND hwnd,

LONG 1.ndex,

ULONG flData,

ULONG flMask) ;

P aramcter D escription
hwnd Window handle
index Ihdex in the reserved memory area
flData Indication of the flags to act upon
flMask Set of bits that need to be turned on or off
Retun value D escription
BOOL Success or failure of the operation

Thefirstparameterindicatesthewindowinvolvedintheoperation,andthesecond
parameteristheindexinthereseIvedmemoryarea.TheWz.7tsefwz.7tdozuBz.£s()function
acts exclusively upon four-byte subareas, and includes all the QW L_ defines and the
portion of window words allocated by class registration. With the third parameter,
you determine the packet of bits that need to be set, and the fourth parameter defines
the kind of setting you want to impose onto the bits indicated by the third parameter.
Forinstance,ifyouwanttosettheWS_VISI8LEflagtoTRUE,andleaveunchangedany
existing bit configuration, you can proceed in the following way:

Wi.nsetwi.ndowBi.ts(hwnd, OWL_STYLE, WS_VISIBLE, WS_VISIBLE) ;
®

To sum up, the action performed by W£.7tse£Wz.77dozt7Bz.£s() is analogous to the effect
produced by Wz.7tsef wz.7tdozuLrLo77g() and why this last function appears so often in
listings.

Extending the Reserved Memory Area
InadditiontotheordinarydatastoredautomaticauybyPMwhenawindowiscreated
andduringitsuse,theprogrammercanalsodefineasupplementalareathataugments
thestandardreservedmemory.Thisoperationmusttakeplacewhenthewindowclass
is being registered.

B00L wi.nRegi.sterclass(HAB hab,
PSZ pszclassName,
PFNWP pfnwndproc,
ULONG flstyle,
ULONG cbwi.ndowData) ;

The fifth parameter of Wz.7tRegz.sfcrcz¢ss() indicates the size in bytes of the extra
space of reserved memory that will be allocated to each window belonging to the
class being registered. The programmer can access this additional area through the
pair of functions Wz.77Sefwz.77dozoLrsfeor£() and Wz.77Sefwz.7tdozuLrLo7tg(), and through

136 0S/2 2.1 Worlcplace shell progranming

the Wz.7tsef wz.7tdozopfr() function. Typically, such an additional area stores data
closely related to the use and behavior of the window. To retrieve any of this data,
you revert to WinQuerywindowushort() and WinQuerywindowuLong() and Win-
Q#enywz.77dozopfr(). The defines of OWL_US ER and QWS_US ER set in PMWIN.H corre-
spond to level 0 in Figure 4.8; that is, the first available position for storing window
specific information.

Querying the Reserved Memory Area
The reserved memory area of each window contains several interesting pieces of data
which are very useful in an OS/2 application, both from the point of view of creating
a program compliant with the MDI model as well as that of SDI, which is somewhat
more faithful to the CUA 91 specification (Chapter 13).

The use of the Wz.7tQ#e7tywz.7idozoLrsfeor£() function also allows you to trace a win-
dow's ID-an invaluable piece of information whenever a parenthood relationship
among windows is involved. On the other hand, through the Wz.77Qc{erywz.7!dozoLr-
Lo7tg() function, you can get to know the set of style flags that characterize a single
window. To specify the values in the reserved area, you can use the Wz.7tse£Wz.7t-
dozoLIshor£() and Wz.7zse£Wz.77dozt7LrLo7tg() functions. These two functions must be used
with care, because it is easy to overwrite data critical to the window's integrity.
Functions like W£.7tse£Wz.77dozopos() and Wz.74Q#enywz.7zdozupos() perform their opera-
tions by reading a window's reserved memory area directly.

The Wz.77Sc£Wz.77dozt7Pfr() function is, in practice, a macro function that calls Wz.7tsef-
Wc.7tdozoLrLo7tg()tostoredirectlythevalueofapointertoawindow'sreseIvedmemory
area. The syntax of this function is the following:

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nsetwi.ndowptr(HWND hwnd,
LONG i.ndex,
PV0ID p) ;

Parameter
hwnd
index
P
Retan Vahae
BOOL

Description
Window handle
Index into the window's reserved memory area
Pointer to store
Description
Success or failure of the operation

The third parameter, of the type PV0 I D, contains a generic pointer. The presence of
this function among the many API functions available for PM is justified solely
because it makes the application's code simpler and easier to read. Furthermore,
Wz.77Se£Wz.7tdozt7Pfr() can be useful in implementing an operation known as s#bcJ¢ssz.77g
a window (discussed in Chapter 10); obviously, subclassing can also be performed by
means of Wz.7tsc£Wz.7idozt7LrLo7tg() considering that you are always dealing with a
four-byte piece of information.

windowing L37

Window Words' Usage Rules
h general, it is a good programming practice assigning zoz.77dozo zuords to the windows
ofaclassonlyifitisstrictlynecessaryfortheirmerworkingofanapplication.Ihtheory,
there are some lindtatious on the size of window words, although experience and
commonsensesuggestthatordytwovaluesareviablesolutious:0and4.ELghervalues
are allowed, although they certainly can find in direct memory management a better
implementationratherthanallocatingwindowwords.Atpresent,in fact,thewindow-
ing engine of OS/2 2.1 is still a 16-bit module, and retains some of the structural
linritations connected to the old segmented memory model of htel processors.

As we will see in the discussion of the development of MDI application, the logic
behind this scheme accommodates in the window words only a pointer to any
additional and separate memory area (managed by the application thanks to several
of PM's API support functions for memory management). It is in this additional
memory area that all relevant window data should be stored.

Message Passing
The indexes listed in Table 4.4 indicate that it is possible to find the address of a
window's window procedure by querying the window's handle. This is extremely
important and useful in s#Z7czflssz.77g a window (Chapter 10). For the moment, how-
ever, 1et's get back to analyzing the process of registering a window class, and the
criteria followed by PM in issuing messages. As you might recall, the data of a class
is stored intemally in the various modules that make up PM, and not in the data
segment of the application that performs the registration. When we exandned the
mechanism adopted by Wt.77Dz.sp¢fcfeMsg() for reaching the window procedure of a
class, we assumed that the whole process of tracking back to the procedu`re's address
was based on the association between a window handle and the class to which that
window belonged. Only now can we really understand how PM behaves. When
Wz.77Dz.sp¢fchMsg() must jump to a window procedure, it will retrieve the window
procedure'saddressfromthewindow'sreseIvedmemoryarea-notfromsomeplace
attheclasslevel.Thewholeoperationisfast,butthisisnotthemostimportantaspect.
We now have all tools available for making an informed guess as to how the code of
the Wz.7tDz.sp¢fcfeMsg() and Wz.7ise7tdMsg() functions really work. Let's start with the
first one.

MRESULT APIENTRY Wi.nDi.spatchMsg(HAB hab,

POMSG pqmsg)

(
PFNWP pfnwp ;

// retri.evi.ng the wi.ndow proc address

pfnwp = (PFNWP)Wi.nQuerywi.ndowptr(pqmsg -> hwnd, QWP_PFNWP) ;

T38 0S/2 2.1 Workplace shed progranming

// calli.ng the wi.ndow procedure
return (* pfnwp)(pqmsg -> hwnd,

pqmsg -> msg'
pqmsg -> mpl,
pqmsg -> mp2) ;

)

The syntax of Wz.7?Se7tdMsg() is even simpler:

MRESULT APIENTRY Wl.nsendMsg(HWND hwnd,
t ULONG msg,

MPARAM mpl,

MPARAM mp2)

I
PFNWP pfnwp ;

// retri.evi.ng the wi.ndow proc address
pfnwp = (PFNWP)Wl.nQuerywi.ndowptr(hwnd, QWP_PFNWP) ;

// calli.ng the wi.ndow procedure
return (* pfnwp)(hwnd, msg, mpl, mp2) ;

)

There is no guarantee that both Wz.7zDz.sp¢fchMsg() and Wz.7tse77dMsg() will corre-
spond to these conjectures. What is important is the structural simplicity of these two
functions, and, above all else, the logic that governs message passing to a window
procedure.AtthispointitshouldbeclearthatitisPM,andnevertheapplicationcode,
that calls aL window procedure.

The Wt.#Cre¢fewz.#dozo() Function
The second API function used to create a window in OS/2 is Wz.77Crc¢fcwz.7cdozu(). This
is the basic tool for building windows, and is called even by Wz.74Crc¢fesfdwz.7tdozo().
As this is a low level API function call, it usually involves the knowledge of some
subtleconceptsabouttheirmerworkingofPM.Thisiswhyweareexaminingthetwo
functions in the reverse logical order. The parameters of Wz.7tcre¢£ewz.77dozo() are 13,
compared to the nine required by Wz.7tcrc¢fcsfdwz.7tdozt7(), and they allow for a com-
plete and specific controlled management of the window that is being constructed:

#defi.ne INCL_WINMGR
HWND APIENTRY Wi.ncreatewi.ndow(HWND hwndparent,

PSZ pszclass,
PSZ pszName,

ULONG flstyle,
LONG x,

LONG y,

LONG cx,

LONG cy,

HWND hwndowner,

HWND hwndlnsertBehi.nd,

Parameter
hwndparent
pszclass

pszName
flstyle
X

y
CX

Cy

hwndouner
hrmdhsertBehind

id
pctlData
ppresparam
Retttm Value-

windowing 139

ULONG l.d,

PV0ID pctlData,
PV0ID ppresparams) ;

Description
Parent window handle
Name of the class to which the window being constructed
belongs
Text of the name that identifies the window
Set of the window's style flags
Window's lower left-hand comer, on the X axis
Window's lower left-hand comer, on the Y axis
W.indow's size on the X axis
W.indow's size on the Y axis
Owner window's handle
Handle of the window behind which the window being
constructed should be placed
Window's ID
Pointer to the data structure pertaining to the window
Pointer to the windows presentation parameters
Description
HandleofthewindowbeingconstructedorNULLHANDLE
in case of failure

ThefirstparametertoWz.7tc7`e¢fewz.7tdozo()isexactlythesameastheonerequiredby
Wz.7tc7`e¢€esfdw1.#dozt7(), that is, a handle to the parent window. The second parameter
identifies the class to which the window belongs. The software designer can indicate
a class name explicitly registered by the application, the name of a predefined class,
or the name of a global class.

The third parameter deployed is a pointer to a text string that will appear in the
window.Ifyoubelievethatthiscorrespondstothewindow'stitle,youaremistaken!
Forexample,inthecaseofaninstanceofawindowbelongingtoWC_BUTT0Nclass,this
text corresponds to the contents of a button, or to the string that appears to the right
of a radio button or a check box. For WC_LI STB0X class instance, this text does not
convey any meaning, and is always replaced by a N U L L pointer. The same holds true
foranyiustancesofwindowclassesregisteredbytheapplication.Thefourthparame-
ter,aUL0NGidentifier,containsthewindowstylesdistinguishedbytheWS_prefixand
possibly by the style of the predefined classes.

WithWz.7ec7.c¢fesfdwz.7tdozo()yousimultaneouslycreateseveralwindows.However,
the main purpose of this function is creating the window's client area. Ch the other
hand,Wz.7?C7ie¢fewi.7tdozo()isatoolforcreatingonewindowatatime;thereforetheFS
stylesareappficableonlywhencreatingawindowbelongingtothewc_FRAMEclass|
whilst the FC F_ flags cannot appear in any parameter of Wz.7tc7'e¢£ew€.7tdozt7().

1qo OS/2 2.1 Workylace shell programming

The next four parameters allow you to set the position and size of the window on
the screen. Now that you know what parenthood is all about, it is worthwhile to
elaborate on our earlier discussion. All four values are expressed in the coordinates of
the parent window. For top-level windows, this corresponds to the dimensions of the
screen. This no longer holds for any of their child windows. For example, the position
and size of the client window generated by Wz.77C7'e¢£esfdwz.7tdozt7(J refers to its own
frameandnottotheentirescreen.Asaconsequence,thecallofWz.7tQ#cnywi.7tdozt7Pos()
on a client window needs a subsequent call to Wz.7zM¢pWz.77dozupoz.77fs() to find the
correct on-screen location.

Theflexibilityofwz.77Cre¢fewz.7tdozo()isevidentevenwhendefininganowner,which
might coincide with the parent (ninth parameter). Furthermore, W€.7tc7'e¢£ewz.77dozt7()
allows you to determine the position of a window with respect to all of its siblings
(tenth parameter) by indicating the handles of the windows that need to be placed
before it, or the defines HWND_TOP and HWND_BOTTOM that occupy the foremost or the
bottom most position, respectively. Wz.77C7.e¢fewz.77dozo() also allows to assign an ID to
the window being created. The availability of an ID is handy when managing related
windows, as we have seen.

The twelfth parameter, p Ct 1 D a t a, is a pointer to a data area specific to the window
being constructed. As you win see in Chapter 7, several of the predefined window
classeshavesomedatastructurethatcanbeexploited'duringwindowcreation.This
processisadvisableforanykindofwindow.However,itcannotbeappliedwhenyou
are using Wz.7tcre¢fesfdwz.77dozu(). The greater flexibility and compactness of this last
function is paid for in terms of a loss of control by the programmer.

Building Standard Window s with W±"Create:W±ndow()
To fully understand how to use Wz.7tcrc¢fewz.77dozu(), 1et's start with a simple task:
obtain via this function what we have already achieved in the preceding listings with
Wz.7tcrc¢fesfdwz.7cdozu().BystudyingthesyntaxofW£.74C7'eflfewz.77dozo(),youwillbeable
to see the logic that governs W€.7tc7`e¢£esfdwz.7tdozt7().

hstead of simply calling Wz.7tc7`e4zfesfdwz.7tdozu() you will now use a much more
elaborateapproach,sinceyouwillhavetotakecareofcreatingtheframewindow,and
allofthechildwindowsthatcharacterizeit.AsshowninTable2.3,everyframebelongs
to the WC_FRAM E class, which is one of the predefined classes of PM. The creation of a
frame window with Wz.7ic7`c¢fewz.7idozu() thus turns out to be the fouowing:

hwndFrame = Wi.ncreatewi.ndow(HWND_DESKTOP, WC_FRAME,

NULL,

WS_VISIBLE I WS_CLIPCHILDREN I

WS_SY N C PA I NT ,

10,10, 100, 100,
HWND_DESKTOP, HWND_TOP,

1,

NULL, NULL) ;

®®®

Wz.7tdozoz.7ig 141

A frame window generated by Wz.7tcre¢£esfdwz.7tdozu() will always have one of the
following ws_styles: WS_VISIBLE I WS_CLIPSIBLINGS I WS_SYNCPAINT. in addition
to these WS_ styles, you can also indicate those that take the FS_ prefix (which are not
presentinthisexample).Theretumvaluewillbethehandleoftheframewindow.At
this point, the same operation should be repeated for au frame controls that should
appearinthewindow.ForeachoftheseyouhavetocallthesameW€.7tcreflfcwz.77dozo()
function. For instance, to install a titlebar, you would need a piece of code like this:

®,,

hwndFrame = Wi.ncreatewi.ndow(hwndFrame, WC_TITLEBAR,
NULL,

WS_VISIBLE I WS_PARENTCLIP I

WS_SY NC PA I NT ,

0, 0, 0, 0,
hwndFrame, HWND_TOP,

Flo_TITLEBAR,

NULL, NULL) ;

®,,

Now,thefirstproblemthatarisesfromthisapproachisthatofdefiningtheposition
and the size of each control proposed for the titlebar above. In the preceding piece of
code,boththepositionandthesizearesettozero.Anywc_FRAMEclasswindowshould
nothavetheWS_VISI8LEflagset,inordertoavoiddisplayingtheactualconstruction
process.TheactualdisplaywouldthenbetakencareofbycallingWz.77Se£Wz.7tdozopos()
once all windows have become available but not yet visible.

However, it is possible to simplify the whole process and optimize the call to
Wz.7tc7'e¢£ewz.7tdow(), as far as the frame window is concerned. The WC_FRAM E class has
at its disposal the FRAMECDATA data structure defined in PMWIN.H that helps the
programmer's work and is designed specifically for passing information to a Wz.71-
Crc¢£ew£.7cdozo() through the p Ct 1 D a t a pointer:

typedef struct _FRAMECDATA

I // fcdata
USHORT cb ;

ULONG flcreateFlags ;
USHORT hmodResources ;

USHORT i.dResources ;

} FRAMECDATA ;

typedef FRAMECDATA *PFRAMECDATA ;

The FRAMECDATA structure contains four members to pass information to W€.7z-
C7'e¢fewz.77dozo() regarding the ¢#777e co7ifroz fl¢gs and the resources that might be
associated with the window. The first member, cb, contains the size of the data area
passedtoWz.#C7'c¢£ewz.7tdozu(),whilethefo11owingUL0NGlistsoneormoreFCF_flags.
Consequently, although it is not possible to include FCF_ flags directly in any of
Wz.7tcre¢fewz.7tdozD() parameters, thanks to the FRAM ECDATA the problem is solved in
another way for a WC_F RAM E window.

L4:2. OS/2 2.1 Workplace shell progranming

The third and fourth members of the FRAMECDATA structure correspond to the
seventh and eighth parameters of Wz.7tc7`c¢fesfdwz.7tdozt7(). They indicate, respectively,
the module from which the resources (menu, icon, and accelerator table) associated
with the window canbe retrieved, and the resources ID. Thus, the creation of a frame
window also becomes the moment for defining the window's structural elements,
except the client window, as shown in the following code fragment.

®®,

#defi.ne FCF_WPS FCF_HIDEMAX I FCF_STANDARD & ~FCF_MINMAX

®®®

FRAMECDATA fcdata ;

®®®

fcdata.cb = si.zeof fcdata ;
fcdata.flcreateFlags = FCF_WPS & ~FCF_MENU & ~FCF_ICON &

~FCF_ACCELTABLE ;

fcdata.hmodResources = NULLHANDLE ;

fcdata.i.dResources = 0 ;
®,®

hwndFrame = Wi.ncreatewi.ndow(HWND_DESKTOP, WC_FRAME,

NULL,

WS_VISIBLE I WS_CLIPCHILDREN I

WS_SY N C PA I NT ,

0' 0, 0, 0,

HWND_DESKTOP, HWND_TOP,

1,

&fcdata, NULL) ;

®,

Once the frame window and its desired frame controls have been created, the only
remaining thing that needs to be done is to provide the window with a client window
so that the programmer can control the window's appearance and functionality. To
do this, it is necessary that a window class be registered. Wz.77Crc¢£ewz.7tdozo() once
again clarifies unequivocally the usefulness and the purpose of registering a window
class that is limited to and acts only on the client area of a window. h the following
piece of code, you see how Wz.7tc7'c¢£ewz.77dozu() creates the client window of a window
generated with that very same function.

®®

hwndcli.ent = Wi.ncreatewi.ndow(hwndFrame, szcli.entclass,
NULL,

WS_V I S I B LE ,

0, 0, 0, 0,

hwndFrame, HWND_TOP,

F I D_C L I E NT ,

NULL, NULL) ;

Wz.7tdozt7{.7zg 143

WhencreatingtheclientitisimportanttoremembertoassignittheIDFID_CLIENT
to estabfish the correct relationship between the two windows. As we have stressed
previously,itisnotimperativetohaveaframebetheowneroftheclientwindow.

Whencreatingtheframe,aswellaswhencreatingtheclientwindowofanapplica-
tion, these examples have been simplified by not specifying the window's position
andsize.Theassignmentofanumericalvaluetotheframe'swidthandheightwould
later have brought with it some problems when subsequently determining the client
window's size. h fact, the cx and cy parameters define the overall dimensions of the
window on the screen, while the client must necessarily be narrower and tighter in
order to make place for the frame controls like the sizing border and the titlebar. To
avoid making any kind of calculation that would just turn out to be computational
overheadincreatingthewindow,itisadvisabletodelegatetheproblemofpositioning
andsizingtheapplication'swindow@oththeframeaswellastheclientwindow)to
a subsequent call to Wz.7tsef wz.77dozopos(), and therefore you should avoid setting the
WS_VISIBLE flag.Thisfunctionactsdirectlyontheframewindow,whichintumforces
its child windows to size themselves accordingly:

®®

Wi.nsetwi.ndowpos(hwndFrame,
HWND_TOP,

10, 10' 300, 300,
SWP_SIZE I SWP_MOVE I SWP_SHOW) ;

®®,

The FCF_ Flags and the WC_FRAME Class
If you have examined the preceding examples carefully, you will certainly have
noticed that the use of the FC F_ flags implies the creation of a window belonging to a
predefined class. For instance, specifying FCF_TITLEBAR means that you want to
createaniustanceoftheWC_TITLE8ARclass,assignittheFID_TITLEBARID,and force
it to take the frame window as its parent. Let's try to understand the logic followed
byIBM'sdesignerswhenwritingthewindowprocedureoftheWC_FRAMEclass.Let's
assume this procedure is called F7"77zew7zdproc().

When you create a window belonging to the WC_FRAME class, Frfl777ew77dproc()
receives the message WM_CREATE, which is generated as a side effect of calling Wz.7c-
Cre¢fesfdwz.7£dow()orwz.7tcre¢fewz.77dozD().Atthatpoint,mp2pointstoacREATESTRUCT
structure containing values that have been specified explicitly or assigned inplicitly
when the window was created.

MRESULT EXPENTRY Framewndproc(HWND hwnd,

ULONG msg,
I MPARAM mpl, I

MPARAM mp2)

I
swi.tch(msg)

+44 0S/2 2.1 Workplace shell progranming

I
case WM_CREATE:

(
PCREATESTRUCT pcrst = (PCREATESTRUCT)mp2 ;

PULONG pulFCF ;

// di.d the creator add some class data?
i.f(pcrst -> pctlData)
(

// do we have to create a ti.tlebar?
i.f(pcrst -> pctlData -> flcreateFlags & FCF_TITLEBAR)
[

` hwndTi.tlebar = Wi.ncreatewi.ndow(hwnd,
WC_TITLEBAR,

...) ;

®,®

)
®,

I
®®®

)
break ;

®®,

)
/

®®®

return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2) ;

)

The direct passing of data to a window procedure of a class during the creation of
awindowiscommonpracticebecauseitallowsthetransferofpacketsofinformation
easily, without having to resort to any kind of source file scope data structure.

Exp eriments Using Wincreate;WLndow()

EI Listing 4.3 contains the source code for creating a PM window by means of two
successive calls to Wz.7tc7'c¢fewz.7tdozu(); the first call will generate the frame window,
and the second call the client window. The same operation is repeated in order to
produce a second window, which becomes a child window of. the first one.

The CREATESTRUCT Structure
When a generic window procedure receives the WM_C REATE message, it means that a
window belonging to the corresponding class has just been created. WM_CREATE is
issuedasasideeffectoftheexecutionofWz.7tc7'e¢fewz.7tdozo()orWz.7tc7'c¢fesfdwz.7tdozt7().
This message contains in mpl the address to the class's specific data structure and in
mp2theaddresstoastructureofthetypecREATESTRUCT.IhcREATESTRUCTthesystem
stores all information specified when a window is being created:

Wz.7tdozuz.7tg 145

typedef struct _CREATESTRUCT
I /I crs,i I

PV0ID ppresparams;
PV0ID pctlData;
ULONG l'd;

HWND hwndlnsertBehi.nd;
HWND hwndowner; ,

LONG cy;

LONG cx;

LONG y;

LONG x;

ULONG flstyle;
PSZ pszText;
PSZ pszclass;
HWND hwndparent;

} CREATESTRUCT:

typedef CREATESTRUCT *PCREATESTRUCT:

The 13 members of this structure correspond exactly to the number of parameters
in W€.7tcre¢fewz.7tdozt7(): When the message is issued by Wz.77C7'e¢fesfdwz.7tdozu(), some
of these members will take the value of NU LL. The information contained in mpl is
somewhatredundant,becauseanequivalentpointeralsoexistsintheCLREATESTRUCT
structure, pctl Data.

How to Destroy a window .
APMappficationischaracterizedbythesimultaneouspresenceofseveralwindows;
atypicalcaseisanMDlapplication.Theuserwillbepresentedwithachoiceofclosing
one or more windows active in the application without terminating the whole pro-
gram. The closure of a window, which can be set by selecting the aose option from
the titlebar menu or by some other means implemented by the application, implies
that the frame window of the corresponding window be destroyed. PM's API has for
this purpose the Wz.7tDesfroywc.77dozu() function:

#defi.ne INCL_WINWINDOWMGR
B00L APIENTRY Wi.nDestroywi.ndow(HWND hwnd) ;

P ar ameter D es cription
hwnd Handie to be destroyed: any kind of window
Return vahae D es cription
BOOL Success or failure of the operation

The sole parameter of this function is the handle of a generic window, which can
thus be a client window or any other window that makes up what the user sees and
perceives as, a window on the screen. Thanks to the parenthood and ownership
relationship, it is necessary to specify the frame window's handle to cause the
complete destruction of an entire screen window. Without knowing the frame

146 0S/2 2.1 Workplace shell progranming

window, it is not possible to track all pixels occupied by the child windows to which
a frame window would notify the order of destroying themselves.

So far, Wz.7tDesfo7tywz.7cdezu() appears only in the 777¢z.7t() function, immediately after
the message loop, or, when the application is essentially terminated. The destruction
of all resources employed is good programming practice and style. Often, however,
destructionoperationsareperformedinawindowprocedure,asinMDIapplications.
There the available handle refers to the client window rather than to the frame
window; the appropriate information is easily available through Wz.71Q#e7tywz.7zdozo()
by setting the pertinent flag.

Closing a Window in a Multi-Window Application
When the user double-clicks on the titlebar menu's icon or selects the Close option,
the window's destruction sequence is triggered. The message flow that follows is
rather complicated. First, a user's interaction with a titlebar menu always generates
the WM_SYSCOMMAND message, which is passed to the WC_FRAME class's window

procedure,andisthusinvisibletothe'appfication.Theclientwindowprocedurewill
receiveaWM_CLOSEmessage,followedbyaWM_DESTROYmessage.hgeneral,neither
of these two messages is detected in special case statements,' and thus the task of
Wz.7tDe/Wz.77dozuproc() is that of taking care of the messages' correct processing. The
net result is the destruction of the window with which the user has interacted. As a
consequence, however, Wz.7tDe/Wz.7tdozuproc() also posts a WM_QU I T message to the
message queue. This last message will break the message loop and thus cause the
program's termination.

t Sometimes, this is not the desired outcome. There is a simple solution to this
problem. hside the window procedures of all classes that produce any visible
window, it is necessary to trap the WM_C LOS E message, and prevent it from re.aching
We.7tDe/Wz.77dozt7Proc(). In this case, the application can decide to take the default
window procedure's place in processing the message. The code you have to write
must call W£.7zDesfroywz.77dozu(), passing the frame window handle and not the one of
the client window. The distinction is subtle, but thetim:plications are `sqbstantial. The
code is as follows:

®®®

case WM_CLOSE:

Wi.nDestroywi.ndow(PAPA(hwnd)) ;

return OL ;

®

In this marmer you can separate a window destruction from the application termi-
nation; and that's precisely what is needed in a multiwindowing application.

windowing 14:7

Sizing and Positioning a Window
TheW3.7tc7`e¢fesfdwz.7cdozu()functiondoesnotallowthesizingofawindowonthebasis
ofanyofitsnineparameters.ThepresenceoftheFCF_SHELLP0SITI0Nflagdelegates
tothesystemthebusinessoffindingaplaceforthewindowonthescreenanddefining
dimensions for it that are large enough to provide for all of its contents, but not so
large as to cover the whole screen area.

Ontheotherhand,withW£.7tcre¢fewz.7tdozo(),youdefineawindow'spositiononthe
screen by indicating the coordinates of its lower left-hand side comer, in addition to
specifying its size. Both pairs of values are expressed in screen coordinates when
related to a top-level frame. For this reason, the video adapter's resolution directly
affects a window's positioning on the screen.

To overcome this problem, PM offers the Wz.7zQ#e7tysysv¢Z#e() function that anows
you to compute the number of pixels available on the X and Y axis by setting the
SV_CXSCREEN and SV_CYSCREEN flags. Once you have these two values, you can

position the window at any precise location, depending on the video adapter being
used. The syntax of Wt.7tQ#enysysv¢Z#e() is:

#defi.ne INCL_WINSYS
LONG APIENTRY

Parameter
hwndDesktop
isysvalue
Retttm Value
LONG

Wi.nQuerysysvalue(HWND hwndDesktop, LONG i.Sysvalue)

Description
Handle to the desktop window
System value being asked for
Description
The required information

The first parameter always has to refer to the desktop window, and therefore it is
replacedbytheHWND_DESKTOpdefine.hthesecondparameter,youspecifyanyofthe
indexes listed in Table 4.5.

Table 4.5 Values and Meanings of the Flags Accepted by W£.#Qc4enysgrsv¢ZtJe()

Define Value Description

SV_SWAPBUTTON
SV_DBLCLKTRE

SV_CXDBLCLK

SV_CYDBLCLK

0 Swaps the default mouse buttons.
1 Defines the time interval between successive

clicks on a mouse button.
2 Defines the mouse's variation in position

along the X axis that is acceptable when
registering a double click.

3 Defines the mouse's variation in position
along the Y axis that is acceptable when
registering a double click.

(coritinued)

Table 4.5 (Co#ft.r!c4ed)

Define Vahae Description

SV_CXSIZEBORDER

SV CYSIZEBORDER

SV ALARE
SV_RESERVEDFIRSTI
SV_RESERVEDLASTI
SV_CURSORATE

SV_FIRSTSCROLLRATE

SV SCROLLRATE
SV_NUMBEREDLIST
SV_WARNINGFREQ

SV_NOTEFREQ

SV_ERRORFREQ

SV_WARNINGDURATION

SV_NOTEDURATION

SV_EREORDURATION

SV_RESERVEDFIRST
SV_RESERVEDLAST
SV_CXSCREEN

SV_CYSCREEN

SV_CXVSCROLL
SV_CYHSCROLL
sv_crvscROLLARROw

SV_CXHSCROLLAREOW

SV CXBORDER

SV CYBORDER

4 Returns the size along the x axis of the sizing
border.

5 Returns the size along the Y axis of the sizing
border.

6 Returns TRUE if the alarm sound is enabled.
7 First reserved value.
8 Last reserved value.
9 Defines the cursor's,blink rate whenever it is

displayed as an I bar.
10 Autoscrolling delay (in ms) when hsing a

scrollbar.
11 Scroll rate.
12 Undo cumented.
13 Defines the tone frequency of every beep

issued together with a waming message.
14 Defines the tone of every beep issued

together with a warning message.
15 Defines the tone of every beep issued

together with an error message.
16 Defines the duration of every beep issued

together with a waming sound.
17 Defines the duration of every beep issued

together with a note sound.
18 Defines the duration of every beep issued

together with an error message.
19 Reserved.
19 Reserved.
20 Retum's the screen's pixel count along the x

axis.
21 Retum's the screen's pixel count along the Y

axis.
22 Width of a vertical scrollbar.
23 Height of a horizontal scrollbar.
24 Returns the size of a vertical scrollbar's arrow

along the Y axis.
25 Returns the size of a horizontal scrollbar's

arrow along the X axis.
26 Returns the size of a window's border along

the X axis.
27 Returns the size of a window's border along

the Y axis.
(continued)

148

Table 4.5 (Cor{ft.##ed)

Define Vahe Description

SV_CXDLGFRAME

SV_CYDLGFFtJRE

SV_CYTITLEBAR
SV_CYVSLIDER
SV_CXHSLIDER
SV_CXMINMAXBUTTON

SV CYMINMAXBUTTON

SV_CYMENI
SV_CXFULLSCREEN
SV_CYFULLSCREEN
SV_CXICON
SV_CYICON
SV_CXPOINTER

SV_CYPOINTER

SV_DEBUG

SV_CMOUSEBUTTONS
SV_CPOINTERBUTTONS
SV_POINTERLEVIL
SV_CURSORLEVEL
SV_TRACKRECTLEVEL

SV_CTIMERS
SV_MOUSEPRESENT
SV_CXBYTEALIGN
SV_CRALIGN
SV_CYBYTEALIGN
SV_CYALIGN
SV_NOTRESERVED
SV_EXTRAKEYBFEP
SV SETLIGHTS

SV INSERTMODE

28 Returns the size of a dialog window's border
along the X axis.

29 Returns the size of a dialog window's border
along the Y axis.

30 Returns the size of a titlebar along the x axis.
31 Returns the size of a slider along the x axis.
32 Returns the size of a slider along the Y axis.
33 Returns the size of a sizing icon along the x

axis.
34 Returns the size of a sizing icon along.the Y

axis.
35 Returns the height of the menu bar.
36 Screen dimension on the x axis.
37 Screen dimension on the Y axis.
38 Returns the size of an icon along the x axis.
39 Returns the size of an icon along the Y axis.
40 Returns the size of the mouse pointer along

the X axis.
41 Returns the size of the mouse pointer along

the Y axis.
42 Debug system (TRUE) or not debug system

(FALSE).
43 Num.ber of mouse buttons.
43 Number of pointer buttons.
44 Pointer hide level: zero visible, greater hidden.
45 Cursor hide level: zero visible, greater hidden.
46 Makes a tracking rectangle visible (0) or

hidden (=0).
47 Num.ber of system timers.
48 Flags whether the mouse is present.
49 Number of pixels for horizontal algnment.
49 Aligrprent on the x axis.
50 Number of pixels for vertical alignment.
50 Alignment on the y axis.
56 Unreserved value.
57 Delay in nrilliseconds before keyboard beeps.
58 Sets keyboard lights when special keys are

pressed.
59 hsert mode on/off.

(coritinued)

149

Table 4.5 (Co7!f£.##ed)

Define Vahae Description

SV_MENUROLLDOWNDELAY

SV_MENUROLLUPDELAY

SV_ALThREMONIC
SV_TASKLISTMOUSEACCESS
SV_CXICONTEXTWIDTH
SV_CICONTEXTLINES
SV_CHORDTRE
SV CXCHORD
SV CYCHORD
SV_CXMOTION
SV_CYMOTION
SV_BEGINDRAG

SV_ENDDRAG

SV_SINGLESELECT

SV_OPEN

Sv_Cor`ITEXTMENu

SV_CONTEXTHELP

SV TEXTEDIT

SV_BEGINSELECT

SV_ENDSELECT

SV_BEGINDRAGKB

SV ENIDRAGKB

SV SELECTKB

SV OPENKB

SV_CONTEXTMENUKB

64 Delay in milliseconds before showing a pull-
down menu.

65 Delay in milliseconds before hiding a pull-
dour menu.

6 6 Undo cumente d.
67 Mouse buttons to access window List.
68 Width icon text.
69 Number of lines of text for icons.
70 Length of chord in miliiseconds.
71 Undocumente d.
72 Undo cumente d.
73 Undo cumente d.
74 Undo cumente d.
75 Mouse begin drop message (low word) and

keyboard control code qrigh word).
76 Mouse end drop message (low word) and

keyboard control code (high word).
77 Mouse single selection message (low word)

and keyboard control code (high word).
78 Mouse open message (low word) and

keyboard control code qiigh word).
79 Mouse message (low word) and keyboard

control code (high word).
80 Mouse message (low word) and keyboard

control code qugh word).
81 Mouse message (low word) and keyboard

control code (high word).
82 Mouse message (low word) and keyboard

control code qugh word).
83 Mouse message (low word) and keyboard

control code (high word).
84 Keyboard message (low word) and keyboard

control code qugh word).
85 Keyboard message (low word) and keyboard

control code qugh word).
86 Keyboard message (low word) and keyboard

control code qugh word).
87 Keyboard message (low word) and keyboard

control code qugh word).
88 Keyboard message (low word) and keyboard

control code (high word).
(coritinued)

150

W1.7cdozuz.7tg 151

TaLbLe 4.5 (Continued)

Define Vahae Description

SV_CONTEXTHELPKB

SV_TEXTEDITKB

SV_BEGINSELECTKB

SV ENDSELECTKB

SV ANIRATION
SV_ANIRATIONSPEED
SV_MONOICONS
SV KBDALTERED
SV P~SCREEN
SV_CSYSVALUES

89 Keyboard message (low word) and keyboard
control code (high word).

90 Keyboard message (low word) and keyboard
control code (high word).

91 Keyboard message (low word) and keyboard
control code (high word).

92 Keyboard message (low word) and keyboard
control code (high word).

93 Window animation on (TRIJE) or off (FALSE).
94 Window animation speed in milliseconds.
95 Black-and-white icons.
96 Hardware ID of new keyboard.
97 Print screen enabled (IRIJE), disabled GAI.SE).
98 Number of system values.

To size a window that is already displayed on the screen, the simplest approach is
via the Wz.77Se£Wz.77dozt7Pos() and W£.77Se£M7£Zfwz.7tdozopos() functions. This last function
acts on several windows simultaneously. With Wz.7tse£Wz.7tdozt7Pos() you just have to
specify new values for the cx and cy parameters, together with the SWP_S I ZE flag.
Naturally,thehandleyoumustprovidehastorefertotheframewindowthatwillin
turn take care of repositioning all of its control windows, according to its own new
position. To find the position of a window on the screen, the Wz.77Q#e7tywz.7idozopos()
function is handy:

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nQuerywi.ndowpos(HWND hwnd, PSWP pswp) ;

P arameter D escription
hwnd The window's handle
pswp Address of a swp structure
Return value D escription
BOOL Success or failure of the operation

This function fills an SW P structure with data indicating the on-screen position of
the window referred to by the hwnd handle; all resulting values are expressed in the
coordinates of the parent window. To know the exact location of a window in PM in
terms of desktop coordinates, it is enough to indicate the frame window's handle
rather than the client window's handle. This function stores all information in an SW P
structure like this:

152. OS/2 2.1Workylace shell progranming

typedef struct _SWP
I // swp

ULONG fl ;

LONG cy ;

LONG cx ;

LONG y ;

LONG x ;

HWND hwndlnsertBehi.nd ;

HWND hwnd ;

ULONG ulReservedl ;

ULONG ulReserved2 ;

I SWP ;

typedef SWP *PSWP ;

The f l member contains one or more flags regarding the window's on screen
position. These flags are summarized in Table 4.6.

If the position of a client window is being asked for, then the values returned in the
x and y members will be, respectively, the width and height of the sizing border
createdwiththeFCF_SIZE80RDERflag,asdefinedbysystemlevelsettings.Remember
that a window position and size area are always expressed in terms of its parent. For
a client it is its frame window. The lower-left comer of a cHent lies only a few pixels
from the same frame window's comer at exactly the border dimensions.

Table 4.6 Styles Contained in anys Member of a SWP Structure

Flag Vahae D es cription

SVVP SIZE
SVVP MOVE
SVVP ZORDER

SVVP SHOW
SVVP HIDE
Sl/VP NOREDRAW
SWP=NOADJUST

SVVP ACTIVATE
Sl/VP DEACTIVATE
SWP_M-IZE
SVVP h4AX-E
SVVP RESTORE

Sl/VP FOCUSACTIVATE
S1/VP FOCUSDEACTIVATE

OxOool Changes the window's size.
Ox0002 Moves the window.
Ox0004 Changes the window order in the win-

dows management list.
OxOOO8 Displays the window.
OxOO10 ffides the window.
Ox0020 Prevents the window from being redrawn.
Ox0040 Avoids the issuing of the wM_ADJUST-

WINDOWPOS message.
OxOO80 Activates the window.
OxO100 Deactivates the window.
Ox0400 Minimizes the window.
OxO800 Maximizes the window.
Oxl000 Restores the window's position and size

that it had prior to maximize or mini-
mize operation.

Ox2000 Gives the focus to the window.
Ox4000 Takes away the focus from the window.

r`,,

Windowing 153

If, instead, you specify the handie of a frame window, then the values returned in
x and y are expressed in screen coordinates, and therefore indicate the exact position
of the window with respect to the desktop.

The data contained in each single window's reserved memory area are useful for
determiningtherestorepositionandtheminimizepositionofagenericPMwindow.
Furthermore, you can call the Wz.7tGe£Mz.7tposz.fz.o77() function to find the minimize
position of a window.

Saving the Position of a Window
ItisfarmoreinterestingtoexaminesomenewfunctionsimplementedinOS/22.1for
managing windows on the screen. These functions are Wz.7tsforewz.77dozopos() and
WinRestorewindowpos().

AnyOS/22.1usermusthavenoticedthatthesystemisabletorestorewindowson
thescreenexactlyinthepositiontheyheldwhenthesystemwaslastshutdown.This
behavior, which can be disabled with aL specific directive in CONFIG.SYS, is very
effective and convenient because it allows the user to store a great deal of information
regarding a window simply by resorting to a single API function. The storage of
information takes place in OS2.INI, a system initialization file that acts as a true
information repository for all active OS/2 applications. What is surprising about the
Wz.7tsforewz.7tdozopos() and Wz.7tResforew€.7tdozopos() functions is their plain syntax.
They only need three parameters, which are self-explanatory.

#defi.ne INCL_WINWORKPLACE
B00L APIENTRY Wi.nstorewi.ndowpos(PSZ pszAppName,

PSZ pszKeyName,
HWND hwnd) ;

Parameter
pszAppName
pszKeyName
hwnd
Return Vahae
BOOL

Description
Applicationname
Assigned key
Window handle
Description
Success or failure of the operation

#defi.ne INCL_WINWORKPLACE
B00L APIENTRY Wi.nRestorewi.ndowpos(PSZ pszAppName

PSZ pszKeyName
HWND hwnd) ;

Parameter
pszAppName
pszKeyName
hwnd
Return Vahae
BOOL

Description
Applicationname
Assignedkey
Window handle
Description
Success or failure of the operations

154 0S/2 2.1 Workplace shell programming

Startingfromtheendoftheparameterlist,thelastparameteridentifiesthewindow
that needs to be a snapshot of all its attributes (position and size, but also other
presentation parameters). In general, this will be a frame window. To store the
informationintheINIfile,itisnecessarytodefineapairoftextstringscorresponding
to the application's name and to a distinctive key. For instance, imagine you are
dealing with an application called TWENY.EXE. One correct pair of strings would be
TWENY and POSITION, but also TOKIO and JAPAN. It is important to permanently
store these strings in a safe place inside the application. The return value is a boolean
that reports the success or the failure of the operation.

Using these two functions ensures that all windows featured by a program will be
redisplayed exactly at their previous position, with the same size and attributes
@ackground color, text color, and text font). These functions are easy to use in your
own applications, or to plan for some option in the user interface (a menu item) that
might allow the user to disable this functionality. Let's use the pair of functions on a
single application window. The logic to be implemented should create a window
withouttheFCF_SHELLP0SITI0Nflag.Immediatelyafterthewindow'screation,you
can call Wz.7tResforewz.7tdozt7Pos() in order to retrieve information from OS2.INI. If this
is the first-ever execution, then the function will return the value of FA LS E, so it will
be necessary to take care of the window's positioning with Wz.77Se£Wz.7zdozopos(). The
storageofthewindowdataintheinitializationfiletakesplaceafterthemessageloop,
and before the application's termination. h Listing 4.4 you can also see the usage of
the Wz.77Q#enyT¢sksz.zepos() function, which locates an optimal position on the screen
for the application's main window.

Let'snowexaminewhatisinvolvedinthedevelopmentofapplicationsthatdisplay
several windows simultaneously, by putting into practical use the concepts you have
learned about parenthood and ownership.

Creating a Client's Child Window
Starting with version 1.2 of OS/2, the system editor is a full-blown PM appHcation.
Actually, it is a simple text editor, with a top-level window, a sizing border, and some
basicfunctionalitiesguaranteedbysomemenuoptions(itreallyisal6-bitapplication
that has been ported to the 32-bit world without enhancing its look or overall
functionality).

E.EXE is made up of a top-level window which displays a WC_M LE class window
precisely overlapping the client window. Remember that a WC_MLE window is a
777#Zfz7z.77e e7tf7t/ ¢.ezd. Thus the client is never visible, because it is hidden behind the
W C_M L E window. Its existence, however, can be proven through intelligence tools, by
assessing the class to which the WC_M L E window's parent belongs. You will discover
that it is in the EHXMAIN class registered by the editor. The sizing of the top-level
window, by acting on its border, causes an equal variation in the mle window; the net
resultisthatitwillcoverthewholescreenareaoccupiedbytheeditor.Thismechanism
is performed by the client window and by the other frame controls as a consequence

Windowing 155

of receiving appropriate sizing messages issued by the frame window. There is no
way in which the mle window can be hooked into the logic of the automatic resizing,
which governs the frame and its controls. Therefore, it is necessary that the applica-
tion itself takes care of implementing this behavior by intercepting the appropriate
message.

h reality, it is possible to trick PM by indicating in place of the client window any
other window belonging to a predefined class. This method allows you to avoid
registeringawindowclassandwritingawindowprocedure.However,itdoesrequire
s#Z7cZ¢ssz.7tg of the 77cze window in order to track the message flow generated by the
user's interacting with menus. As we have seen, the creation of a window deprived
of a client window can be done through Wz.7tc7'e¢fewz.7tdozu() simply by specifying the
WC_FRAME class. Cince a WC_MLE class window has been created, it is sufficient to
enforce it to have the frame window as its parent, and assign it an ID with the value
of F I D_C L I ENT. It is simpler to use the W€.7tc7.c¢fesfdwz.7tdozo() function that requires

youtoindicatethewc_MLEclassdirectlyastheonetowhichtheclientwindowbelongs.
h Chapter 7, where the predefined window classes will be described, this issue win
be explained in detail.

Despite all the previous suggestions, it is essential to find another solution to this
problemsothatthe77tzewindowbecomescompletelyboundtotheapplication'sframe
window (even though the system does not force this automatically). h Figure 4.9 you
can see two top-level identical windows each containing a WC_M LE class window.
Consider this as a first attempt to build an editor application for PM. The different
dimensions of the two windows are indicative of the fact that one of them must have
beenresized;also,theyprovethatthechildwindowshavebeenaffectedbytheresize
operation.

While developing this application, you will become aware of two essential princi-
ples: the initial size of the input window (the 777Ze window) conforms to the client
windowandtoanysubsequentrearrangementofthemainwindow.TheWC_MLEclass
window is served by a proper window procedure inside PM, as this is one of the
predefined classes. The message flow addressed to the 77cze window, is therefore
inaccessible to the application. When the main window is created through Wi.7t-
C7'c¢£esfdwz.7tdozt)(), the message WM_CREATE is passed to the application's window

procedure. Catching this message provides an ideal opportunity for creating the
WC_M L E window, exploiting Wz.7tc7`c¢fewz.77dozu(). This time the message WM_C REAT E is
issued and addressed to the proper window procedure inside PM. Later, in the
application's window procedure, the message WM_S I ZE is issued as a direct conse-
quence of the main window's creation. (We will discuss in detail the entire message
flow produced by creating a window in Chapter 7.) The contents of mp2 correspond
to the dimensions of the client window of the main window. By extracting from mp2
thetwoSH0RTvaluesrepresenting,respectively,thewidthandtheheightoftheclient
window, it is possible to resize the input window as the actual size of the client is
known.

Thisapproachtotheproblemhastwoadvantages:ItallowsaWC_MLEclasswindow
to be reszied either when the application is created or in response to any subsequent

L56 0S/2 2.1 Workplace shed progranming

aqus``\Q`.``er a` ` ir` + e `G ler` a;`St§t```sts;i;`:§* . i TTS»T:SFSQS`\[``-```:``¥u```:Q<;S`+`:` REB .r:-`EL

and-drop
I,

*0

J I .I ®" `rm . ,i, A
I

i:*:ce I.:. `t I+ 1 [!n:'{`P!L`L:I.i+!a

h'I,.,.a

:: ::,, `TLh;. `+:.lil:#:::::,.i :i:,:,€ .,,. :I: ,. Jrw s` t' .,,,. :,;;::;.:.:.+d i

aps:=i?..rT:,; `F¥+4j'.id±9:.::TrT!r+,g*]S.fun!! . ,. L<; :`.+i,F ,: i
ZJtt

li

I `L:tit: -:-'-L::::.: '!*tf'!L:I ::::}jts..: ::;i:.;-I:''-A ,:i.,ch :] ' , *`|-i+!` +„;;;~+rt+:~Jr`

i' iri a
e . i .. * + a + d {

I . 4' . t' I '- -. J* I-

EH
Copt,1 RE

10.Ths Rmn 8 Tins Rmn

10.Helv 8.Helvetlca Bold

18.Tins Rmn 18.Ti:mes"e`
24.Helv

Drag item to target window. Hold
£!!Jsfiu+9±±9§tem-wide changi

§¥ffii:`fufft-fi RE

Figure 4.9 Two top-level windows, each one containing a WC_MLE class
window,

El

changes made by the user to the window's borders. h fact, as the window's class has
been registered with the CS_SIZEREDRAW flag set, it is guaranteed that a WM_SIZE
message will be issued for any kind of change along either axis.

The only operation involved is that of catching the WM_S I Z E message and passing
the value contained in mp 2 to the Wz.7tse£Wz.77dozt7Pos() function, specifying the handle
oftheinputwindow.Thefinishingtouchwillbethatofdeclaringstati.cstorageclass
for the handle of the WC M L E class window. This data item is returned within the block
of code dealing with the WM_CREATE message, and it is used once again with the
WM_S I ZE message-two very distinct moments at which the window procedure is
executed. Listing 4.5 contains only the window procedure for the example at hand.

Informing the Window List
When a PM application is running, Window List is informed automatically about its
presence.InthiswayitcangivetheuseracompleteoveIviewofwhattasksareactive
atanygivenmoment(seeFigure4.10).PMapplicationsmusthavetheFCF_TASKLIST
flag set in order to reproduce in the Window List the titlebar's text.

windowing 157

EiffiRTLHHRE

P[a.9~ a:=-font ?nd drqpz it 9n the tex_I. : -i .,
" a ,-in -n .i ,+I,`.,:

OS/2 Full Screen - OS/2 Full Screen
KwiklNF
IBM WorkFrame/2 - IBM WorkFrame/2+ rfu!* -=| A predefined window overlapping the Client

Font Palette - Palette
A predefined window overlapping the client
PMCAMERA.EXE -PM Camera 1.26

',..+.-.8.fl-t:+~" t 1 ,
.3 I rf i a

:l}.+r:]*:r~.I: :ii:-::€:`` 1[~-: ~: . + ' `'
Lh,,

:i.:~ ;ii i-I::-:<tt+~-. g I

Qs/2r+22:+j`Fin+PFogramming.ijs~f`rin`!!
---er-Li -I .fyrty- , t

:- -i ®tl' "r~c: .t:~ *3 -i-+-- `
1-t11+,`
it,d
~,I:

10.Tins Rmn 8.Tins Rmn

10.Helv 8.Helvetlca Bold

j8.rii!s Rj#;318.Times Nei
8Heiv 24.Helv.
Drag item to target window. Hold

REEgrREERE

Figure 4.10 The Window List displays a list of active and inactive PM appli-
cations at any given moment.

Quite often, however, it is preferable to notify Window List with a text string
invented specifically for this purpose; this is what most OS/2 applications provided
by the system actuauy do. The function used is Wz.7iAddszoz.fcfeE7i£7ry() which can pass
to Window List the address of a SWCNTRL structure. However, before doing this, it is
necessary to have some other items, like the process's PID and TID. These acronyms
stand for, respecfuweky, the process ideritification number and the thread identification
7t#77cZ7er. These are two U L0 N G numbers that identify the process and the thread being
executed.Thefirstvalueisuniqueatthesystemlevel(eachprocess,whateverkindof
program.i it might be, is assigned a unique PID). The second number is also unique,
butattheprocesslevel,andalwaysstartsfromthevalueofone(primarythread).You
can obtain these two values with the Wz.7eQ#enywz.77dozoprocess() function:

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nQuerywi.ndowprocess(HWND hwnd,
PPID ppl.d,

PTID ptl.d) ;

P arameter Description
hwnd Window handle
ppid Pointer to an identifier of type PID
ptid Pointer to an identifier of type TID

158 0S/2 2.1 Workplace shell programming

Return value D escription
BOOL Success or failure of the operation

This function reports the P I D and TI D of the current process and thread to which the
windowindicatedbythefirstparameterbelongs(inourexample,itwouldbetheprimary
thread). Cince this has been accompHshed, you can supply the correct values to the
SWCNTRLstructurethatyouwilleventuallypasstothewz.7cAddswz.fcfeE7if7y()function:

#defi.ne INCL_WINSWITCHLIST
HSWITCH APIENTRY Wi.nAddswi.tchEntry(PSWCNTRL pswcntrl) ;

P arameter D escription
swcntrl Address of a swcNTRL structure
Return vahae D escription
HSWITCH Handle of the new string inserted into the window List

typedef struct _SWCNTRL
I // swctl

HWND hwnd ;

HWND hwndlcon ;

HPROGRAM hprog ;

PID i.dprocess ;
ULONG i.dsessi.on ;
ULONG uchvl.sl.bl.li.ty ;
ULONG fbJump ;
CHAR szswti.tle[MAXNAMEL + 4] ;
ULONG bprogType ;

} SWCNTRL ;

typedef SWCNTRL *PSWCNTRL ;

The first member identifies the handle of a top-level window's frame window; the
next member is the handle of the icon associated with that window. The program's
handle is an item known by~ calling the Pr/Q#enyprogr¢777H¢77dze() function, but it can
also be omitted from the Wc.7iAddszuz.fch£7zfny() call.

The process ID corresponds to the P I D value you retrieved previously, while the
session ID is returned by the system at start-up time, through Dossf¢7`£Sessz.o77(). The
uchvi. si. bi.1 i. ty member defines the application's visibility in Window List; the
values it can take are: SW L_G RAY E D, SW L_I N V I S I 8 L E, and SW L_V I S I 8 L E.

FZ¢g
SWL INVISIBLE
SWL_NOTTUMPABLE

SVVL GRAYED

SWLjuMPABLE

SVVL VISIBLE

V ahae D es cription
Oxol The text string is invisible
Oxol You carmot access to the process through its

corresponding string
Ox02 The text string is visible, but it carmot be

selected
Ox02 You can access to the process through its

corresponding string
Ox04 The text string is visible

Windowing 159

Through f bJ ump you define whether the application is part of the jump selection
sequence. The structure is then completed with the title inserted in the Window Hst
and a reserved parameter that always takes the value of zero.

Figures 4.11 and 4.12 show Window List before and after the addition of the code
statements that insert text in Window List. h Figure 4.11 you can also see the name
oftheexecutablemodule,whileinFigure4.12ithasbeenreplacedbythestring"Boca
Raton, FL!"

Execution of One Single Instan,ce
OS/22.1isamultitaskingenvironlnentthatallowssimultaneousexecutionofseveral
programsatonce.Nothingforbidsthatamongthemanyactiveapplicationsyoucould
have several copies of the s¢777e program; in other words, you could have multiple
instances of the same EXE. By default, the WPS interface does not allow more than
one single copy of any program to be loaded, starting from its icon that refers to its
executable module. This can be altered by changing some of the object's properties on
theWz.77dozupageintheSettingsnotebook.Thestandardbehaviorcanalsobemodified
on the Window object in the System object in the Sysfe77t Se£#p folder. When an OS/2

L|stoo_02=Store/re.Store.P£°Lsr,I+tt=°L?.:.a:-:S:+
Li'St6Foi03+ Diafg ~. r
L[§too_04 + Mg WinDlsp9tc.hMsg{) : -
LIstoa_05TDrohpai rod .,: ,, .: a:£

[!:;`!:[!!:|!-3.jsa:9¥trsc.ed.:,:.G'=b:.:i;I-:=

-+~

T.Sg.SteTjnfo .. r{qL

CLCOLOF}.DEF- S 'rF I *L*
CLC'OLOR.D'Ep" h++ I.
CLCoLOR.EXE + .a.]=±

8[g8[8B::,bA,K.„ , +tfi £+ rl-%:§r, ~:*

- -- ~ rF J!Ft3

!T€€,*aig-a
R¢RE

RE
osra system

Desktop - Icon View
OS/2 Full Screen - OS/2 Full Screen
Sg§tem Clock - Date/Time

PMCAM200.EXE - PM Camera /2

H
Templates

?'ir;Esr£3|;(iifirdtho.w:#.,..;
nJ

!`l}#tRPEatnTtFnaJ;.I.:+:$3.
Falnti.ngfLexamplet.. i
Parent/son' . i .
owner/O~wned of" I €'.`*r£*jE

:{`oPFer/:::##:#t,%:?Ja/?PL"

;,%:`tw;~3{ao°r¥€:: I:i ttj+ : :i +'1J

wlndrows.eriu.me„ratlgn A.4 +
MessLage broadcastlng[- S

[j§;i.E§:=:g:tri=b=gEaT::Tn:puu:t.,,:,,,:~;:+~.:::,+.~T=Jrl
rlL

Figure 4.11 How to act on the contents of the Window List through the
WinAd d switchEutry () i:urLction.

L60 0S/2 2.1 Workplace shell progranming

iE ffi H E@ I RE E] EE
HPLaserJet||D Multimedia Volum e Folder sNOOPEP`E¢ EEEEERE DF}OPINFO lBMWoikFranera

Contro I

RE ' IBMcefoois2o
12.`GE'ti

#FLriEXE=ffi~`tiNI`roRDEXEae'WFEife`ngpMSFtyE;rfeE@

I :':`''. `'`, ..; I ''''...i''`..' ' I . ``.. .'. - '.'`-.:S` `.'`. 'i a

`'WibcI``ovi` :List,-- - - - - -- `±

WF.EXE - IBM WorkFrame/2Baton.I,Fl

•' . v-. `ffi=!=---..ill

a.9:.§:a``8`at.Qv*.I..IFl ``_` ` _r_`. ` `,,`_`..`,`, ., ...;.`...:,`.,`` `,_`..`. .; .:..:`!

±

Miscelloneous ||J|
Templates Dirve A Shredder

Figure 4.12 Change of the contents of the Window List thanks to the
WinAdd switchEutry () i:un:ction.

application is run with multiple instances, the code segment is shared among them,
while there will be distinct data segments for each single instance.

The execution of just a single instance of a Windows program in the MS Windows
environment is a very simple operation-and a very common one. h this case it is the
systemitselfthatinformstheappficationaboutanyotherpossibleprecedinginstances.

h PM, on the other hand, things are not this simple. The 777¢z.7t() function is the entry
pointofanyapplication,anditisnotpassedanyspecialinformationfromthesystem.
The only possible parameters it can receive are argc and *argv[], and perhaps
*envp [] . Furthermole, there is no special item that indicates whether a preceding
instance is already running or not. Each instance is an independent process with
private resources like PM window classes. This means that they are inaccessible and
invisible from the outside of the module within which they have been registered.
Therefore it is necessary to find some altemative means that exploit the Window List
notification process of the existence of an application or the enumeration of the
top-level windows present in the screen group.

Accessing the Window List
With this approach, you must have a basic piece of information, and that is the text
that the appfication, once it has been started, passes over to Window List. This text

Wz.7tdozo{.7tg 161

string should be one of the many resources that make up an application, and that are
present in the RC file. As we have not yet examined this aspect of PM programndng,
right now we will simply hard-code the text that is used in Window List inside a
characterarray.Theinformationwinbeusedtomakecomparisonsbetweentheitems
contained in Window List and the application being executed. The presence of an
equal string in Window List is clear evidence that a preceding instance of the appli-
cationisalreadyrunning(andthereforethatyouwillhavetoassignsomenewspecific
text string in order to avoid this algorithm being invalidated).

The first operation is that of obtaining the items that are present in Window List's
listbox. The Wt.7tQ#e7ys"z.fcfeLz.s£() is adequate for this purpose:

#defi.ne INCL_WINSWITCHLIST
ULONG APIENTRY Wi.nQueryswi.tchLi.st(HAB hab,

PSWBLOCK pswbl kswi.tchEntri. es ,
ULONG ulDataLength) ;

Parameter
hab
pswblkswitchEntries
ulDataLength
Return Vahae
ULONG

Description
Anchor block handle
Address of an identifier of type SWBLOCK
Size of the data being passed
Description
Total num.ber of switch entries in the W.indow List

Thefirstparameteristheanchorblockhandleoftheapplication;ifyouneedityou
can retrieve it through Wz.7tQ#e7tyA7rdzorBZock(). The second parameter is a pointer to
a SWB LOG K structure, as follows:

typedef struct _SWBLOCK
I // swblk

ULONG cswentry ;
SWENTRY aswentry[1] ;

} SWBLOCK;

typedef SWBLOCK *PSWBLOCK;

Th.e first member of the S W 8 L0 C K structure indicates the number of items contained
inthefollowingarrayofSWENTRYitems.EveryelementinthisarrayisthusaSWENTRY
structure:

typedef struct _SWENTRY
(// swent

HSWITCH hswi.tch ;

SWCNTRL swctl ;

} SWENTRY ;

typedef SWENTRY *PSWENTRY ;

The SWB LOC K structure contains the number of entries present in Window List and
describedbythearrayofSWENTRYstructures.heachSWENTRYstructureyouhaveeach
entry's handle (i.e., the appfication handle), as it is managed by Window List, and a

162 0S/2 2.1 Workplace shell progranming

Figure 4.13 Relationship between the Window List and the active processes
in the system.

detailed description of the program contained in a SWCNTRL structure. Figure 4.13
summarizes the relationship existing between Window List, each entry that appears
in its listbox, and the data structures checked by Wz.7tQ#e7t/Szuz.fcfeLz.s£().

The first operation to perform is that of determining the number of entries in the
Window List's listbox by specifying N U L L and 0 L in place of the second and the third
parameter o£ WinQuery switchltst()..

®®

ulApps = Wi.nQueryswi.tchLi.st(hab, NULL, OL) ;

The ul Apps identifier is a ULONG value that represents the number of entries in
WindowList;thisinformationwillbeusedtoallocateablockofmemorylargeenough
to contain a corresponding SWB L0 C K structure.

®®®

ulsi.ze = ulApps * si.zeof(SWENTRY) + si.zeof(USHORT) ;
DosAllocMem(&pswblk, ulsi.ze, PAG_READ I PAG_WRITE I PAG_COMMIT) ;

®,

TheuLSi.zeidentifier,whichisalsoaUL0NGvalue,isequaltothesizeofanSW8LOCK
structure featuring an array of ul Apps SWENTRY structures. Once the memory block
hasbeenallocatedwiththePAG_C0MMITflag,youwillautomaticallyhaveapointerto
the correct SW 8 L0 C K structure. Then you only have to call Wz.7tQ#enyszuz.fcfeLz.s€() again
to fill in the allocated memory block with the data retrieved from Window List.

®®®

Wl.nQueryswl.tchLi.st(hab, pswblk, ulsi.ze) ;
®

Windowing 163

The search for any existing instance at run time implies that you need to examine
everysingleentryintheWindowList'shistbox,andcompareitagainstthetextstring
ofyourapplication(szwl.ndowTi.tle):Apositivematchmeansthatthereisaprevious
instance.TheupperlimitofthisloopisgivenbythecswentrymemberintheswBLOCK
structure.

®

for(i. = 0; i. pswblk -> cswentry; i.++)
I

i.f(strcmp(pswblk -> aswentry[i.].swctl.szswti.tle,
szwi.ndowTitle) ± 0)

i
// match found: termi.nate appli.cati.on
return FALSE :

F]

),
// match not found: conti.nue appli.cati.on
®®®

The piece of code described in this paragraph ties inside 77t¢€.7t() and can be utilized
atthebegirfugofthefunctionbeforeperforminganyotherprogramspecificopera-
tion.Theonlythingtobecarefulaboutisthatyoumusthavereadilyavailablethetext
string that is to be compared against Window List entries, or simply the name of the
program if no customization has been performed with Wz.77Addszt72.£ch£7t£7ry(). List-
ing 4.6 shows how to check for an existing instance by examining the contents of
Window List.

Ermmerating Top-Lev el Windows
The second solution is discovering all of the desktop's child windows, and then
examiningeachoneofthem.Youthencomparethemagainstthewindowthatisabout
tobecometheapplication'smainwindow.Asopposedtotheprecedingsolution,you
willnowhavemoreitemstocompare(theapplication'stitleandthenameoftheclass
towhichitbelongs),andtheimplementationissomewhatsimpler.Asfarasperform-
ance issues are concerned, it is difficult to decide which is best, since the algorithm is
very simple in both cases. This second solution is certainly viable, if not ordy for the
purposeofenumeratingallchildwindows(ofanygivenwindow,notnecessarilythe
desktop).

The algorithm for enumerating all PM windows is surprisingly simple. The functions
inwohaedareoulytlnree..WinBeginEnunwindows(),WinGetNextwindow(),andWinEndE-
7t#77cWz.7zdozus(). The roles played by the three functions are distinct and self-explanatory.
StartbycountingthenumberofwindowswithWz.7tBegz.7tE77#fflwz.7zdozus():

#defi.ne INCL_WINWINDOWMGR

HENUM APIENTRY Wi.nBegi.nEnumwi.ndows(HWND hwnd) ;

P ar ameter D e scription -
hwnd Window handle

164 0S/2 2.1 Workplace shed progranming

Return vahae D es cription
HENuh4 Enumeration handle
This function takes as its sole parameter the handie of the window whose children

you need to find; it can be any HWND handle or a HWND_DESKTOP and HWND_OBJECT
define that indicate, respectively, the desktop window and the object window of the
PM screen group. The return value is an enumeration handle, a special tool for this
kind of operation. An enumeration handie is used with the Wz.77Ge£Nex£Wz.7tdozu() and
Wt.7t£7tdE7t#77twz.7tdozos() functions, to get the first child window of the window indi-
cated in the call to Wt.7zBcgz.7tE7t#77cWz.77dozDs(), and to terminate the search operation,
respectively. The entire operation is performed through the enumeration handle,
which is managed by the system. Wz.7tGefNex£Wz.7tdozt7() returns the handle of the next
window found, or a N U L LHAN D L E if the enumeration has reached its end:

#defi.ne INCL_WINWINDOWMGR

HWND APIENTRY Wi.nGetNextwi.ndow(HENUM henum) ;

P arameter D escription
henum Enumeration handle
Retunii value D escription
HWND Window handie or NULLHANDLE at the end of the search
Whatever window is indicated by the hwn d handle returned by Wz.7tGc£Ncx£Wz.7t-

dozt7(), it will always refer to a window of the WC_FRAM E class, provided the standard
PM approach to window construction has been followed. Once you have a window's
handle, you find all inform.ation that qualifies it and sets it apart from all other
windows. If you wish to be sure that it really is WC_FRAM E class window, just call the
WinQueryclassName() fimct±o".

#defi.ne INCL_WINWINDOWMGR
LONG APIENTRY Wi.nQueryclassName(HWND hwnd,

LONG cchMax,
` PCH pch) ;

Parameter
hwnd
cchMax
pch
Return Vahae
LONG

Description
Window handie
Buffer length
Buffer for storing the class name
Description
Number of characters inserted into the buffer

Thisfunctionwritesintothepchbuffer-thethirdparameter-thenameoftheclass
of the window referenced by the hwnd handie, the first parameter. The cchMax long
valueindicatesthetotal1engthofthebuffer,andWz.7tQ#e7rycz¢ssN¢777e()copiesintothe
PCH buffer the first cchMax - 1 characters of the class's name.

For any window belonging to one of the fifteen predefined PM windows, a specific
alphanumeric string is stored in the buffer. This special string has # as its first
character, then a number. Table 4.7 lists au values corresponding to the predefined
window classes.

Windowing 165

Table 4.7 The Predefined PM Window Classes and the Corresponding Values
Refu:rnedbyw:inQueryclassName()

Class Name

WC_F-
WC_COMBOBOX
WC_BUTTON
WC_MENI
WC_STATIC
WC_ENTRYFIELD
WC_LISTBOX
WC_SCROLLBAR
WC_TITLEBAR
WC_MLE
WC_SPINBUTTON
WC_CONTJRER
WC_SLIDER
WC_VALUESET
WC_NOTEBOOK

((PSZ)OxffffooolL)
((PSZ)Oxffff0002L)
((PSZ)Oxffff0003L)
((,PSZ)Oxffff0004L)
((PSZ)Oxffff0005L)
((PSZ)Oxffff0006L)
((PSZ)Oxffff0007L)
((PSZ)Oxffffooo8L)
((PSZ)Oxffffooo9L)
((PSZ)OxffffoooAL)
((PSZ)Oxffff0020L)
((PSZ)Oxffff0025L)
((PSZ)Oxffff0026L)
((PSZ)Oxffff0027L)
((PSZ)Oxffff0028L)

EI

Onceyouhavefoundthatthewindowisindeedawc_FRAMEclasswindow(#1),you
can then get the application's title with Wz.7tQ#enyw1.7tdozt7Texf(). The operation is
performed automatically by this function, which stores in a buffer, whatever appears
inthetitlebar.Nowyouonlyneedtocomparetheretrievedstringagainstthatknown
by the application, and determine if a previous instance is already running. The
example is shown in Listing 4.7.

A Third Solution
The problem of executing ordy one single instance of an application can be solved in
severalwaysinPM'ssetofAPIfunctions.Let'sexamineathirdsolutionbasedonthe
uniquenatureoftheinnerworkingsofthewholeenvironment:messagepassing.PM's
API includes several hundred predefined messages, among which the WM_ messages
are predominant and are the only ones that have been considered so far. However,
therearealsoothercategoriesofmessages,1iketheWM_USERmessagesthataredefined
andmanagedentirelybytheapplicationitself.AWM_USERinessagetakesonthevalue
ofoxl000andrepresentsthestartingpointfordefiningnewmessages,intheformof
WM_USER + n, where n is any positive integer.

h addition to defining the message's name, the application can freely utilize the
64-bit space available in the mpl and mp2 parameters. hmediately after being acti-
vated, an application that needs to be mnning as the first and sole instance can issue
acustomizedmessagetoallotheractiveapplications(windows).Themessagedefined

166 0S/2 2.1 Workylace shed progranming

in the code can be intercepted and processed ordy by another running instance of the
sameapplication.Theresponseimplementedbythecodereceivingthemessageissues
another different customized message to the new instance. This second message
simply causes the application to set a file scope boolean value to FA LS E. The applica-
tion's message loop and the Wz.7tsfeozowz.7tdezt7() function that displays the main win-
dow are inside a block of code based on the value of the boolean identifier. This
solution is determined by the requirement of not having to show the new window,
not even for a fraction of a second. If instead the instance's response would have been
its posfz.7ig of the WM_QU IT message, then you would not achieve the desired result.
Figure 4.14 shows the logic that governs this solution.

The issuing of a message to all top-level windows present in the PM screen group
can be accomplished through the Wz.7tBro¢dcos±Msg() message:

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nBroadcastMsg(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2,

ULONG rgf) ;

Wc.7tBro¢dcos£Msg() is a function with a convoluted rationale, but it is easy to use.
The first four parameters are exactly those of Wz.7?Sc7tdMsg() and Wz.7tpos£Msg()-the
parameters required by any generic window procedure. However, the fifth argument
is an unsi. gned 1 ong value that instructs Wc.77Bro¢dcos£Msg() as to how it should
broadcast a message. h fact, this function allows a message to be sent directly to a
window procedure by means of the message queue or to post the message to one or
more applications. To decide which of the two ways you should use, set one of the
following flags as the function's fifth parameter:

WM_CHECKINSTA

• AppHcation starts and broadcast a
WM_CHECKINSTANCE message
passing its cfient window in mpl;

• VThen processsing
WM_CH EC KINSTANCE application
sends a WM_ANSWERINSTANCE
message if sender window is different
from target: new instance ends.

Clientwndproc()

(

case WM_CFIEATE:

broadcasting
WM_CHECKINSTANCE

case WM_CHECKINSTANCE:

WM_ANSWEFIINSTANCE

Figure 4.14 Functional scheme of the execution of a single application in-
stance through the posting of a customized message.

Fl ag Vahae
BMSG_POST OxO 0 O 0
BMSG_SEND 0xO oo 1
BMSG_POSTQUEUE 0x0 0 02

BMSG_DESCENDANTS 0x0004

windowing 167

Description
The message is posted
The message is sent
The message is addressed only to the appli-
cations' queues .
The message is addressed to all child win-
dows as well

BMSG_FRAMEONLY 0xOOO8 The message is addressed to wc_FRAME
class windows only

With BMSG_POST, the message is posted to all child windows of the window
indicated by the hwnd parameter, the first parameter of Wz.7tBro¢dcos£Msg(). With
BMSG_POSTOU EU E , on the other hand, you instruct Wz.77Bro¢dc¢s£Msg() to deliver the
messagetoallsystemthreadsthathaveamessagequeue.hthiscase,thevalueofthe
targetwindowissettoNULLHANDLE.Finally,with8MSG_SENDyoucansendamessage
to all window procedures of the child windows of the window indicated by the first
para;meter o£ WinBroadcastMsg().

There are yet two more flags that can differentiate the type of windows that will
receive the message issued by Wz.7tBro¢dcos£Msg(). BMSG_D ESC ENDANTS indicates that
all child windows should receive the message, and BMSG_FRAMEON LY indica'tes that
only the windows belonging to the WC_FRAM E class should receive the message. You
can thus decide how to set up the W.7eBroedcqs±Msg() function for your own needs.

Naturally, you do not know beforehand what the handie of the receiver window is;
rather,thisiswhatyouaretryingtofindout.Therefore,thefirstparameterofW£.7tBro¢d-
c¢s£Msg() will necessarily have to be HWND_DESKTOP to indicate the forefather of all
windowsinthesystem.Themessagethatwillbebroadcasttodetectanypossiblepresence
ofpreviousinstancesisWM_CHECKINSTANCE,definedasfonowsintheappHcation:

®,

#defi.ne WM_CHECKINSTANCE WM_USER + 0

®®®

ThewM_CHECKINSTANCEmessageisjustanaliasforwM_USERwithnoincrement.In
additiontothemessageitself,youalsoneedtoprovideapieceofinformationthatwill
becriticalifanotherrunninginstanceistobedetected:thehandleforthenewlycreated
window. This parameter is used by a possible existing previous instance to force the
closure of the new instance. The handle of the window is packed into mp 1 by means
of MP FROMHWND (hwnd), while all 32 bits of mp2 are zeroed out by setting it to 0 L. The
options are BMSG_FRAM EON LY and BMSG_S END. The whole thus becomes:

®®,

Wi.nBroadcastMsg(HWND_DESKTOP, WM_CHECKINSTANCE, MPFROMLONG(hwnd),

OL, BMSG_FRAMEONLY I BMSG_SEND) ;

®®

ThechoiceofBMSG_SENDisabsolutelycriticaltoterminateexecutionofanyculfent
instance. The broadcasting of a message through Wz.7?Bro¢dcosfMsg() implies that you

168 0S/2 2.1 Workplace shell progranming

il

will reach ¢ZZ window procedures of the client window (the frame window will pass
on the message to its client directly). Before returning to Wc.7tBro#dc¢s£Msg(), the
message will probably have reached even a window procedure of some existing
instance of the application. This window procedure is implemented in order to
provide a case condition for WM_CHECKINSTANCE. h this portion of the window
procedure's code two fundamental operations are performed. The first is assessing
that the message issued by Wz.77Bro¢dcos£Msg() has not and will not reach the window
procedure of the sender (as it is the same piece of code, even the new instance will
share it). Once it has been determined that the handle contained in mpl is different
from the handie of the current window procedure's client window, the new instance
must be closed.

To solve this problem, there is no other way than posting the WM_Q U I T message into
the message queue of the second instance. Actually, this second solution is not e7tfz.rezy
correct, because it assumes you are using Wz.7tpos£Msg() to implement any kind of
communication between separate appfications, in addition to allowing that the new
window will be displayed for a short time, and it is during that time that it returns
from the message loop and retrieves the WM_QU I T message.

Itispossibletosolvetheproblemwithanewwc.7tpos£Msg(),thistimespecifyingthe
destination window's handle (the information is contained in mp 1), the WM_ANSW E R-
I NSTANC E message, and nothing in mp 1 and mp2.

In practice, this solution can be reduced to just a few lines of code, and to the use of
the Wz.7tBro¢dcos£Msg() API function. Listing 4.8 shows the source code calling Wz.7t-
Bro¢dcos£Msg() to solve the problem of a running a single appHcation instance.

Other Soha±ions
The problem of running a single application instance can be defined by other means
as well, all provided by the system. One very simple means is that of creating and
setting a shared runtime application se777¢pfeore. Each program invocation will check
the semaphore's status before actually creating the instance. The first instance will get
an error status as a return value. Any subsequent instances will terminate as soon as
they have found the semaphore, and, thus, a previous instance.

Another way is to create a 7z¢777ed pz.pe and connect to it as a client. This can be done
with only one application. All others will fail and thus can be terminated. Probably,
with some imagination, you can devise other tricks that do the job.

Registering a Public Class
h PM, all classes registered in a single application are private. A private class of
windowsmeansthatonlythecurrentprocessisallowedtocreatewindowsbelonging
toit.Thisistrueevenfortheexecutionofmultipleinstancesofthesampleapplication;
every instance takes care of registering the classes implemented in their source code,
and of managing the information related to these classes on a strictly local basis.

windowing 169

Figure 4.15 If a window class is to be public, then it has to be registered
directly in a DLL.

h order to create a public class, you need to set the CS_PU 8 L I C flag when the class
isregistered.Apublicclassalsorequiresthattheregistrationstakeplaceinadynamic
link library (DLL), so that the associated window procedure is accessible to any
applications. Now, things start to get complicated! h Figure 4.15 you can see the
nature of a public class.

Atthecurrentstagewedonothaveenoughelementsavailabletobeabletoregister
a public class and then to create windows belonging to that window class. This will
be covered when DLLs are explained in Chapter 10.

Furthermore, it is also necessary that the OS2.INI system configuration file contain
aspecificdirectivetoinstructallapplicationsaboutthepresenceofanynewwindow
classthatmightbeexploitedbyanypieceofruntimecode.Thesoftwaredesignercan
take advantage of the functions with a Pr/ prefix for dealing with all kinds of
configurationproblems,fromreadingafiletocustomizingthesystem'sprofile.When
wegetbacktotheproblemofcreatingapublicwindowclass,wewiuexaminethePr/
functions in detail. For the moment, just remember to limit any changes to OS2.INI to
the bare minimurn, because if you do anything wrong, you will run into subsequent
problems when rebooting the system: In other words, you might get a total crash.

The somewhat greater complexity in creating a public window class in PM is also
due to the protected-mode nature of any runtime tasks, and this entails major conse-
quences as far as the whole system's stability is concerned.

The Wi.#Mess¢geBo#() Function
ThebestwaytodeterminewhatisactuallyhappeninginapMapplicationisbyusing
IPMD, possibly in a dual monitor configuration (when supported), because this
simplifies the handling of au information.

Quite often, however, it is sufficient to get a ``quick and dirty" display of such
information, both in order to inspect the code, as well as notifying the user that some

T70 0S/2 2.1 Workplace shell progranming

kind of unique condition is established. Ihstead of creating a special window and
fillingitwithtext,itisfareasiertousetheWz.7tMess¢gcBox()APIfunction.This function
isdesignedspecificallyforthiskindofsituation.WithWz.77McssngeBo#()youcancreate
a window inside which the application will be able to present some text simply by
means of a pointer to some memory area containing a string. You don't have to be
concerned about accessing any special presentation space, nor about screen device
contexts. Wz.77Mess¢geBox() h-andles these details automatically, so it is an extremely
fast and convenient way for producing output on the screen. This tool can also be
employed in more involved situations, like prompting the user for information and
returning a value that indicates what the user intends to do. The syntax of WinMes-
sageBox() is:

#defi.ne INCL_WINDIALOGS
ULONG APIENTRY Wi.nMessageBox(HWND hwndparent,

HWND hwndowner,

PSZ pszText,
PSZ pszcapti.on,
ULONG i.dwi.ndow,

ULONG flstyle) ;

Parameter
hwndparent
hwndowner
pszText
pszcaption
idwindow
flstyle
Retwm Value
ULONG

Description
Handle of the parent window
Handle of the owner window
Text displayed in the message box
Title of the message box
ID of the message box
Style of the message box
Description
Value of the user's response

In general, a message box is engaged to provide the user with some very short
messages pertaining.to the system's activity. Some typical examples are: "hsufficient
Memory," and "Missing disk in drive A:." This kind of message must immediately
capture the user's attention, and thus it is best to place them right in the middie of the
screen. For this reason, the handle that indicates the parent of a message window is
usuallyHWND_DESKTOP.

Ontheotherhand,thehandlethatidentifiesthemessagebox'sownerismuchmore
significant. This window is reactivated automatically once the message box disap-
pears from the screen. As a message box is almost always displayed within a case
branchofawindowprocedure,thehandleoftheownerwindowisusuallythehandie
of the window that received the last message dispatched by Wz.7tDz.sp¢£cfeMcss¢ge().

The two strings used by Wz.7tMess¢geBox() are often refered to as fe%£-z.7t and fe%£-o#f
in order to distinguish what will appear inside the window and what will appear
inside the title of the message box. Both strings must be ASCHZ strings, and they can
containescapesymbols(1ikenewline\n),eventhoughitisbesttoavoidtypicalescape
sequences such as those used by the prz.7t£/r) function. If no pointer is specified for the

windowing T71

parameterindicatingthemessagebox'stext,thenthestring"Error!"willbedisplayed
automatically; this indicates that originally Wz.7tMess¢geBox() was intended for warn-
ing of errors or some kind of erratic application behavior.

The possibility of specifying text strings in an easy and straightforward way often
deceives PM rookies. A message box can contain at most a couple of text lines. Once
this limit is exceeded, it is preferable to resort to some other output tool available in
PM.Itcertainlyrequiresacomplicatedsolution-forexample,aWC_MLEwindow-but
itwfllallowmuchmoreflexibilityandcontrolonbehalfoftheapplicationthanaplain
message box.

ThefifthparametertoWz.77Mess¢geBox()isaUL0NGvalueusedtoassignthemessage
box a unique identifier. Actually, this ID is never to be used within an application,
becauseitspurposeisthatofprovidingtheprogram'shelpfunctionwithadistinctive
element that identifies the source of the WM_H E LP message. It is best to indicate a zero
for this parameter because the help function is also the last part being built in a PM
appHcation,andthusyoucansafelyassumethatyouarewritingthehelpsystemonly
after you have thoroughly debugged the true application code.

The sixth and last parameter of Wz.77Mcss¢geBox() is a style that allows the message
box to include icons or buttons. These give the user an enhanced and productive way
to interact with the application. Table 4.8 contains all the values that the flag of
Wz.yzMessngeBox() can take, and that originate buttons in the client portion of the
window.

Table 4.8 The MB_ Flags Used to Generate WC_BUTITON Class Windows in a Message Box

Flag Vahae D es cription

MBOK
MB_OKCANCEL

OxOOOO The message box contains only an oK button.
OxOool The message box contains an oK button and a

Cancel button.
MB_RETRYCANCEL 0x0002 The message box contain a Retry button and a

Cancel button.
MB_ABORTRETRYIGNORE 0x0003 The message box contains three buttons: Abort,

Retry, and Ignore.
MB_YESNO 0x0004 The message box contains a Yes button and a

No button.
MB YESNOCANCEL 0x0005 The message box contains three buttons: Yes,

No, and Cancel
MB_CANCEL 0x0006 The message box contains only a cancel button.
MB_ENTER 0x0007 The message box contains only an Enter button.
MB ENTERCANCEL 0xOOO8 The message box contains an Enter button and

a Cancel button.

T72 0S/2 2.1 Workplace shell progranming

By looking at Table 4.8 you can see that you can get at most three buttons in a
message box; also you may not alter or modify this value because of the closed and
predefined nature of this kind of window.

Table 4.9 Hsts the MB_ flags that allow the assignment of the status of default button
to any of the three WC_B UTT0 N class windows in a message box.

The presence of one or more icons in a message box serves the purpose of empha-
sising the graphical impact of the message you want to give the user. These icons
(Table4.10)aresimplybitmapsthatcanalsobeusedbyanyotherapplicationtoplay
the role of program icon (naturally, this is not an ideal solution, since it is possible to
draw new colored icons with the tools available in the OS/2 Development Toolkit).

The flags listed in Table 4.11 deserve some special attention. A message box is a
window that is created and managed by PM according to some very particular and
specific criteria, different from what we have seen so far (for example, there is no
window class registration). The class of a message box is always WC_FRAME, just as
with any other dialog window.

Despite the differences, a quessage box is always a window, and thus is subject to
thesameoperatingandfunctionalrulesofthePMscreengroup.Whenamessagebox
appears on the screen, it will receive the input focus: all mouse and keyboard input
activities win refer to the message box exclusively. This means that any attempt to
selectamenuinthemessagebox'sparentwindowwillberejectedbythesystern,and
signaled with a beep. This is due to the presence of the MB_APPLMODAL flag (Fig-
ure 4.16). The user can always transfer focus to another window, different from the
message box's owner window without a problem because generally it will belong to
a different process.

Ontheotherhand,whenyouwishtototallycapturetheinputfocusatthepMscreen
group level, then you need to set the MB_SYSTEMMODAL flag. It is absolutely essential
tomakethemessageboxdisappearfromthescreenbeforetryingtoperformanyother
operation. This flag is used less frequently then the other one, mainly as a means for
notifying some critical system level events (Figure 4.17).

The return value of Wz.77Mcss¢geBox() is an uns i. gned 1 ong and is very important
when two or more buttons are present. For this type of message box it is absolutely
vital to exarfune the return value in order to allow the application to determine what
selection has been performed by the user (Table 4.12).

Table 4.9 The MB_ Flags Qualify Which of the Three Buttons Should Be the Message
Box's Default Button

Fl ag Value D escription

MB_DEFBUTTON1 0xOOOO The first button is the default button (at least that is the
automatic setup wiithout specifying the MB_DEF-
BUTTONl flag).

MB_DEFBUTTON2 0xO100 The second button is the default button.
MB DEFBUTTON3 0x0200 The third button is the default button.

windowing T73

Table 4.10 The MB_ Flags That Originate Icons in a Message Box

Flag Value D escription

MB_NOICON

MB_CUANOTIFICATION

MB_ICONQUESTION

MB ICONEXCLAMATION

MB_CUAWAENING

MB ICONASTERISK

MB_ICON-
MB CUACRITICAL

MB_QUERY

ne WA-G
MB INFORMATION

MB_CRITICAL

ne EREOR

OxOOOO

0xOOOO

0xOO10

0x0020

0x0020

0x0030

0x0040

0x0040

MB_ICONQUESTION

MB_CUAWAENING

MB_ICONASTERISK

MB CUACRITICAL

MB_CRITICAL

Excludes the presence of an
icon.
Excludes the presence of an
icon.
The message box contains a
questionmarkicon.
The message box contains an
exclamation mark icon.
The message box contains an
exclamation mark icon.
The message box contains an
asterisk icon.
Themessageboxcontainsahand
icon.
Themessageboxcontainsahand
icon.
The message box contains a
questionmarkicon.
The message box contains an
exclamation mark icon.
The message box contains an
asterisk icon.
Themessageboxcontainsahand
icon.
Themessageboxcontainsahand
icon.

Table 4.11 The MB_ Flags That Define the Nature of a Message Box with Reference to
the Passing of Focus in the Application or in the System

Fl ag Value D escription

MB_APPLMODAL 0xOOOO The message box is of the application modal type.
MB SYSTEMMODAL 0xlooo The message box is of the system modal type.
MB_HELP 0x2000 The message box contains a help button.
MB_MOVEABLE 0x4000 The message box can be moved on the screen and the

system menu will contain the three options: Move,
Close, and Switch to . . .

T74 0S/2 2.1 Wor:laplace shell programming

EEE i#
Minimized Shredder

Vvindowvlewer
fi

osre Progrons

RE#
Rcsoul ce w'odsfoop PRODINF0 BMP

ijvf,!zi.
Sys.em Clock

I,:grfut#`.`._`,?...`

EH Eill
HPLeserJe`lID Fgiv

TeEe s DEB

Figure 4.16 If a message box has the MB_APPLMODAL flag set, then it
is possible to transfer focus to another application window.

' ;',``... `'''.' `' i '`''' . I . : -IRE.

PI\

Figure 4.17 A MB_SYSTEMMODAL message box captures the input
focus and will not release it unless it is closed.

Windowing L75

Table 4.12 Return Values Produced by Wt.#Mess¢geBo#()

Flag Vahae Description

MBID OK
MBID_CANCEL
MBID ABORT
MBID_RETRY
MBID IGNORE
MBID YES
MBID NO
MBID HELP
MBD ENTER
MBID EREOR

1 Selection of the oK button
2 Selecfron of the cancel button, or keypress on the ESc key
3 Selection of the Abort button
4 Selection of the Retry button
5 Selection of the Ignore button
6 Selection of the Yes button
7 Selection of the No button
8 Selection of the Help button
9 Selection of the Enter button
Oxffff Error in creating themessage box

h the following code fragment you can see a sample of Wz.7tMess¢geBox():

®®,

i.f(!Wi.nLoadstri.ng(hab, NULLHANDLE,
ST_MESSAGE,

si.zeof(szMessage), szMessage))
return OL ;

I.f(!Wi.nLoadstri.ng(nab, NULLHANDLE,
ST_TITLE,
si.zeof(szTi.tle), szTi.tle))

return OL :

Wi.nMessageBox(HWND_DESKTOP, hwnd,

szMessage, szTitle,
OL'

MB_OK I MB_ICONASTERISK) ;

®®

h this example, only one button is present, and thus it is not necessary to catch and
decipher the return value. As usual, to specify more flags you can use C's bitwise OR
operator.

The Focus Chain
The flags in Table 4.11 introduce an interesting and important subject for developing
full-blown PM applications: /oc#s Jz¢7tdzz.7tg. This term indicates the set of operations
that the system undertakes when the user has selected a window different from the
current one; these operations give rise to the transfer of the input focus. The passing
of focus among windows can take place within one application or among different
applications. Whatever the case, PM allows just one window to be active at any given

T76 0S/2 2.1 Workplace shell progranming

moment. The activation is indicated by a colored titlebar (a green one for standard
configuration PM applications), and by controlling and handling all keyboard input
operation. All these operations are performed automatically by PM according to a
pre-set logic. The transfer of focus affects both the frame window and the client
window. The message flow that is issued is different for the two windows. In general,
youwillbeinterestedinknowingwhathappensatthewindowprocedurelevelofthe
class to which the client window belongs, although it is often necessary to resort to
the frame's subclassing to implement WPS comphiant applications. A client window
that acquires the input focus will receive all the fouowing messages:

WM_FOCUSCHANGE

WM REALIZEPALETTE

WM_ACTIVATE

WM SETSELECTI0N

WM-SETFOCUS

and, when it loses it, it will be interested in the arrival of the following messages:

WM_SETFOCUS

WM SETSELECTI0N

WM_ACTIVATE

It is quite natural to wonder whether the messages are first issued by PM to the
window that loses focus or to that one that receives it. Comlnon sense-and a good
dealofsystemintelligenceandespionage+indicatesthatmessageswillfirstreachthe
window to be deactivated, and only afterward will they get to the window to be
activated. This solution prevents two windows being active at the same time, which
would be a visually unpleasant and confusing solution.

It is quite interesting to examine in detail the contents of the messages involved in
the focus transfer process, because this knowledge can be very useful in writing one's
own code. The WM_S ETFOCUS message contains in mp 1 the handle of the window that
is about to acquire/lose the input focus. The message's status is denoted in the first
shortvaluepresentinmp2.WhenWM_SETF0CUSisreceivedbyawindowthatisabout
to become active, then f Focus is equal to TRUE and the handle indicated in mpl
identifies the window that is losing the focus:

WM SETFOCUS 0xOoof Descr£.pfi.o#

mpl HWND hwnd Window handle losing the focus
mp2 SHORTffocus TRUE
Return value Reserved

hstead, in the case that a WM_SETFOCUS message is received by a window that is
about to lose the input focus, then the first s h o rt in mp 2 takes on the value of FA LS E ,
and in mp 1 there WEL be the handie of the window that will receive the focus:

WM SETFOCUS 0xOoof Descri.pfi.o#

mpl HWND hwnd Window handle receiving the focus
mp2 SHORTfFocus FALSE
Return value Reserved

windowing T77

TheTetumvalueofthismessageisaUL0NGthattheoreticallyisreseIved,according
to what is stated in the documentation. Actually, the handle of the window that is
about to acquire or lose the focus is always returned.

TheWM_SETSELECTI0Nmessage,containsinthefirstSH0RTofmp1abooleanvalue
indicating the status of this selection: TRU E or FALSE . h practice, this message will
indicatethestatusofthewindowwithrespecttotheselectionprocess.Boththeretum
value and mp 2 contain reserved values:

WM_S ETSELECTI 0N 0xOO10 Desc#.pf!.offl

mp 1 USHORT Selection flag (TRUE /FALSE)
usselection

mp2 Reserve d
Return value Reserved

WM_SETSELECTI0N

fselect = (B00L) SHORTIFROMMP(mpl) ;

WM_ACTIVATEalwayscontainsinmp2thehandleoftheframewindowofthewindow
that is about to be activated/deactivated; in practice, it's its parent window. h the
firstshortofmp1youwillhavetheactivationstatus:TRUEorFALSE.Theretumvalue
is always reserved, but, as we saw, it will always contain the handle of the window
that is being acted upon.

WM_ACT I VATE 0xOood Descr£.pit.o#

ntp 1 USHORT Activation flag (TRUE /FALSE)
usActive

mp2 HWNDhwnd Frame windowhandle
Return. Value Reserved

The three messages WM_SETFOCUS, WM_SETSELECTI0N, and WM_ACTIVATE corre-
spond to these three actions:

• Transfer of the focus
• Selection of a window
• Activation

Often, a design objective is that of getting to know the handle of the window that
has relinquished focus, or that is about to receive it. The function Wz.7iQ#enywz.77dozo()
allowsyoutoexplorethelistofwindowsthatmightbeaffectedbysettingtheQW_NEXT,
OW_P REV, QW_N EXTT0 P, and OW_P REVT0 P flags. However, when focus is transferred to
a newly created window, Wz.7tQ#e7rywz.77dozt7() doesn't work at all.

From this point of view, intercepting the WM_ACTIVATE message is completely
useless,becausetheonlyhandieitcanretumisthatoftheapplication'sframewindow.

On the other hand, much more useful is the inspection of the contents of mpl and
mp2 in the WM_SETFOCUS message. It is important to stress that it is not advisable to

T78 0S/2 2.1 Workplace shed progranming

modify the contents of mp 1 and mp2 in this message, lest unstable system conditions
arise. The designer is limited to inspecting the handle while it is passing by without
changing its value.

Thereisyetanothermessageinvolvedinthetransferoffocus,thewM_FOCUSCHANGE
message. This message will not reach the apphication's window procedure, but is
addressedonlytowindowsliketheframewindow.Toaccessthislatterfunctionthere
is no other means than that of resorting to its s#bcz¢ssz.74g, a subject that will be dealt
with in Chapter 10.

Knowing which window is being activated is of critical importance under many
circumstances. When writing customized applications, you might want to prevent
inexperienced users from cruising through the whole system, and maybe causing
seriousdamagelikeerasingsomefilesorjustmovingsomewhereelseinthetree-struc-
tured disk directory.

Quite simply, in some dialog windows you WEL want to make sure that the focus
can be transferred (and this will be possible only by using the mouse) to some other
window, only after some critical data has been provided. The knowledge of the
windowtowhichfocushasbeenassignedbeforeanysystemoperationisundertaken
is certainly useful. Ih Chapter 10 this subject will be explained in more systematic
terms with some sample code.

For the time being, see how IPMD can be used on the SETFOCUS exercise to
discoverwhichvaluesarecontainedintheWM_SETF0CUSmessagewhenawindowis
activated or deactivated. Listing 4.9 contains the source code of OWNER.C with
changes in the window procedure that present a case statement for WM_S ET FOC US .

To verify the contents of mpl and mp2 inside WM_SETFOCUS it is adequate to set a
breakpoint on the first code statement after the WM_SETFOCUS case, and then run the
program from within IPMD by pressing the right mouse button or one of the accel-
eratorsthatruntheapplicationinTracemode.Figure4.18showswhathappenswhen
focus is passed from the application window to another one.

This is a first, very important consideration: The activation or deactivation of a
windowtakesplacefirstattheframewindowlevel,andnotattheclientwindowlevel.
Theentireprocessistheresultoftheinteractionbetweentheframeandallitscontrols.
Often, in fact, the user will press the left mouse button on a window's titlebar to
perform the selection.

This intehigence operation, extended to the WM_ACT I VAT E message, manifests how
the handle contained in mp2 (identified by Ox5b2056F8) is always the same as the
handle of the parent window, the frame window of the application (identified by
hwnd Frame). This means that the WM_ACTIVATE message always contains in mp2 the
handie of the parent window of the client window, and never, as the documentation
would have you believe, the handle of the window being activated or deactivated. h
any case, the information in mp2 is of tittle interest, because it is accessible to the
application in several other ways. WM_ACT I VAT E never informs the application about
the handle of the window that is being activated, but simply indicates to the client
window that its frame is about to be activated or deactivated. There is nothing wrong
with this, it's just useless!

windowing T79

Figure 4.18 Values of identifiers in OWNER.C as displayed by IPMD.

CatchingtheWM_ACTIVATEmessageisusefulfromanotherpointofview.Sincethe
contentsofmp2istheparentwindow'shandle,itactuallyreferstotheframewindow.
This information is not generally available in the window procedure of the class
registeredintheapplication,becausetheoperationisperformedin777¢z.74().Ifeveryou
were interested in knowing the handle of the frame window for some immediate or
(more likely) subsequent puapose, there is nothing else you can do other than inter-
ceptingWM_ACTIVATEandstoringthecontentsofmp2inastati.cclassidentifier.

Adding a System Icon
In Chapter 5 we will see how to assign a user-defined icon to a generic window.
Without dealing in this chapter with all problems related to resource files, you can
displayanicononthescreenwheneverawindowisndnimized.Youjusthavetoreach
out for any of the icons readily available in PM. To do this, send the frame window a
WM_S ET I C 0 N message that takes on the following syntax:

®,

Wi.nsendMsg(hwndFrame, WM_SETICON, MPFROMLONG(hptrlcon), OL) ;

®,

180 0S/2 2.1 Workplace shell progranming

h mp 1 you must always indicate the handle of a pointer or of an icon. h PM there
are several bitmaps that you can borrow for this purpose; to obtain a handle, though,
you will have to use the Wz.77Q#enysyspoz.7tfer() function:

#defi.ne INCL_WINP0INTERS
HP0INTER APIENTRY Wi.nQuerysyspoi.nter(HWND hwndDesktop,

SHORT l.ptr,
B00L fcopy) ;

Parameter
hwndDesktop
iptr
fcopy

Return Vahae
ITOINTER

Description
Handle of the desktop or just HWND_DESKTOP
One of the defines fisted in Table 4.13
indicates whether you want to copy the system image or access
it directly

Description
Handle of the icon retrieved from the system's icons

Thefirstparameterisalwaysahandletothedesktopwindow(HWND_DESKTOP),the
secondoneisanindexthatallowsyoutoselectapointeramongthoseavailableinPM
(Table 4.13).

Table 4.13 Predefined PM Icons and Pointers That Can Be Retrieved with the
Win Qttery sy sp oinder() Function

Flag Vahae Description

SPTR AREOW
SPTR TEXT

SPTR WAIT

SPTR SIZE

SPTR MOVE

SPTR SIZENWSE

Traditional left slanting arrow.
I-beam cursor; it is used by default in
WC_ENTRYFIELD and WC_MLE class
windows.
Hourglass displayed when an application
performs a lengthy operation.
Cursor that is displayed when you select
with the keyboard the Size option of the
system menu.
Cursor that is displayed when you select
with the keyboard the Move option from
the system menu.
Double-headedarrowpointingnorthwest
and southeast; cursor that is displayed
when you are resizing a window by posi-
tioning the cursor on the upper left or
lower right-hand comer.

(continued)

Table 4.13 (Co#f£.#cfed)

Flag Vahae Description

SPTR SIZENESW

SPTR SIZEVVE

SPTR SIZENS

SPTR APPICON 10
SPTR ICONINFORMATION 11

SPTR_ICONQUE STION 12
SPTR_ICONEREOR 13

SPTR ICONWAENING 14

SPTR CPTR 14
SPTR ILLEGAL 18

SPTR FILE

SPTR FOLDER
SPTR_hmuTFILE

SPTR PROGRAM

19

Double-headed arrow pointing northeast
and southwest; cursor that is displayed
when you are resizing a window by
positioning the cursor on the upper right
or lower left-hand com.er.
DoublelheadedalTowpointinghorizontally;
cursor that is displayed when resizing a
window positioning the cursor on one of its
two vertical borders. '
Double-headed arrow pointing vertically;
cursor that is displayed when resizing a
windowpositioningthecursorononeof its
two horizontal b orders.
Icon of a standard PM application.
Icon with the shape of an information
point.
Icon with the shape of a question mark.
Icon with the shape of an exclamation
point.
Icon with the shape of an exclamation
point inside a triangle.
Icon with the shape of a stop sign.
Icon with the shape of a forbidden sign; it
is displayed in the File Manager
application when you try to drag a file
with the mouse to some other window
that is not a directory.
Iconwiththeshapeofafile;usedbytheFfle
Manager appHcation to represent the
contents of a directory.
Icon with the shape of a folder.
Icon representing multiple files; it is
displayed by the File Manager when
performing multiple file copies with the
mouse.
Icon with the shape of a program.

181

182 0S/2 2.1 Workplace shell progranming

h versions of OS/2 prior to 2.x other defines were used in place of those listed
above:

SPTR' IIANDICON SPTR ICONERROR
SP TR=Qun SIC ON SPTR=IC ONQun STION
SPTR BANGICON SPTR ICONl/VARNING
SPTR NOTEICON SPTR ICONINFORMATION

The value returned by Wz.7tQ#e7tysyspol.7tfer() is appropriately manipulated by the
M P F ROM L0 N G macro so that it can play the role of mp 1 in a WM_S ET I C 0 N message:

®,,

Wi.nsendMsg(hwndFrame, WM_SETICON,
` (MPARAM)Wi.nQuerysyspoi.nter(HWND_DESKTOP,

SPTR_APPICON, FALSE),

OL);

®®

Thisportionofthecodegenerallycomesbeforethemessageloop;theminimization
of the window will involve the drawing of a white icon with a light border along its
perimeter.

Input REools and
Resources
In PM there are three input sources: the keyboard, the mouse, and the timer. As
opposed to what happens in character-based user interface systems, the keyboard-
the traditional means of input-loses a great deal of its importance in the PM devel-
opmentmodel,tothebenefitofthemouse.Whenyouneedtoprovideanapplication
with your name or other information, the keyboard is matchless, maybe with the
exceptionofpen-basedinput(OS/22.1pe7iexfe7tsz.o7tswillnotbetreatedinthisbook).
Often, keyboard input is performed by pressing special keys like hs, Del, or the
functionkeys.Althoughthiskindofinputcanbeperformedwiththekeyboard,itcan
also be performed automatically by PM thanks to accelerators, menus (the main
communicationtoolbetweentheuserandtheapplication),andpredefinedclasseslike
WC_ENTRY F I E LD and WC_M LE.

The three kemel subsystems of OS/2-video, keyboard, and mouse-are com-
pletelydisabledbypM,whichresortstoitsownwayofhandlingandgettingtheuser's
input actions (Figure 5.1).

Cue of the principal problems inherent with the use of input tools is that of the
uniquenessoftheinputsourceforthemanyapplicationsthatcanberurfugsimultane-
ously.ThisproblemishandiedbypM.Thewholeinformationflowproducedbytheuser
is converted into one or more specific messages which are passed to the window
procedureofthedasstowhichtheactivewindowbelongs.AccordingtopM'srules,only
one window at a tilne can have the z.77p#f /oc#s, that is the control over all input tools.
Actually, this consideration is true only for input originated by the keyboard. Pressing
the A key will generate the WM_CHAR message in the application's message queue, and
provideatrulyuniqueconnectionbetweenthewindowandthekeyboard(Figure5.2).

The mouse, on the other hand, is exempt from these linitatious. It acts almost inde-
pendently,andcanevensendmessagestowindowsthatdonotpossesstheinputfocus.

The Keyboard
The keyboard plays a fundamental role in the interaction between the user and the
application. Often, though, the designer may ignore the chore of handling the key-

183

184 0S/2 2.1 Workplace shell progranming

Figure 5.1 The structure of input subsystems in the OS/2 kernel and in OS/2 PM.

board. This is possible because PM can handle directly a great deal of actions per-
formed with the keyboard, without the programmer having to write a single line of
code. Furthermore, the presence of the WC_ENTRY FI E LD and WC_M LE window classes
will most often render useless processing input like a sequence of WM_C HA R messages,
because everything is already being handled at the window procedure level of the
appropriate classes.

Pressing a key will cause PM to insert a WM_CHAR message in the queue of the
application that is active at that very moment (that has the input focus). Both PM's
automatic processing, as well as what is coded in the window procedures of the
WC_M L E and WC_ENTRY F I E LD classes is fundamentally based on reading the contents
of a WM_CHAR message that has the following structure:

WM CHAR

mpl

mp2

Return Value

Ox007a

USHORT fs
Ucrm cRepeat
UCHAR scancode
USHORT chr
USHORT vkek
BOOL fresult

Description
Keyboard control code
Repetition count
Hardware scan code
Character code
Virtual key code
Flag for the message's processing

Input Tools and Resources 185

Figure 5.2 Keyboard input is always addressed to the active window in the
PM screen group.

The specific information provided WM_C HA R completely fits in the 64 bits available
in the pair mp 1 and mp2. The flag f s identifies the control code of the keyboard. The
value that this parameter can take is described in Table 5.1.

h general, the interpretation of what is keyed in at the keyboard happens by
catchingtheWM_CHARmessage.PM'sAPIprovidesyouwiththeCHARMSGmacrothat
lets you easily extract the values contained in WM_CHAR.

Table 5.1 Keyboard Control Codes as Defined by the fsFlags Identifier

Control code Value Description

KC_CHAR

KC_VATUALKEY

KC SCANCODE

KC_SHIFT
KC_CTRL
KC_ALT
KC REYUP

OxOool The data contained in chr refers to one single
character; otherwise the whole mp2 is null.

Ox0002 The data contained in vKey is valid; otherwise
vKey is zero.

Ox0004 The data contained in scancode is valid; otherwise
the value of scancode is zero.

OxOOO8 Flags the pressing of the SHIFT key.
OxOO10 Flags the pressing of the CTRL key.
Ox0020 Flags the pressing of the ALT key.
Ox0040 The intercepted event referred to the releasing of a

key. There is nothing similar for the pressing of a
key, but you can check for the absence of the
KC_KEYUP value.

(continued)

186 0S/2 2.1 Workplace shell progranming

Table 5.1 (Co#fi.##ed)

Control co de Value D escription

KC PREVDOWN 0xOO80 The keywas pressed evenbefore; otherwise itwas
not.

KC_LONEKEY 0xO100 Flags whether only one key was pressed and
releasedandthatinthemeantimetheuserpressed
no other key.

KC_DEADKEY 0x0200 The character code refers to a key that cannot be
displayed on the screen.

KC_COMPOSITE 0x0400 The returned character is givenby the combination
of the current key with the previous dead key.

KC_INVALIDCOMP 0xO800 The current character is not valid in combination
with the previous dead key.

#defi.ne CHARMSG(pmsg) ((PCHRMSG)((PBYTE)pmsg + s.i.zeof(MPARAM)))

The macro extracts information from mpl and mp2 on the basis of the CHARMSG
structure : .

typedef struct _CHARMSG
{ // charmsg

USHORT fs ; // mpl

UCHAR cRepeat ;

UCHAR scancode ;

USHORT chr : // mp2

USHORT vkey ;

} CHRMSG ;

typedef CHRMSG *PCHRMSG ;

The following code fragment shows typical use of the CHARMSG macro inside a
window procedure to check for the KC_C HA R flag that provides the ASCH code of the
character being keyed in at the keyboard.

®

swi.tch(msg)

I
case WM_CHAR:

I
i.f(CHARMSG(&msg) - fs & KC_CHAR)

{
swi.tch(CHARMSG(&msg) - chr)

i

Input Tools and Resources 187

®,

I

)

break :

®,

)
®®,

4

The application will check the KC_KEY U P code to decide if a key has been pressed
or released, then acts according to the value of the key that was pressed.

Keyboardusage

EI
Let's examine a simple sample program, KBD (Listing 5.1 and Figure 5.3), displaying
initsclientwindowseveralpiecesofinformationrelatingtothekeythatwaspressed.
All output activity is concentrated in the WM_PAINT message's processing, so that

Figure 5.3 The application intercepts all characters coming from the keyboard
and displays them in its own client window.

188 0S/2 2.1 Wor:laplace shell progranming

output win be performed optimally even if the window gets resized or covered by
other active application windows in the screen group.

WewillseebetterwaysofusingtheWM_CHARmessageinChapter10,afterweleam
"oTe ahooul subclassing.

The Mouse
AnymousemovementonthedesktophasacorrespondingWM_M0USEM0VEmessage.
Different from WM_C HA R, the WM_M0 US EM0 V E message will always and only reach the
window procedure of the window where the Jzof spot was at that very moment. This
greater freedom of the mouse with respect to the window having the input focus,
explains why it can service several windows according to its position on the screen.
Table 5.2 presents the complete list of messages generated by using the mouse.

Each of the messages generated by the mouse will contain in mp2 the cursor's
position, which will always be expressed in coordinates relative to the underlying
window.AsyoucanseefromlookingatTable5.2,PMiscapableofhandlingpointing
devices that have as many as three different buttons. Button number one always

Table 5.2 List of Messages Generated by the Mouse

Message Value Description

WM MOUSEMOVE Ox0070
i/VM BUTTONIDol/\IN- Ox0071

i/VM BUTITONIUP 0x0072
WM_BUTITONIDBLCLK 0x0073

i/VM BUTTON2Dol/VN Ox0074

l^7M BUITON2UP 0x0075
WM_BUTTON2DBLCLK 0x0076

Generated any time the mouse is moved.
Generated when the left mouse button is
pressed.
Generatedwhentheleftmousebuttonisreleased.
Generated when the left mouse button is double-
cficked: The time interval for detecting a double-
click can be set through the control panel.
G.enerated when the right mouse button ,is
pressed.
Generatedwhentherightmousebuttonisreleased.
Generatedwhentherightmousebuttonisdouble-
cficked: The time interval for detecting a double-
click can be set through the control panel.

WM BUTTON3DOWN 0x0077 Generated when the center mouse button is
pressed.

I^7h4 BUTTON3UP 0x0078 Generated when the center mouse button is
released.

W.M BUTTON3DBLCLK 0x0079 Generated when the center mouse button is
double-clicked: The time interval for detecting a
double-cHckcanbesetthroughthecontrolpanel.

El

Input Tools and Resources 189

referstotheleftmostbutton;buttonnumbertwototherightmostbutton;andbutton
nun.ber three to the center button, if one is present.

EventheslightestmousemovementwillcausethesystemtosendaWM_M0USEM0VE
message to the window under the mouse cursor. To test this, you can create a simple
program that intercepts in its window procedure the WM_MOUSEMOVE message, re-
trieves the mouse's position from mp2, and displays the coordinate's values some-
where on the screen. To simplify the whole thing, 1et's just use the application's
titlebar (described in Chapter 2) as the output area.

Figure 5.4 shows the mouse pointer inside the application's client window, while
Figure 5.5 shows the independent nature of the input generated by the mouse.

Listing 5.2 refers to the application shown in Figures 5.4 and 5.5. Ih Listing 5.2 you
will also see the messages WM_BUTTONIDB LC LK and WM_BUTTON2DB LC LK. h the code
dealingwiththedouble-clickofthemouse'sleftbuttonthefunctionWz.7tse£C¢p£#re()
iscalled.Thisfunction``captures"themouse.Whatthismeansisthattherelationship
between the mouse and the window indicated by the function's second parameter
becomes exclusive.

#defi.ne INCL_WININPUT
B00L APIENTRY Wi.nsetcapture(HWND hwndDesktop, HWND hwnd) ;

Figure 5.4 The mouse's position is always expressed in coordinates relative
to the bottom left comer of the client window.

T90 0S/2 2.1 Workplace shell progranming

Figure 5.5 The application that displays the mouse's coordinates is disabled
(the focus is on OS/2 System), although the WM_MOUSEMOVE always gets
to its destination.

P arameter D escription
hwndDesktop The desktop handie, IIWND_DESKTOP
hwnd Handle of the window that needs to capture the mouse input or

NULLHANDLE if you need to release the mouse capture
Retur`n vahae D e s cription
BOOL Success or failure of the operation

The first handle will always indicate the desktop, while the second one refers to
the window that will become the exclusive owner of any kind of mouse event-
movements and pressing of mouse buttons. The second handle can be replaced by
the special value HW N D_TH READCAPTU RE to signal that the capture of the mouse does
not refer to a single window, but to all windows present in the thread that has called
the function. In Figure 5.6 you can see how the titlebar now displays even negative
values, which indicate negative coordinates with respect to the origin in the client
window, which is always the lower left-hand side corner.

The coordinate system of a PM window will always have the origin in the lower
left-handcomer.hcreasingvaluesontheXaxisgofromlefttoright,andfromdown

Input Tools and Resources T9L

Figure 5.6 The titlebar displays negative values when the mouse is outside of
the client window and the mouse has been "captured."

to up on the Y axis. The presence of the mouse to the left and below the lower left-
hand side comer of the window produced by Listing 5.2 is the condition necessary
in order to see negative coordinate values.

There is no specific function for breaking the exclusive relationship between aL cap-
tured mouse and a window. Call the same Wz.7tse£Cap£#re() function, but specify N U L L -
HANDLE as its second parameter. h Listing 5.2 this happens in the code handling
double-clicks of the mouse's right button. To know which window has captured the
mouse,youneedtocallthew.7tQ#e7t/C¢p£#re()function,whichhasthefollowingsyntaLx:

#defi.ne INCL_WININPUT
HWND APIENTRY Wi.nQuerycapture(HWND hwndDesktop) ;

P ar ameter D e s cription
hwndDesktop Handle of the desktop, HWND_DESKTOP
Retwm vahae D escription
HWND Handle of the window that has captured the mouse or NULL-

IIANDLE if the mouse is free

Listing 5.2 also includes the interception of the WM_BUTTONIDOWN and WM_BUT-
T0N2DOWNmessage;thatis,whentheleftandrightbuttonsarepressed.Whenoneof

T92. OS/2 2.1 Workplace shell progranming

these events take place, the application will see if the hot spot is over some other
window. To determine this, some intermediate operations are needed to convert the
coordinates and to get the window's handle. The position of the mouse can always
beconvertedbetweenthecoordinatesoftwogenericwindowswiththeWz.77M¢pWz.7t-
dowpoints() hacfion..

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nMapwi.ndowpoi.nts(HWND hwndFrom,

HWND hwndTo,

PP0INTL prgptl ,
LONG cwpt) ;

Parameter
hwndFrom

hwndTo
pr8ptl
Cwpt

Return Vahae
BOOL

Description
Handieofthewindowtowhichthepointsinthepptlparameter
refer
Handle of the target window for the conversion
Array of POINTL structures containing points to be converted
Number of points contained in the prgptl array
Description
Success or failure of the operation

ThefirsthandleidentifiesthewindowreferredtobythepointsintheP0INTLarray,
that is, the third parameter. The second handle identifies the reference window. By
specifying NU LLHANLDLE or HWND_DESKTOP in the first case, the points used by the

applicationwillbeinscreencoordinates.IfthesecondparameterissettoNULLHANDLE
or HWND_DESKTOP, the conversion is from the window to the desktop. A third
possibilityisbetweentwowindowsinthesameapplicationorindifferentprograms.
The third parameter is an array of points expressed like a series of PO I NT L or RECT L
structures. The last parameter indicates the number of points in the array (if you are
using an array of RECT L structures the number of points has to be doubled).

In Listing 5.2 the Wz.77MczpWz.7cdozt7Poz.7tfs() function is used to convert the mouse
position into screen coordinates. The result will always be positive values, whether
or not the initial values were positive. Once you know the mouse's position in the
screen, you need to answer some more questions. First, you have to check which is
the window underlying the coordinates (x, y) returned by Wz.77M¢pWz.7tdozt7Poz.7tts().
If it is the application's own window or if it is the desktop window, then processing
will pass on the WM_BUTTONXDOWN message to the default window procedure for its
final processing. If the mouse is over pixels taken by some other window, then the
application will send an activation message to that window, so that the input focus
will be transferred to it. To check for the presence of a window, you will need to call
WinwindowFrompoint().

#defi.ne INCL_WINWINDOWMGR

HWND APIENTRY Wi.nwi.ndowFrompoi.nt(HWND hwnd,

PP0INTL pptl '
B00L fchi.ldren) ;

Parameter
hwnd
pptl

fchildren

Retwn Value
HVVND

Input Tools and Resources T93

Description
Handle of the window to inspect
Coordinates of the point, expressed relative to the window
indicated by the first parameter
Checks for first generation child windows (FALSE) or sub-
sequent generations (TRUE)

Description
Handle of the window underlying the mouse's feo£-spot or
NULLHANDLE in case of error

Theretumedvalueisthehandleofthewindowthatoccupiesthepositionindicated
bythepointgiventothefunction,orNULLHANDLEincaseoferrors.Thewholescreen
of OS/2 2.1 systems is occupied by WPS, a window belonging to the class WC_CON -
TAINER.Therefore,iftheparameterstoW1.7tw£.7?dozoFro7%Po£.7tfoarecorrect,youwill
always obtain a window handle.

ThehandlingofthewM_BUTTONXDOWNmessageisabandonedifthereturnedhandle
is nun (error in the call), or if it corresponds to the application's client or frame
window or to the desktop window. h any other case, you will have to release the
mouse capture and convert the mouse's hot-spot position into coordinates relative
to the window that has been detected. This operation can be performed with W1.7t-
M¢pW{.7idozupo€.ffifso, which win let you pass the WM_BUTTONXDOWN message to the
windowthathasbeenselectedbythemouse,byspecifyingthecorrectvaluesforthe
mouse's position. Thus, you are actually simulating the operations of selecting and
activatingawindowwhenthemouseisnotcaptured,andleavingtothesystemthe
taskofexecutingthevariousphasesofreleasingandacquiringtheinputfocus.

The procedure just described is the working principle behind applications like
PMSPY.EXE that allow the user to select directly the window to be inspected with
thepointingdevice.ByexaminingthemousemessageslistedinTable5.2,itise?sy
toconcludethattheonlyactionsthatareinterceptablearethepressingandreleasmg
of the mouse buttons and the moving of the pointing device on the screen. The
interaction between the mouse and the titlebar, the sizing border, and the menus is
handled automatically by PM; this is always done, however, on the basis of the
messageslistedinTable5.2,withnoworkwhatsoeverfortheprogrammer.Thebest
waytogetthedatadescribingtheinteractionofthemousewiththesewindowsisto
exploit their s#Z7cZ¢ssl.77g (see Chapter 10).

Teaching an Old Mouse New Mouse Tricks
hOS/22.1themouseiscapableofgeneratingmanymoremessagesthaninthepast.
ThesemessagesaretreatedseparatelyfromthoseinTable5.3,tostressthedifferences
between the standard behavior and that induced by WPS.

hOS/22.1themousebecomestheprincipaltoolforinteractingwiththesystem.h
addition,thetraditionalactious,1ikeselection(single-click)andselection/confirmation

Table 5.3 Mouse Messages Regarding Selections and Drag & Drop Operations

Message Vahae Description

WM_BUTTONIMOTIONSTART 0x0411 Issued after pressing the right mouse button
and moving the mouse from its starting
position.

WM_BUTTONIMOTIONEND 0x0412 Issued after releasing the right mouse button
for completing a previous WM_BUTTON1-
MOTIONSTART.

WM_BUTTONICLICK

WM_BUTTON2MOTIONSTART

WM_BUTTON2MOTIONEND

WM_BUTTON2CLICK

WM_BUTTON3MOHONSTART

WM_BUTTON3MOTIONEND

WM_BUTTON3CLICK

"_BEGneRAG

"_ENDDRAG
WM_SINGLESELECT
WM_OPEN
WM_CONTEXTMENU
WM_CONTEXTHELP
"_TEXTEDIT

WM_BEGINSELECT

"_ENDSELECT

Ox0413 Issued after a press/release action on the
right mouse button with no intervening
movement.

Ox0414 Issued after pressing the left mouse button
and moving the mouse from its starting
position.

Ox0415 Issued after releasing the left mouse button
for completing a previous WM_BUTTON2-
MOTIONSTART.

Ox0416 Issued after a press/release action on the left
mouse button with no intervening move-
ment.

Ox0417 Issued after pressing the center mousebutton
and moving the mouse from its starting
position.

Ox0418 Issued after releasing the center mouse
button for completing a previous WM_BUT-
TON3MOTIONSTART.

Ox0419 Issued after a press/release action on the
center mouse button with no intervening
movement.

Ox0420 Issued after a WM_BUTTON"OTION-
START.

Ox0421 Issued after a wM_BUITON"OHOREND.
Ox0422 Posted when the user selects an object.
Ox0423 Posted when an object is opened in wps.
Ox0424 Issued after a wM_BUTTONxCLICK.
Ox0425
0x0426 Posted when an object is renamed by

pressing the left button and the ALT key.
Ox0427 Issued after a WM_BUTTONIMOTION-

START when the user keeps the right mouse
button depressed for performing a selection.

Ox0428 Issued after a wM_BUTTONIMOTIONEND
to complete a selection operation.

194

Input Tools and Resources u95

(double-click), the mouse also allows you to click, select some object in a container,
andthenperformadrag &drop operation. k

Mouse Cucking
The normal interaction with a mouse button includes receiving a message when a
buttonispressedandamessagewhenitisreleased.Often,theprogrammerwillcatch
onlyoneofthesetwoeventsforimplementinghisorherownlogicinthecode.The
presenceoftheWM_BUTT0NxCLICKmessageallowsforamorecomplextreatment.in
fact, now it is very easy to distinquish between a simple button pressure (cZ€.ck€.7ig)
andthepressingorreleasingofabutton.Whenthedesignerneedstocodeamouse
interaction, he can choose to use WM_BUTTONxC LI CK, and then use WM_BUTTONXDOWN
and WM_BUTTONxU P in special cases.

WM_BUTTONICLICK 0x0413

mp 1 POINTS ptspointerpos
mp2 ES:gRE :::attgesstres

Rettm value BOOL fResult

Description
Mouse's position in the window
Mouse's position
Keyboard control code
Message was processed (TRUE)
or not (FALSE)

TheP0INTSstructureismadeupofapairofshortvaluescontainingthemouse's
coordinates expressed with respect to the window's lower left-hand comer. The
WM_CONTEXTM ENU message completes the clicking sequence.

WM_CONTEXTMENU 0x0424 Descrt.pfi.o7i

:3: ::FOT:TP:SsPpoo=tteerrpos ;Thiu::,:;:i:.::u::ef:;beo:g:oEw#usE;
Return value BOOL fliesult Message was processed (TRUE) or

not (FALSE)

Thismessageisalwaysposted,andisusedtodisplaythezoz.7tdozuco71€exf77te7t#,that
is, the menu associated with an object, a typical feature of WPS.

Selection of an Object
ThereareseveralwaysofselectingoneormoreobjectsinacontainerorinWPS.The
simplestandmostintuitiveisthatofpositioningthemousepointeronaniconand
pressing the left mouse button. This action will cause the appearance in the appro-
priate window procedure of the following sequence of messages:

WM_BUTTONIDOWN

®

WM_BUTTONIUP

WM_BUTTONICLICK

WM_SINGLESELECT

T96 0S/2 2.1 Workplace shell progranming

The physical action performed on the mouse will first generate a WM_BUT-
T0NICLICK,immediatelyfollowedbyaWM_SINGLESELECT.

WM_SINGLESELECT 0x0422 Descr€.pfI.o#

mpl POINTS ptspointerpos Mouse's position in the window
mp2 USHORTuspointer hdicates input from the mouse

(TRUE) or from the keyboard
(FALSE)

Return value BOOL fResult Message was processed (TRUE) or
not (FALSE)

Forinstance,theapplicationwillreceivetheWM_SINGLESELECTmessageforeach
object selected in a container.

Selecting More Obj ects
The message flow received by an application because of the simultaneous selection
throughthemouseofseveralobjectsisnotmuchmorecomplexthanwhatwehave
just seen. The fundamental difference with respect to the previous two cases is that
you need to perform two actions with the mouse:

• Press the left button
• Move the mouse pointer

ThefirstactionwillgeneratetheWM_BUTT0NIDOWNmessage.hithiscase,however,
the user will keep the mouse button down while moving the mouse on the screen.
Immediately after the first movement of the mouse, the whole logic of clicking is
rendered .moot, because it is based on the hot spot being stationary over the same
position both for the pressing and the releasing of the mouse button. Therefore, the
code will receive the WM_BUTTONIMOTI0NSTART message, which signals the start of
mouse movement.

WM_BUTTONIMOTI0NSTART 0x0411 Descr£.pf{.o#

mpl POINTS ptspointerpos hdicates mouse's position in
the window

mp2 USHORT uspointer hdicates input from the mouse
(TRUE) or from the keyboard
(FALSE)

Return value BOOL fliesult Message was processed (TRUE)
or not (FALSE)

This message is then immediately followed by WM_BEGI NSELECT. On the screen
you will see what is shown in Figure 5.7.

When the right mouse button is released, the messages WM_BUTTONIUP, WM_BUT-
T0NIM0TI0NEND,andWM_ENDSELECTI0Nwillshowupintheapphcation'squeue.To
summarize, the sequence is as follows:

Ixput Tools and Resources T97

:-:::::i:-:-:::-:::.-

fi
osre Progrons

%,,;'i%
System flol

RE
Besoutceworkshop

Effi
HPLaserJetllD Fal{rf"

#
PBODINF0 BMP

E
EEEnEERE Common Pr

EEEE
RE RE EEEERE

Figure 5.7 The start of a selection operation with the mouse is indicated by
the display of an extensible selection rectangle (marquee).

WM_BUTTONIDOWN

WM_BUTTONIMOTI0NSTART

WM_BEGINSELECTI0N

®,®

WM_BUTTONIUP

WM_BUTTONIMOTI0NEND

WM_ENDSELECTI0N

ThepairofmessageswM_BUTTONIMOTI0NSTARTandwM_BUTTONIMOTI0NENDseIve
thefundamentalpurposeofallowingtheprogrammertoperformon-screenchanges
totheobjectorthewindowwithwhichthemouseisinteracting.Theactualselection
logiciscontainedinthecodedealingwithinterceptingthemessagesWM_BEGINSE-
LECTI0N and WM_ENDSELECTI0N.

Drag & Drop
Chapter 12 covers this subject, so you will have fun-if you get that far! What is
interestingherewithdng8dropistheflowofmousemessagesthatcharacterizesit.
Draggingisanoperationperformedbydefaultwiththerightmousebutton(number
2), which is different from the default selection operation, performed with the left

T98 0S/2 2.1 Workplace shell programming

button (number 1). This is the only basic difference that there is with respect to
selection; in fact, the rest is just the same kind of homework, as you can see in the
following list of messages:

WM_BUTTON2DOWN

WM_BUTTON2MOTI0NSTART

WM_BEGINDRAG

®®®

WM_BUTTON2UP

WM_BUTTON2MOTI0NEND

WM_ENDDRAG

ThepairofmessagesWM_BEGINDRAGandWM_ENDDRAGdelhit,fromalogicalpointof
view,adraggingoperationonthescreen.Thesyntax`ofWM_BEGINSELECTI0N,WM_END-
SELECTI0N,WM_BEGINDRAG,andwM_ENDDRAGisthesameasthatofwM_SINGLESELECT.

Timers
PM provides the software designer with up to 40 simultaneous timers. A timer is a
kindofalarmclockthatiscapableofsendingasignalatapresettimeinterval.Itcan
beconsideredaninputtool,because,ifcorrectlyused,itallowsyoutoexecutecode
fragments that are repeated with a preset frequency.

in OS/2 2.1 multitasking is preexp£2.z7e, in PM it is not. The previous statement is
true.IfaPMapplicationtakesholdoftheCPUforalongenoughtime,theuserwiu
no longer be able to interact with other objects in the WPS. This does not mean that
the whole system is locked out. The other threads in PM win continue to operate
correctly and be serviced by the processor according to the traditional preemption
mechanism. Only the user/PM interaction is adversely affected. This problem is
generallysolvedbywritingmultithreadedapplications,butwinprobablyfindatrue
solutioninforthcomingversionsofthesystem,whichwillimplementanewkindof
input logic.

DealingwiththewM_TIMERmessagemaymakeyouwanttobypassthisunpleasant
featureofPM.However,theWM_TIMERmessagehasitsownpeculiarcharms,andit
turns out not to be smart enough to try to circumvent it.

To activate a timer, you have to indicate a trigger frequency. However, there is no
guarantee that you will receive a message in the preset amount of tine, for the very
reasonthattherecanbesomelockingconditioninPM.WhenanappHcationhappeusto
beinsuchasituation,assoonasitgetstheprocessor'sattention,itwi]lreceivejustone
WM_TIMERmessage,theonethatistriggeredatthatmoment.A]lprecedingtimerevents
thatcouldnotbeperceivedarelost.TheappHcationcancomputehowmuchtimehas
passedsinceitreceivedanearlierWM_TIMERmessagebycheckingthesystemclock.The
timedifferencebetweentwosuccessiveWM_TIMERmessagesdividedbytheifrequency
intervalwillgivethenumberofWM_TIMERmessagesthathavenotbeendetected.This
isthelogicalframeworkthatgovernsprogramsthatdealwithtime.

Input Tools and Resources T99

WM_T I M ER 0x0 024 Descri.pf£.or{

mp 1 USHORT idTimer Timer's ID
mp2 Reserve d
Return value Reserved

TheonlyusefulinformationthatcanbeextractedfromWM_TIMERmessageisthe
IDoftheoriginatingtimer,whichcanhelptoidentifythesourceofthisalarm.Many
commercialeditorsuseatimertodisplaythemousecursorintermittently,evenwhile
thekeyboardisbeingused.BothE.EXEandEPM.EXEimplementsuchasolution.

ToshowtheoperationofPM'stimers,1et'swriteanapplicationthatwillflashthe
framecontrolsofawindowwhenyoupresstheleftmousebutton.Pressingtheright
mouse button will stop the flashing. The function is W£.%FZ¢s7£Wz.7cdoavo:

#defi.ne INCL_WINFRAMEMGR
B00L APIENTRY Wi.nFlashwi.ndow(HWND hwndFrame, B00L fFlash) ;

P arameter D escription
hwndFrame Handle of the frame window
fFlash Activation/ deactivation of the flashing
Retwm value Description
BOOL Success or failure of the operation

If the second parameter is set to TRU E, it will activate the flashing of the frame
window. Flashing will go on until the function is called again with that parameter
set to FALSE.

Theuseofatimerallowsyoutovarythefrequencyanddurationofthewindow's
flashing. When the left mouse button is pressed (a WM_BUTTONIDOWN message is
received) a timer is immediately activated with W€.7tsf¢7'fTz.77te7'() :

#defi.ne INCL_WINTIMER
ULONG APIENTRY Wi.nstartTi.mer(HAB hab,

HWND hwnd,

ULONG i.dTi.mer,

ULONG dtTi.meout) ;

Parameter
hab
hwnd
idTimer
dtTimeout
Retwn Vahae
ULONG

Description
chchor block handle
Handle of the window associated with the timer
ID of the timer being started
Timer frequency expressed in ndlliseconds
Description
Timer ID when the second parameter is set to
NILHANILE

The anchor block handle is provided by the Wz.7cQ#e7tyA7tcJtorBZock() function. The
second parameter identifies the window that is the owner of the timer; it is the
window procedure of this window that will receive the WM_TIMER messages. The
third parameter assigns an ID to the timer when it is created, so that later it will be

2J00 0S/2 2.1 Workplace shell progranming

possible to identify the source of the WM_T I M E R message. The last parameter defines
in mflliseconds the time interval between one WM_T I M E R message and the next.

To stop a timer, you have to call Wz.77SfopTz.777er() specifying in the same order the
first three parameters of W€.77Sf¢rfTz.7#er():

#defi.ne INCL_WINTIMER
B00L APIENTRY Wi.nstopTi.mer(HAB hab,

HWND hwnd,

ULONG i.dTi.mer) ;

Parameter
hab
hwnd
idTimer
Retwrm Vahae
BOOL

Description
Anchor block handle
Handle of the window associated with the timer
ID of the timer being stopped
Description
Success or failure of the operation

EE

Once the time interval, indicated when the timer was created, has passed, the
application will receive a WM_T I M E R message. It is good practice to test which timer
generated a message by checking the timer's ID; this value is contained in mp 1.

When the first WM_TIMER message is received by the window procedure, you can
activate the window's flashing by calling Wz.77FJ¢sfewz.7tdezt7(). However, this is not the
onlyoperationthatyouneedtoperform.Forthesampletoworkproperly,youalsoneed
toactivateasecondtimerthatwinobviouslyhaveadifferentIDandatime-outinteIval
thatisexactlyhalfthatofthefirsttimer.hthisway,theapplicationwillreceiveasecond
WM_TIMER message, but this timer will have been issued by the second liner. By
interceptingtheWM_TIMERmessage,youcanthendeactivatethewindow'sflashingby
once again calling Wz.77FZ¢sfewz.77dozo(), but this time with the boolean parameter set to
FALSE,anddeactivatingthesecondtimerwithWz.77SfapTz.777er().

ThenextWM_TIMERreceivedbytheprogramwinnaturallyhavebeenissuedbythe
only timer that is still active in the system-the fist onerand therefore the whole
process is repeated by activating the window's flashing. h this way you can vary the
window's flashing frequency, exempting it from the default behavior provided by
Wz.7tFJ¢sfewz.77dow().Listing5.3showstheentiresourcecodeofthesampletimerprogram.

The Resource File
The flow chart shown in Figure 2.4 (Chapter 2) emphasized one of the special
characteristics of the development model for PM: the resource file. It is an ASCII text
file that can be edited with a common text editor or word processor. It contains
reference to text and/or binary resources. The syntax of an .RC file is quite similar
to a C source file. Comments can be inserted with the classic character combinations
/* and */ or even with aL double slash //. Most of the preprocessor directives are
valid even for the RC.EXE resource compiler.

Input Tools and Resources 2J01

The description of resources is made through special directives that build up the
syntaxoftlrisfile.A]1informationisthencompiledwitharesourcecompiler,aspecial
toolthatisprovidedwiththedevelopmentTooHdtthatproducesafilewiththe.RES
extension. After being compiled, the resources need to be inserted in an appropriate
sectionoftheexecutablemodulepreviouslygeneratedbythelinker.Resourcesarethus
anintegralpartofan.EXEfile,eveniftheprocessforcreatingthemfouowsacompletely
differentpathfromthatrequiredforthesourcecode.Duringexecution,anapplication
win load the resources from this area in the EXE file. It can do so in two ways:

• Explicitly (the API provides several Win and Gpi functions like Wz.7tLo¢dxx# or
GpiLoadxxx)

• hdirectly, with some particular API functions

hmostapplications,theresourcescontainedintheexecutablemodulewiusatisfy
theprogram'srequirements.PM'sAPI,however,alsoallowsaccesstoresourcesthat
reside in some other executable module, and even the creation of a DLL containing
resources exclusively.

The Nature of Resources
Au resources are handled by the resource compiler to produce an object that is
characterized by the information shown in Table 5.4.

Table 5.4 Information Characterizing a Resource After It Has Been Loaded

Information Description

fResType E#oa±e; :::;eg:aeL::stha:er:loo::::d+::¥::rr:; tTe#ugee:f°hqst;:::eTo¥g:a:

is always OxFF.
usResType Specifies the type of the resource identifier with values in the range from o

to 64Kb.
fRes]D FaldiLceaste:eif#::e::=f:eel::::rFfreisv=uTtoefgffi:o;:et:=to=¥tg: F:#aoyF¥#;ger

resid hdicates the resource ID. It is always a numeric value in the range from o to
64Kb.

fsopt±ons :eosaodurcoep::nesm::FmLffg:moerntT£%Bg¥BCL#&EanD:oroBE:actiffDfz:LtE,:

PRELOAD takes the value of Ox0040, provided the resource is of the type
LOADONCALL.
MOVEABLEtakesthevalueOxOO10,providedtheresourceisnotofthetype
FIXED.
DISCARDABLE is Oxl000.
Size of the resource in bytes.
List of bytes of the resource.

2J02 0S/2 2.1 Wor:laplace shed progranming

Theknowledgeoftheinternalorganizationoftheinformationofeveryresourceis
usefulwhenyouneedtodefinespecificresourcesforanapplicationandoptimizeits
loading during execution. h general, the designer can take advantage of the appro-
priate API functions that are available.

Let'snowexamineindetailthevariousresourcessupportedbyPM.Table5.4also
lets us identify the various kinds of resources supported by OS/2 2.1.

The Text Resources
This term indicates all those resources that can be described by typing in manually
a template or a sequence of commands that are comprehensible to the RC.EXE
compiler. These are generally very simple statements, most of them are lexical in
nature and can be described by phrases in English. Table 5.5 lists all these resources
in alphabetical order.

Very often a textual resource is described manually by the software designer, by
typing its text directly in a file with the RC extension. At other times, it is preferable
to generate standalone text files for each resource or group of correlated resources,
and then collect all information directly inside a resource file (Figure 5.8). This case
is typical of the dialog templates used for dialog windows.

The inclusion of a text file in a resource file is governed by the rcinclude directive,
immediately followed by the name of the ASCII file to be included:

// TWENY.RC

#i.nclude <os2.h>
®®,

rci.nclude TWENY.MNU

®,®

Table 5.5 List of Textual Resources in a PM Resource File

Vahae D es cription

ACCELTABLE
ASSOCTABLE

DIALOG
HELPTABLE
MENI
MESSAGETABLE
PRESPARAIS
STENGTABLE
i/VINDol/VTENILATE

Accelerator table.
Tables of associations of a category of files with another
Prooram.
Dialog template.
Help table.
Menu template.
Message strings.
Definition of the presentation parameters.
Text strings.
Window template.

Input Tools and Resources 2J03

RC file

1-

> resource #1

.DLG

rcinclude -]-
ref:re:i:.t::ereTource ' RE

.MNU

rcinclude -
reference to a resource `

T|
Figure 5.8 The resource file and the other text files that can separately contain
the description of a textual resource.

where TWENY.MNU contains, for instance, one or more menu templates. The pre-
processor#includedirectivecanalsobeusedinplaceoftrcinclude.Thefinalresultis
the same, even though a less readable listing will be generated, because the #nclude
is most often used only with files that have the extension .H.

// TWENY.RC

®®

#i.nclude <os2.h>
®®

#i.nclude "TWENY.MNU"

®,®

OS2.H is not strictly necessary, especially when the RC file is small or does not
contain resources of the ACC E LTAB LE or P RES PARAMS types. In fact, it is only in this
case that it is necessary to include OS2.H in order to access the defines of the virtual
keys for defiling the accelerator resources or the P P_ definitions. An RC file easily
supportsmultiplerc1.nc1udedirectives,placedanywhereinthetext,fortheinclu-
sion of different kinds of text objects: dz.¢Zog fe777pZ¢fes, 77ze7t# fe77cpZ¢£es, and others.
For the dialog templates, there exists also the specific d 1 g 1. n c 1 ud e directive, which
is used quite seldom because the more generic rcl. ncl ude or even #1. ncl ude is
preferable.

Thus there exists only one resource file for application, even though this resource
file can be made up of several other files with extensions such as ICO, BMP, FNT,
hAI\TU, ACC, and others.

Of all the various kinds of textual resources listed in Table 5.5, only ST RI N GTAB L E
andMESSAGETA8LEarenotassociatedwithanIDidentifier.Thismeansthattherecan

2J04 0S/2 2.1 Workplace shell progranming

be only one STRINGTABLE (or MESSAGETABLE) area for each resource file. AIl other
directives listed in Table 5.5 introduces objects that have IDs, and therefore can
appear more than once in a resource file (PRESPARAMS are treated differently).
Therefore, you can have multiple menu templates or multiple dialog templates, all
coexisting without problems in an .RC file. In the next chapters we will analyze the
menu templates and the dialog templates; for now,1et's concentrate on the ST R I N G -
TAB LE resource.

STRINGTABLE
The STRINGTABLE directive (which can be typed in uppercase,1owercase, or a
combination of the two) defines an area that will contain text strings. The syntax of
thisdirectiveisverysimple,asitonlyneedstodelimitablockwithinapairofbraces.

ST R I N GTAB L E

I
Stri.nglD, "STRING"

)

Within the block you will need to list all text strings used by the application: error
messages, information messages, names of classes you want to register in the pro-
gram, titles to give to the windows, and so on. To sum up, in a ST R I N GTAB L E you list
all the strings displayed by the program. The syntax of STRI NGTAB LE requires that
you type each text string within a pair of double quotes, and to precede each text
string with a numeric ID.

// TWENY.RC

®,,

STRI NGTAB LE

(
100, "Error Message"

I

The number (loo in the above example) is chosen by the programm.er, provided it
is in the range from 0 to 64K. The only thing to be careful about is that you must
assign a unique ID, otherwise you will get an error message during compilation. The
order in which you list the strings in the STRINGTABLE area does not affect the
resource compiler's actions. A good criteria for defining strings is to group them in
homogenous groups, and assign progressive IDs in each block. So, for instance, you
could group all strings regarding error messages, all those for class names, those for
window titles, and those for information messages. The first group of strings could
have IDs in the range 1000-1100; the second group in the range 300400; the third
group between 500 and 550, and so on.

The IDs can be specified both in decimal as well as in hexadecimal notation. It is a
common practice to define all IDs in the applications header file, rather than making

Ixput Tools and Resources 2J05

direct assigrments as in the previous example. In the header file TWENY.H you
mightthusfindthedefineST_ERRlwiththenumericalvalueof100:

// TWENY.H

®,®

#defi.ne ST_ERR1 100
®®,

A convention followed in thi[s book is that of using the prefix ST_ for categorizing
all IDs used in the STRI NGTAB LE area, although you might adopt any convention
you're comfortable with.

YoucanassignthesamelDtodifferentobjectsdeclaredinaresourcefile,provided
theyarenotofthesameresourcetype(theresourcecompilerwillsignaltwostrings
with the same ID as an error, but it will be happy if the same ID is shared between a
STRI NGTAB LE string and a MENU menuitem).

Returning to the syntax of STRI NGTAB LE , the comma between the ID and the text
string's opening double quote is optional.

By taking advantage of the header file, the STRI NGTAB LE area can be changed in
the following way:

// TWENY.RC

®,®

#include <os2.h>
#include "TWENY.H"
®®®

STRINGTABLE

I
ST_ERR1, "Error Message"

)
®,®

This way of writing the resources offers two advantages:
• It makes it easier to maintain the whole application
• It makes the IDs accessible to other modules (to the source code, for instance)

As we have seen for the module definition file (Chapter 2), the resources inserted
in the RC file are characterized by the load options and the memory management
options that are used to optimize the actions of the OS/2 Memory Manager. These
optionsarelistedtotherightoftheSTRINGTABLEdirective,accordingtothefollow-
ing syntax:

STRINGTABLE [load opti.ons][memory management opti.ons]

Fortheloadoptions,youcanchoosebetweenPRELOAD(whichisthedefaultvalue)
and LOADONCALL. The memory management options are MOVEABLE, DISCARDABLE,
and F I X E D; the first two constitute the default.

2J06 0S/2 2.1 Workplace shell progranming

Loading a String
Loading a string into the application fromthe resource file's ST R I N GTA a L E area is an
operation you can perform with the Wz.7tLo¢dsfrz.7tg() function:

#i.nclude INCL_WINMESSAGEMGR

LONG APIENTRY Wi.nLoadstri.ng(

Parameter
hab
hmod
id
cchMax
pchBuffer

Retwrm Value
LONG

HAB hab,

HMODULE hmod,

ULONG l.d,

LONG cchMax,

PSZ pchBuffer);

Description
Handie to the anchor block
Handle of the module from which the string is to be read
ID of the string
Maximum length of the buffer that will contain the string
Pointer to the buffer that will accommodate the string after it
has been loaded
Description
Number of characters actually read

Wz.7tLo¢dsfrz.7tg() returns the number of characters read from the string indicated
by the ID given as the third parameter. The text is transferred to the buffer pointed
to by pszBuffer which is the size of cchMax characters. The first and the second
parameterindicate,respectively,thehandleoftheanchorblockandthemodulefrom
whichthestringisloaded.hmostcases,youwillreferdirectlytotheexecutable,by
indicatingNULLHANDLE.AnexampleoftheuseofwinLoadstring()willhelptoclarify
the rules that govern its use.

CHAR szstri.ng[30] ;
LONG ILen ;

®®®

lLen = Wi.nLoadstri.ng(hab, NULLHANDLE,

ST_ERRlj,
si.zeof(szstri.ng), szstri.ng) ;

®,®

The IDs of the strings in a STRI NGTAB LE , and even those of other resources, must
be accessible from within the source code, as is demonstrated by the syntax of
Wz.7tLo¢dsfrz.7tg(). The insertion of the IDs in the application's header file or in some
other .H file specifically created for this purpose, is the most efficient way to write a
PM application.

To access a resource from some other module, you will have to get its handle by
calling the function Wz.7tLo¢dLz.Z7r¢7t/() :

#defi.ne INCL_WINLOAD
HLIB APIENTRY Wi.nLoadLi.brary(HAB hab, PSZ li.bname) ;

Iiaput Toads and Resources 2IV

P ar aneter D e s cription
hab Handle of the anchor block
libname Name of the library to load
Retwn value D escription
IILIB Handle of the module or NULLHANDLE in case of failure

h addition to the ¢7tcJ€or Z7Zock you also need to know the physical name of a DLL
on the file system. This function first checks that the indicated DLL is present in
memory,andthenincrementsbyoneitsusagecount.IftheDLLisnotloaded,itwill
be transferred into the system's memory. Wz.7iLo¢dLz.br¢ny() is inspired by the Dos-
Lo¢dMod#Ze() function, and has a similar syntax.

Defining Computed IDs
Whenyouneedtoinserttextstringsthatarerelatedonetoanother-1ikeaseriesof
error messages-it is often more practical and convenient to assign a starting ID to
the first string, and then specify consecutive values for the following strings. h the
header file, you win have only one define-ST_ERR, for instance-that will be
assigned a value that is easy to deal with:

// TWENY.H

®®®

#defi.ne ST_ERR 1000
®,®

In the resource file's STRINGTABLE area you will then have several text strings
associatedwiththeirrespectivemessagesthatwillbedisplayediftheprogramincurs
some kind of runtime error. The second string win be assigned an ID that is equal to
that of the previous message increased by one:

// TWENY.RC

®,

#i.nclude "tweny.h"

STRINGTABLE

{
ST_ERR + 0, "Cannot create the fi.le"
ST_ERR + 1, "Fi.le not found"
ST_ERR + 2, "Error wri.ti.ng fi.le"
®®®

)
®®®

Here the IDs assigned to the three strings are, respectively 1000, 1001, and 1002.
ThisapproachsimplifiesthedefinitionofIDsintheheaderfile,andalsoenablesyou
to retrieve the strings during runtime. The only thing to be careful of is selecting a
startingIDthatislargeenoughthatallothercomputedIDsdon'tgiverisetoconflicts

2JO8 0S/2 2.1 Workplace shell progranndng

with some other existing ID. Another way to make sure that IDs are correctly
assigned to the various strings is to end the sequence with an empty string:

®®,

STRI NGTAB LE

I
ST_ERR + 0, "Cannot create the fi.le"
ST_ERR + 1, "Fi.le not found"
ST_ERR + 2, "Error wri.ti.ng fi.le"
®®,

ST_ERR + n, ""

)
®

Thissolutionisextremelyconvenientwhenyouneedtoinsertseveraltextstrings
automatically and repeatedly in a listbox or in a combobox. Here's how to go about
it. The strings will always be loaded one string at a time, through Wz.77Lo¢dsfr2.77g().
This function call is, however, inserted in a whi.1 e loop that win test the value
returnedbyWinLoadstring()..

®,®

1. - ST_ERR ;
®®®

w h 1. 1 e (W i. n L o a d s t r i. n g (...,..., i. i+ ,...,...))

I
®®®

)
®®,

The ID of the string to load is contained in the identifier i, which is incremented
automaticallythrougheachexecutionoftheloop.Whenireachesanonexistentstring
or the empty string, Wc.7?Lo¢dsfr2.7€go will return a null value, and thus terninate the
string loading process. h the wh i.1 e loop's body you could, for example, insert the
retrieved string in a listbox or in a combobox.

Why You Should Use a STRINGTABLE
The strings listed in a STRINGTABLE are stored temporarily or indefinitely in a
character array declared in the application's source code. If their final destination is
in any case the source code, why bother about defining them in a resource file? The
main reason for this is to be found in software localization. This means the process
by which an application is translated into some other language. Cleanly separating
the source code from the text strings displayed by the application grants a simpler
conversion of the output into several languages; at the same time, it will also grant
a much higher degree of protection Of the programmer's coding efforts.

Bydoingthisyoucanalsothinkaboutcreatingaresourcefilecontainingnotonly
the application's strings, but also the menu templates and the dialog templates in
different languages. It would be up to the application's installation utility or to the

Input Tools and Resources 2JO9

user to select a the final language desired. However, this solution is practical only
for small-to-medium-sized executables, otherwise the overall size of the program
would be overwhelming.

MESSALGETALBLE
I

ThsdirectiveperformsalmostthesametaskasasTRINGTABLE.Fortlrisreasonitisrarely
usedinaPMapplication.Thesyntaro£MESSAGETABLEisthesameasthatofSTRING-
TABLE.Eachtextstringcanbeatmost255charactersandisassignedauniqueIDdefined
bytheprogra-erandwithintherangefrom0and64K.Theonlydifferenceistobe
foundwhenthestringsareloadedintotheapplication.ThestringsofaMESSAGETABLE
resourceareloadedintotheapplicationviaaca]1toDosGe£Resottrceo:

#defi.ne INCL_DOSRESOURCES

APIRET APIENTRY DosGetResource(HMODULE hmod,
ULONG i.dType,

ULONG i.dName,

PPV0ID ppb) ,

Description
Handle of the module from which the string is to be loaded
ID of the resource type
ID of the resource
Pointer to a 32 bit identifier holding the offset of the resource
Description
Error code or zero if the indicated resource was actually loaded

automatically allocate a memory page and load the resources
int-;it.ThetypeofresourceisindicatedbyoneofthedefineslistedinTable5.6.

Thefourthparameteristheaddressofa32-bitidentifierholdingtheaddressofthe
resource.WithDosQ#enyRcso#rcesz.ze()youcangettothephysicalsizeoftheresource:

#defi.ne INCL_DOSRESOURCES

APIRET APIENTRY DosQueryResourcesi.ze(HMODULE hmod,
ULONG l.dt,

ULONG i.dn,

PULONG pulsi.ze) ;

Parameter
hmod
idType
idName
ppb
Return Value
APIRET

This function will

Parameter
hmod
idt
idn
pulsize
Retwm Value
APIRET

Description
Handle of the module from which the resource is to be loaded
ID of the resource type
ID of the resource
Address of a ULONG holding the size of the resource
Description
Error code or zero if the operation was successful

210 0S/2 2.1 Workplace shell progranming

Table 5.6 Types of Resources That Can Be Retrieved with DosGc±Rcso#rce(); for a
MESSAGETABLE You Need to Select RT_MESSAGE.,

Type of Resource Vahae Description

RT_POINTER
RT_BITRAP
RT_MENU
RT DIALOG
RT_STRING
RT FONTDIR
RT_FONT
RT_ACCELTABLE
RT_RCDATA
RT_RESSAGE
RT_DLGINCLUDE
RT VIYTBL
RT KEYTBL
RT_CRARTBL
RT_DISPLAYINFO
RT_FRASHORT
RT_FRALONG
RT_RELPTABLE

01 Mouse pointer's shape
0 2 Bitm ap
03 Menu template
04 Dialog template
05 String table
06 Font directory
0 7 Font
08 Accelerator table
09 Binary data
10 Error messages' table
11 Dialog include file
12 Virtual key table
13 Key to UGL tables
14 Glyph-to-character tables
15 Display information
16 Function key area short form
17 Primary or secondary page of scan codes
18 Help table resource

RT_HELPSUBTABLE 19 Resource that canbe used as help
RT FDDIR 20i DBCs uriq/font driver directory
RT FD 21 DBCs ulq/font driver
RT_MAX 22 1st unused Resource Type

Once you're finished using a particular resource, it is good practice to release the
memory associated with it by calling DosF7'eeReso#rce() :

#defi.ne INCL_DOSRESOURCES

APIRET APIENTRY DosFreeResource(PV0ID pb) ;

P arameter D escription

pb Address of the resource

Retunii value D escription
APIRET Error code or zero if the operation was successful

The ordy parameter required by this function is the pointer previously produced
byDosGe£Rcso%7`ce().Furthermore,theAPIofPMalsoprovidesthefunctionWz.7tLofld-
Mcss¢ge(), which is much easier to use than the previous three:

Input Tools and Resources 211

#defi.ne INCL_WINMESSAGEMGR

LONG APIENTRY Wi.nLoadMessage(HAB hab,
HMODULE hmod,

ULONG l.d,

LONG cchMax,

PSZ pchBuffer);

Parameter
hab
hmod
id
cchMax
pchBuffer
Return Value
LONG

Description
Handle of the anchor block
Handle of the module from which the resource is to be loaded
ID of the string
Maximurn length of the buffer containing the string
Bufferthatwillaccolnmodatethestringonceithasbeenloaded
Description
Number of characters actually read

The syntax of this function is identical to that of Wc.fflLoadsfr£.ago; therefore it is
generallypreferabletoresorttoaSTRINGTABLEandtoWz.7tLo¢dsfr!.7tg().

WINDOW.TEMPLA;TE
The problem of creating a window through Wt.7tc7'e¢fesfdw€.7tdozo() and Wz.7t-
Cre¢£ew£.7tdozt7() has been covered in previous chapters. The parameters that need to
be given when calling one of these functions will cause the creation of one or more
windows, featuring different style attributes. If you need to create multiple corre-
1ated windows (like several child windows inside one parent window that simply
actsastheprincipalpixelproviderbymeansofitsclientarea)thenyouneedtocall
Wincreate§tdwiridori() and / or Wincreatewindow() repeErfediy.

An altemative solution is offered by the W I N DOWT EM P LATE directive in a resource
file.Asthisdirective'snamesuggests,WIND0WTEMPLATEdefinestheoverallstructure
of a window-simply, the description of a set of windows. The syntax of W I NDOW -
TEMPLATEissimilartothatofthetextresourcesalreadyseenandthosethatwillcome
in the next chapters dedicated to menus and dialog windows.

WINDOWTEMPLATE wi.ndow-ID [load opti.ons][memory management opti.ons]

I
®,®

)

Theparameterwi.ndow-IDreferstoanumericIDusedtodistinguisheachWIND0W-
TEMP LATE present in the resource file. The value of the ID is an integer within the
range0to65.536.Theloadoptionsandthememorymanagementoptionsarealways,
respectively,LOADONCALLorPRELOAD;andMOVEABLE,DISCARDABLE,andFIXED.The

WI NDOWTEMPLATE block contains the information needed to create a window. The
objective is that of generating a window frame equipped with all the traditional
controls completed by a client area. Like any generic window produced with W£.7t-
C7'e¢£esfdwz.7tdozt7(), you need both a frame window and a client window. At the

2:n OS/2 2.1 Worlcplace shell programming

resource file level, this is the direct consequence of the FRAM E and W I N DOW directives
inside the W I N D 0WT EM P LAT E block.

FRAM E, as you have guessed, instructs the resource compiler to generate all infor-
mation necessary for creating a frame window. The syntax of FRAM E is:

FRAME ti.tle, ID, x, y, cx, cy, FS_ I WS_, FCF_, data

Figure 5.9 compares the syntax of the F RAM E directive to that of the Wz.7tcrc¢£ewz.7t-
dozD() function used for creating a frame windows.

ThenumberassignedtoeachitemwiththeFRAMEdirectiverecallsitscorrespond-
ingparameterinWz.77C7'c¢fcwz.77dow().hbothcases,thesyntaxisidentical.TheFRAME
directiveisnotresponsiblefordefiningtheownerortheparentoftheframewindow
because this information is not available when a window template is written. It will
bespecifiedwhenthewindowtemplategetsloadedatruntime.Furthermore,inthe
FRAMEdirectivethereisnoitemforindicatingwhatvaluesshouldbeassignedtothe

1 FRAME

2 "MyFrame",
3 ID_FRAME,

410,
520,
6 150,
790'
8 WS_VISIBLE I WS_CLIPCHILDREN,

9 FCF_SYSMENU I FCF_TITLEBAR I FCF_SIZEB0RDER

FCF_MINMAX I FCF_SHELLPOSITI0N I FCF_ICON I

FCF_ACCELTABLE,

10 NULL

Wi.ncreatewi.ndow(

HWND_DESKTOP,

WC_FRAME,
"MyFrame",

WS_V I S I B L E ,

10,
20,
150,

90,
NULL,

HWND_TOP,

I D_F RAM E ,

&my FC F ,

NULL) ;

Figure 5.9 Comparison of the syntax of the FRAME directive for the resource
compiler with that of the Wi.#Cre¢fewt.7!dozo() function in the source code.

Input Tools and Resources 2:L3.

presentationparameters.Thesewillbesenttotheresourcecompilerbymeansofthe
appropriate PRESPARAMS directive. Therefore, creating a frame window with the
F RAM E directive or by calling the W£.74Cre¢£ewi.77dozu() will produce the same result,
provided the starting data are the same.

The ``missing'' items in the F RAM E directive's syntax compared to the parameters
of Wz.7ic7'cflfewz.7zdozu() reflect the operational differences of the two solutions. F RAM E
isnota_System-type function,whereallparametersmustalwaysbepresentevenif
they are useless in a specific case. With the FRAME directive, the values that are not
neededaresimplyleftout,andthecorrespondingparameterisnotwritten.InFigure
5.9, it would be nonsense to declare a N U LL as the last item; it is sufficient to specify
nothingatau(thepresenceofNULLinFigure5.9servesonlythepurposeofdemon-
strating the similarities between the two syntaxes).

The W I N DOWTEM P LAT E resource, enriched by the F RAM E directive, now becomes:

WINDOWTEMPLATE ID_WINDTEMP

FRAME "Resource wi.ndow", ID_WINDTEMP, 50, 50,140, 80,
WS_V I S I B LE ,
FCF_MINMAX I FCF_SIZEB0RDER I FCF_SYSMENU I FCF_TITLEBAR

I
®®,

)
I

EveninFRAMEthereexiststhedirectiveFCLwhichgovemsthepresenceofcontrols.
Thecfientwhdowisndssing,asitshouldbe.TheWIND0Wdirectivedefinesthestructure
ofagenericwindowaccordingtoasyntaxthatisveryclosetothatofFRAME:

WINDOW ti.tle, ID, x, y, cx, cy, class, FS_ I WS_, FCF_, dati.

IncomparisontoFRAME,thereisjustonemoreitem-class-thatdefinestheclass
towhichthewindowbelongs.Asyoumightexpect,withthisparameteritispossible
to specify the name of one of the predefined PM classes, and therefore possible to
create a frame window, or even more interesting, a window of some class already
registered in the application.

WINDOWTEMPLATE ID_WINDTEMP

I
FRAME "Resource wi.ndow", ID_WINDTEMP, 50, 50,140, 80,

WS_V I S I B LE ,
FCF_MINMAX I FCF_SIZEB0RDER I FCF_SYSMENU I FCF_TITLEBAR

[
WINDOW "", FID_CLIENT, 0. 0, 0, 0, "myclass",

WS_VISIBLE I WS_CLIPCHILDREN

)
)

TheparenthoodrelatioushipbetweenthewindowdescribedthroughFRAMEandthe
window defined with W I N DOW can be inferred from the block layout of the template. h
thelayoutofthecfientwindow,youwinhavetheFID_CLIENTIDthatisusedbydefault

214 0S/2 2.1 Workplace shell programming

by each frame window to identify its cfient. This requires an explicit or indirect
reference to PMWIN.H among the header ffles of the resource file. The size of the cHent
window is computed automatically on the basis of the frame window's size at the
momentitiscreated,takingintocousiderationthecontrolwindowscreatedbytheFCF
flags.

The window template's structure is not limited to the two levels of a FRAME and
W I N DOW, as shown in the previous example. If the design needs more child windows
for the client window, you can insert a new subordinate block under the WI NDOW
directive, using a pair of braces.

WINDOWTEMPLATE ID_WINDTEMP

I
FRAME "Resource wi.ndow", ID_WINDTEMP, 50, 50, 140, 80,

WS_V I S I B LE ,

FCF_MINMAX I FCF_SIZEB0RDER I FCF_SYSMENU I FCF_TITLEBAR

I
WINDOW "". FID_CLIENT, 0, 0, 0, 0, "myclass",

WS_VISIBLE I WS_CLIPCHILDREN

{
®®®

I
I

)

Once this phase is over, and once you have defined in the header file all the IDs
that are to be used, there is nothing else left other than changing the source code to
loadtheWINDOWTEMPLATEduringtheapplication'sruntime.Toperformthisopera-
tion, call the Wz.7tLo¢dDzg() function, rather than the usual Wi.7tc7'e¢£esfdwz.77dozo()
function.

#defi.ne INCL_WINDIALOGS
HWND APIENTRY Wi.nLoadDlg(

Parameter
hwndparent

hwndowner

pfuDlgproc
hmod

idDlg

HWND hwndparent,

HWND hwndowner,

PFNWP pfnDlgproc,

HMODULE hmod,

ULONG l.dDlg,

PV0ID pcreateparams)

Description
Handle of the parent window of the frame described in the
window template
Handie of the owner window of the frame described in the
window template
Address of the function that plays the role of dialog procedure
Handleofthemodulefromwhichthewindowtemplateistobe
loaded
ID of the window template

Input Tools and Resources 215

pcreateparams Address of an area containing the window's presentation pa-
rameters

Return value Description
HWND Handle of the created window, generally the frame window

This function is used mainly for creating a 77todezess dialog window. This is simply
an extension of W I N DOWT EM P LAT E's normal use, and a practical demonstration of the
highdegreeofflexibilityofPM'sAPI.ThedescriptionofthesyntaxofWz.77Lo¢dDzg()
refers to this particular situation.

The first two parameters of W{.7tLo¢dDzg() identify the parent and the owner
window.When,asinthisexample,theWIND0WTEMPLATEdescribesasolutionequiva-
1enttowhatcanbeobtainedthroughwz.7tcre¢£esfdw£.77dozo(),theonlyviablesolution
is-in both cases-to specify HWND_DESKTOP. The third parameter identifies the
function that acts as what is known as the dz.¢Zog proced#re of a modeless dialog
window (Chapter 8). h this case, it specifies NU LL because both the frame and the
client have window procedures of their own.

The handle to the module is set to NU LLHAND LE when the relevant information is
available in the same executable as the application. The fifth parameter corresponds
to the ID assigned to the WINDOWTEMPLATE in the resource file: ID_WINTEMP. The

pointer pcreateparams is not used, and thus is given the value of NULL. If other
presentation parameters were necessary, it would be convenient to name them
directly in the resource file. The return value of Wc.7tLo¢dDzg() corresponds to the
handleoftheframewindow.Differentfromwz.7icrc¢festdwz.7idozo(),youdonotknow
the handle of the cfient window, which is easy to get to with W€.7twz.7tdozt7F7'o77cJD().

W{.#Lo¢dDzg()isamacrofunctionthatcansothertwoAPIfunctionsofPMtoproduce
several windows simultaneously. From this point of view, it is sindlar to Wz.7t-
Crc¢£esfdwz.77dow(). The main difference between these two functions is to be found in
the source of the information: the resource file vs. the appHcation`s source code.

Using Resources

EI After all this theory, it is time to eurich an OS/2 application with a resource file and
a header file. The .RC file contains a STR I N GTAB LE area with the name of a dass to be
registered, and a WINDOWTEMPLATE resource that takes the place of a call to W£.7t-
Creflfcsfdw!.7cdozo(). The 77c¢z.7e() now looks different compared to the previous listings,
mainly because of the call to Wz.7tLo¢dDzg(). Listing 5.4 shows all the possible vari-
ations, while Figure 5.10 shows how the application looks during run time. Visually,
there are no great differences with respect to the windows produced in the previous
exal][\:pleswifhwincreatestdwindow().

In the WINDOWTEMPLATE directive of Listing 5.4, the FCF_SHELLPOSITI0N flag
delegates to PM the task of positioning and sizing the frame window; the values
given in the template are thus ignored. The presence of this flag also allows the
WM_PAINTmessagetoberecognizedinthewindowprocedureoftheclassregistered

216 0S/2 2.1 Wor:laplace shell programming

Figure 5.10 A PM application characterized by a window produced through
adescriptioninaresourcefileandthroughaWINDOWTEMPLATEdirective.

bythecode,andthereforetopainttheclientwindowinred.Ifyouweretoleaveout
theFCF_SHELLP0SITI0Nflag,theWM_PAINTmessagewouldnotbereceived,andthe
client window would not be colored. However the WM_ERASEBACKGROUND message
would still arrive, and it contains in mpl the handle of a presentation space and in
mp2 a pointer to a RECTL structure describing the screen portion that has been
invalidated. If you want to do without the FCF_SHELLPOSITI0N flag in order to
specify the position and the size of the frame window directly in the window
template,thenyoumustintercepttheWM_ERASEBACKGR0UNDandtakeadvantageof
theinformationcontainedinmp1andmp2.Thisisacodefragmentdemonstratingthe
technique:

®®

case WM_ERASEBACKGROUND:

Wi.nFi.1lRect((HPS)LONGFROMMP(mpl),

(PRECTL)PV0IDFROMMP(mp2),

CLR_RED) ;
return (MRESULT)TRUE ;

®,®

Be careful, however. The contents of mpl are a handle to the f¢77cc zoz.7tdozt7's
presentation space, and not that of the client window. Wz.7tFz7ZRecf () will thus refer to
the space of the frame, which will later be covered by the Client.

Input Toads and Resources 2:IT

Table 5.7 Directives That Introduce Binary Resources in a RC File

Directiv e D e s cription

BITMAP Ima ge
FONT Set of characters and symbols
ICON Icon for displaying a minimized window
POINTER Mouse cursor on the screen
RESOURCE Definition of some custom resource by the application

It is important that the name of the class of the window declared with the
WINDOwdirectiveinthewINDOWTENILATEbetypedexactly,evenastoupper-
and lowercase, as in the source code. To avoid typing errors, it is good to specify the
name of the class of the client window directly in the application's header file, and
to refer to this define both in the WINDOWTmffLATE as well as in the source code
for registering the window's class.

Binary Resources
Resource files can also accommodate directives that refer to files containing binary
resources-typically images. These directives are listed in Table 5.7.

The directives BITMAP, ICON, POINTER, and FONT (Table 5.8) all have the same
syntax, characterized by the presence of an ID, loading options, memory manage-
ment options, and the name of the file containing the resource. The directive RE-
S 0 U RC E has yet another item, the ID that identifies some kind of new resource.

IC0NandP0INTERarebothfixed-sizebitmaps;theiractualsizecanbedetermined
with Wz.7tQ#e7tysysv¢Z#e(). The mouse pointer is a colored image that can be chosen

Table 5.8 Syntax for Indicating Binary Resources in a Resource File

Binary Resources Syntax

BITh4AP

ICON

POINTER

FONT

RESOURCE

BITMAP bitmaplD [1oading options] [memory management
optious] filename
ICON iconlD [1oading options] [memory management optious]
filenane
POINTER pointerlD [1oading optious] [memory management
optious] filename
Fch\IT fontlD [1oading options] [memory management options]
filenane
RESOURCE typelD resourcelD [1oading options] [memory
management options] filename

218 0S/2 2.1 Wor:laplace shell progranming

from those available in PM or defined by the programmer. By default, the mouse
cursor is a black arrow pointing northwest (define SPTR_ARROW).

Thetermz.co7ihasdifferentmeaningsinGUIenvironments.hMicrosoftWindows,
for example, an icon almost invariably indicates some minilnized window, or refer-
ences some executable (as in the Program Manager). h PM, instead, an icon can
representobjectsofwps;inotherwords,itcanrepresentphysicaldevices,data files,
programs, and folders. h a resource file, the I CON directive can be used to identify
whatimageshouldbedisplayedinthetitlebarandwhatimageshouldrepresentthe
application in WPS. Often, even the documents generated by a program are repre-
sented in WPS by specific icons, which are usually different from those of the
application,althoughtheynormallylooksimilartoone.ByexamingtheTe77cpZ¢fes
folder of a system equipped with some personal productivity application, like
Fax/PM, you can see this type of icon (Figure 5.11).

Loading an Icon
htheresourcefilethereisinformationregardingtheicontoassociatewithawindow
when it is to be displayed minimized in a folder. This aspect of programming has

HEE#
Volume Mininized Shredder
Control Windowvlewer

fi
oS# Progrons

"EjEFi

S>J8temclock

RE
R8soureew'orkshop

Effi
HPLaserJetllD faxpM

#
PRODINFO BMP

RE RE E Ea EE ill ill EE
1993Europeonchampions 1993ltallonchampions AC"ilon BimapBMP Col. Colorpalette DataFile DigltalAudiowAV

H RE EE in E E RE E E ill
DigltalAudiovIAV Folder FontpalettB lconlco MelafileMET MlcrofomaticFCDCFAX MIDIMID MIDIMID PIFfilePIF PointerpTR

RERE ill Ea Ea
Pnnter Program Schemepalette Sourcefilec iEffipE5j

RE Dffe

Figure 5.11 The Templates folder containing some object generators of
Fax/PM for OS/2 2.1.

Input Toads and Resources 2:19

become less important because it is preferable to hide a window, rather than mini-
mize it following the behavioral rules of WPS. The first operation to perform is to
draw an icon. The tool used for this is ICONEDIT.EXE, which is provided in the
Toolkit of PM. In OS/2 2.1, the icons are colored and device independent (Figure
5.12).

Onceanimagehasbeensavedinafile,assigntheiconanIDdirectlyintheresource
file, according to the syntax:

®®

// TWENY.RC

®®,

#i.nclude "tweny.h"
®,,

ICON RS_ICON TWENY.ICO

®®,

In the header file you will find the define of the RS_I C0 N ID, which is used as the
eighth parameter of Wz.7tc7`eflfesfdwz.7tdow(); in this way you can be sure that you are
using that image as the title bar icon (the presence of which is implied by the flags
FC F_SYSMENU and FC F_I CON). The call to W1.7zC7'e¢fesfdwz.7tdozt7() will also cause the

Figure 5.12 ICONEDIT.EXE is the tool that lets you draw icons, cursors, and
bitmaps for OS/2 PM.

2:2f) OS/2 2.1 Wor:laplace shell progranming

association of the icon present in the resource file with the application window. To
achieve this, you have to set the FS_I CON or the FC F_I CON flag when the window is
being created. Figure 5.13 shows the application of Listing 5.5, equipped with a
custom title bar icon.

The resource ID in Wz.7tc7'e¢£csfdwz.7zdozo() refers not only to the title bar icon, but
also to a menu and an accelerator table. The ID that is assigned to these three
resources must be unique. For this reason a generic name such as RS_A L L is used. A
convention used in this book is that of defining au binary resources with the RS
prefix and indicating the kind of the resource after the underscore. When an appli-
cationneedstoassociateamainwindowwiththethreepossibleresources,theheader
file will look like this:

// TWENY.H

®,®

#defi.ne RS_ALL 300

#defi.ne RS_ICON RS_ALL

#defi.ne RS_MENU RS_ALL

#defi.ne RS_ACCELTABLE RS_ALL

®®®

}..`rErt CDPMI?,.±i.---.i-,..,..-.--.-..--.---...I-.-.:.'-...-.----i.,rna

a E Ea E EE AA fa
-9tm- se&rfue lnslallEevlce Dmefitall Eaterfuffitlons 5palette coffi Fan,Palette Keyboard

OOPER Mouse Schemepalette Sound Spooler ERE Systemclock WNrosreselup

Figure 5.13 The icon specified in the resource file is shown on the screen when
the application is minimized.

Input Tools and Resources 2:21

h the call to Wz.7tcre¢£csfdw£.77dozu(), the define RS_A L L is indicated when at least
two resources are needed, while in the RC file every resource will have a specific ID.

Thesameiconthatreplacesthestandardimageinthetitlebarcanactuallybeused
in the application like an object to be displayed in the client window. An icon is just
a small bitmap, and therefore can be part of the output produced by an application.
The loading of an icon,is performed with Wz.77Lo¢dpoz.7tfer().

HP0INTER APIENTRY Wi.nLoadpoi.nter(HWND hwndDesktop,
HMODULE hmod,

ULONG i.dres) ;

P arameter D escription
hwndDesktop Handie of the desktop window
hmod Handie of the module from which the resource is to be loaded
idres Resource ID
Retunii vahae D escription
HPOINTER Handle to the loaded pointer or NULIHANDLE in case of error

Once you have the handle of the icon, you can display the icon with Wz.7tDr¢zoBz.f-
map() or: WinDrawpoin±er() .

Predefined Icons and Pointers
PM comes with a set of predefined icons and pointers that can be used in a variety
of situations: to flag operations or messages, drag & drop operations, and more.
These predefined resources are characterized by an ID with the S BM P_ or the S PTR_
prefix. To know what the predefined bitmaps are, just look at the contents of
PMWIN.H, and search for the following S BM P_ defines (Table 5.9).

Table 5.9 Defines for the Predefined Bitmaps in PM

Bitmap Value Description

SBMP_OLD_SYSMENU
SBNI_OLD_SBUPARROW
SBMP_OLD_SBDNARROW
SBMP OLD_SBRGARROW
SBMP_OLD_SBLFARROW
SBnff MENuCHECK
SBMP_OLD_CHECKBOXES
SBMP_BTNCORNERS
SBnff OLD MINBt]TTON
SBhff OLD MAXBUTTON

01 Old system menu image.
02 Old image for arrow pointing up.
03 Old image for arrow pointing down.
04 Old image for arrow pointing right.
05 Old image for arrow pointing left.
06 Checkmark for a state setter menu item.
07 Old image for a checkbox.
08 Corners of pushbutton.
09 Old image of the minimize button.
10 Old image of the maximize button.

(coritinued)

Table 5.9 (Co#ft.##ed)

Bitmap Value Description

SBMP_OLD_RESTOREBUTTON 11
SBMP_OLD_CHILDSYSMENU 12
SBMP_D-

SBNI FILE

SBMP_FOLDER

SBMP_TREEMINIS
SBMP_TREEPLUS
SBMP_PROGRAM

SBMP_MENUATTACHED

SBMP_SIZEBOX

SBMP_SYSMENI
sBMp_hueuTTON
SBMP_MAXBUTTON
SBMP_RESTOREBUTTON
SBMP_CHILDSYSMENU
SBMP_SYSMENUDEP
SBMP_MINBUTTONDEP
SBMP_MAXBUTTONDEP

Old image of the restore button.
01dimageofachildwindow'stitlebaricon.
SymbolusedbytheFileManagertorepre-
sent a drive.
SymbolusedbytheFileManagertorepre-
sent a file.
SymbolusedbytheFileManagertorepre-
sent a subdirectory containing other
directories.

18 Symbol used in folders in tree display mode.
19 Symbol used in folders in tree display mode.
22 Icon used by the File Manager to represent

an executable program.
23 Horizontal arrow used to indicate a second

or lower level pulldown menu.
24 Icon used to identify the box for restoring

the original size of a window (typically
corresponds to a vertical or horizontal
scrollbar).

25 System menu icon.
26 Minimize icon.
27 Maximize icon.
28 Restore icon.
29 Child window's system menu icon.
30 Selected title bar icon.
31 Selected minimize icon.
32 Selected maximize icon.

SBMP_RESTOREBUTTONDEP 33 Selected restore icon.
SBMP_CHILDSYSMENUDEP 34 Selected child window's menu bar icon.
SBMP_SBDNAREOW
SBMP_SBDNARROWDEP

SBMP_SBDNAREOWDIS

SBMP_SBLFAREOW
SBMP SBLFAREol/VDEP
SBMP_SBLFAREOWDIS
SBMP_SBRGARROW
SBhm SBRGAREoi;vDEp
SBMP_SBRGARROWDIS

35 Arrow pointing down in a scrollbar.
36 Selected arrow pointing down in a scroll-

bar.
37 Disabled arrow pointing down in a scroll-

bar.
38 Arrow pointing left in a scrollbar.
39 Selected arrow pointing left in a scrollbar.
40 Disabled arrow pointing left in a scrollbar.
41 Arrow pointing right in a scrollbar.
42 Selected arrow pointing right in a scrollbar.
43 "sabled arrow pointing right in a scrollbar.

(continued)

222

Input Tools and Resources 2:2:3

Table 5.9 (Co#fi.##ed)

Bitmap Vahae Description

SBM? SBUPAREOW 44 Arrow pointing up in a scrollbar.
SBMP_SBUPAREOWDEP 45 Selected arrow pointing up in a scrollbar.
SBMP_SBUPAREOWDIS 46 Disabled arrow pointing up in a scrollbar.
SBMP_COMBODOWN 47 Arrow pointing down in a window of the

WC_COMBOBOX class.
SBM? CHECKBOXES 48 Set of symbols used to represent all states

of a checkbox.

Loading these bitmaps is performed with the Wz.7tGe£SysB€.£77t¢p() function, which
is very simple and easy to use:

#defi.ne INCL_WINP0INTERS
HBITMAP APIENTRY

Parameter
hwndDesktop
ibm
Return Vahae
HBITh4AP

Wi.nGetsysBi.tmap(HWND hwndDesktop, ULONG i.bin) ;

Description
Handle of the desktop, HWND_DESKTOP
ID of the system bitmap to load
Description
Handle of the loaded system bitmap or NULLHANDLE in case
of error

The first parameter must always be the define HWND_DESKTOP, while the second
onecorrespondstoanyoftheSBMP_definesdescribedinTable5.9.Theretumvalue
of this function is the handle to a predefined bitmap of PM. h practice, Wz.7tGe£Sys-
Bz.f777¢p() is just a special case of the more generic Gpz.Lo¢dBz.£#t¢p(), a function that
would seem to belong to the Gpi group, but is physically located in PMWIN.DLL.
Whatever method is used to get a bitmap handle, to draw it on the screen you have
to call WinDravBitmap()..

#defi.ne INCL_WINMESSAGEMGR
B00L APIENTRY Wi.nDrawBi.tmap(

Parameter
hpsDst
hbm
pwrcsrc
pptlDst

HPS hpsDst,
HBITMAP hbm,

PRECTL pwrcsrc,
PP0INTL pptlDst
LONG clrFore,
LONG clrBack,
ULONG fl) :

Description
Handle of the target presentation space
Handle of the bitmap
Part of the bitmap to be displayed
Lower left-hand comer of the bitmap on the drawing surface

2:2A= OS/2 2.1 Workplace shell progranming

Parameter
clrFore
clrBack
fl
Return Vahae
BOOL

Description
Foreground color
Background color
Display flag
Description
Success or failure of the operation

Wz.7tD7tzzoBz.£777¢p() is an output function and thus requires h p s as its first parameter,
and then the bitmap's handle. The third parameter is of the type RECTL and describes
the size of the bitmap to be shown on the screen. You can select the whole bitmap by
specifying NU LL. The P0 I NTL structure contains the coordinates of the lower left-hand
comerofthebitmap,thepointthatwillbeusedbythefunctionasthestarthgpointfor
displayingtheimage.ThenexttwoL0NGparametersdefinerespectivelytheforeground
andthebackgroundcolor.TheirvalueisignoredifthelastparaneterissettoDBM_IM-
AGEATTRS . h al other conditions, the indicated colors are employed (Table 5.10). The
return value informs the appfication about the success or failure of the operation.

To access one of PM's predefined mouse pointers, use the function Wz.7z-
Querysyspointer()..

#defi.ne INCL_WINP0INTERS
HP0INTER APIENTRY Wi.nQuerysyspoi.nter(HWND hwndDesktop,

LONG l.ptr,
B00L fLoad) :

Parameter
hwndDesktop
iptr
fLoad

Description
Handle to the desktop, HWND_DESKTOP
ID of a predefined pointer image
TRUE requests the creation of a copy of the system bitmap,
FALSE accesses the original bitmap

Table 5.10 Display Options for Bitmaps with the Wt.7eDr¢zuBt.ffflap() Function

Fl ag Val:ue Me aning

DBM NORMAL 0xOOOO Thebitmap is displayednormallyusingROP_SR-
CCOPY.

DBM n\IVERT 0xOool The bitmap's colors are inverted according to the
rules of ROP_NOTSRCCOPY.

DBM_HALFTONE 0x0002 Displays the bitmap after applying to it the oR
operatorwithapattemofaltematingonesandzeros.

DBM STRETCH 0x0004 The parameter pptlDest no longer refers to a
POINTL structure containing the new size that
the bitmap must take on the screen.

DBM IMAGEATTRS 0xOOO8 The bitmap is displayed with all its original
attributes,andtheparameterscirForeandclrBack
are ignored.

Return Vahae
HPONIER

Input Tools and Resources 2:2:5

Description
Handle to the loaded pointer or NULLHANDLE in case of
failure

The second parameter corresponds to one of the defines listed in Table 5.11. The
first one, S PT R_A P P I C0 N, refers to just one blank icon; the generic solution that should
be assigned to a window if the programmer does not provide an icon. If the third
parameter,fLoad,issettoTRUE,itwi]linstructwz.7tQ#e7tysyspo{.71fer()toloadthemouse
pointer'sicon;iffLoadissettoFALSEthefunctionwillonlyretumahandletothesystem
cursor. in both cases, Wz.7tQ#e7`:I/Syspoz.7tfer() returns a handle to the system cursor.

TodisplayanyofPM'spredefinedbitmaps,youhavetousetheWz.77Dr¢zoPoz.7tfer()
function, passing it the handle returned by Wz.7tQ#e7tysyspoz.7tfer() :

#defi.ne INCL_WINP0INTERS
B00L APIENTRY Wi.nDrawpoi.nter(HPS hps,

LONG x,

LONG y,

HP0INTER hptr,
ULONG fl) ;

Table 5.11 Identifiers of PM's Predefined Bitmaps That Can Be Accessed Through
the Function WinQuerysyspointer()

Pointer Vahae Description

SPTR rmow
SPTR_TEXT
SPTR WAIT
SPTR .MOVE
SPTR SIZEOwSE

SPTR SIZENESW

SPTR SIZEVVE
SPTR SIZENS
SPTR APPICON
SPTR_ICONINFORMATION
SPTR_ICONQUESTION
SPTR ICONERROR
SPTR ICONl/VARNING
SPTR_ILLEGAL
SPTR ILLEGAL
SPTR FILE
SPTR FOLDER
SPTR hmuTFILE
SPTR PROGF"

1 Traditional arrow
2 I beam
3 Hourglass icon to indicate a wait
4 Movement of a window
5 Arrow pointing in the direction Northwest -

Southeast
6 Arrow pointing in the direction Northeast -

Southeast
7 Double-headed horizontal arrow
8 Double-headed vertical arrow
9 Blank icon

10 hiormation request
11 Question mark
12 STOp sign
13 Waming icon
14 Exclamation mark
18 Forbidden symbol
19 File symbol
20 Directory symbol
21 Multiple stacked files
22 Symbol for executable modules

2:2:6 0S/2 2.1 Worlcplace shell programming

Parameter
hps
X

y

hptr
fl
Return Vahae
BOOL

Description
Handle to the presentation space
Coordinate of the lower left-hand side comer of the image on
the X axis
Coordinate of the lower left-hand side comer of the image on
the Y axis
Handle to the pointer to be displayed
Display flag
Description
Success or failure of the operation

I

Thefirstparameterreferstothehandleofthepresentationspaceinsidewhichthe
mouse pointer defined by the handle h pt r will be appear. The point of coordinates
x, y-expressed in screen units-defines the lower left-hand corner of the bitmap.
The fifth parameter, f l , is a flag that tells Wz.7tDr#zuPoz.7tfer() how it should display
the bitmap. The values that f l can take are summarized in Table 5.12.

Displaying Predefined Bitmaps

EN

T±=£_out::±r+.choap_WinGetsysBi±map(),WinDravBi±map(),WinQuerysyspointer(),and
W£.7?Dr¢zuPo{.7£fero let you retrieve and display PM's predefined bitmaps, either for
thestructuralelementsofawindoworforthemousepointer'sicon.Thebitmapsthat
canberetrievedwithWz.7tGe£SysBz.f777¢p()arecharacterizedbyanIDfrom1to47,with
someexceptions.ThemousepointerswillhaveIDsbetween1and22,andinthiscase
there are also a few exceptions. The following simple application (Listing 5.6) will
allow you to display all of PM's predefined bitmaps. Figure 5.14 presents the
application's output.

Ifyouwishtodisplayallbitmapssimultaneouslyonthescreenwithouthavingto
implement any kind of scrolling, the window will have to appear maximized on the
screen.Thereisaflag,WS_MAXIMIZE,butitwillnotproduceanyeffectifitisspecified
directly in the Wz.7tcre¢£esfdwz.77dozo() function. The window is displayed without
setting the WS_VISIBLE flag; then the window is sized and displayed with the
Wz.7tse£Wz.77dozopos() function, where the flags SWP_MAXIMIZE, SWP_SHOW, and
SWP_ACTI VATE are all set.

Table 5.12 Pointer's Display Flags That Can Be Used with W€.#Dr¢zopot.#fer()

Flag Vahae D es cription

DP_NORMAL 0xOOOO The bitmap is displayed exactly as it appears
DP_HALFTONED 0xOool Thebitmap is displayedinhalftones
DP_II\IVERTED 0x0002 The bitmap is displayed inverted

Input Tools and Resources 2;2:7

\ I E®q F a ¢ EO®®Aq a DE I

12 3 5 6 7 8 910111213141819202122

1 SBMP_OLD_SYSMENU
2 SBMP_OLD_SBUPARROW
3 SBMP_OLD_SBDNARROW
4 SBMP_OLD_SBRGARROW
5 SBMP_OLD_SBLFARROW
6 SBMP_MENUCHECK

:§B#!=S¥E8§R&EE§
9 SBMP_OLD_MINBUTTON

10 SBMP_OLD_MAXBUTTON
11 SBMP_OLD_RESTOREBUTTON
12 SBMP_OLD_CHILDSYSMENU
15 SBMP_DRIVE
16 SBMP_FILE
17 SBMP_FOLDER
18 SBMP_TREEPLUS
19 SBMP_TREEMINUS
22 SBMP_PROGRAM
23 SBMP_MENUATTACHED
24 SBMP_SIZEBOX
25 SBMP_SYSMENU

t=1 26 SBMP_MINBUTTON

± i: §B#:=#fsxTBoUJE8°uNTTO N
I+I 29 SBMP_CHILDSYSMENU
I+I 30 SBMP_SYSMENUDEP
v 31 SBMP_MINBUTTONDEP

FTH §§ §B#!=#fsxTBouEE8°uNTDTEoPNDEp
34 SBMP_CHILDSYSMENUDEP
35 SBMP_SBUPARROW
36 SBMP_SBDNARROW
37 SBMP_SBLFARROW
38 SBMP_SBRGARROW

EE] 39 SBMP_SBUPARROWDEP
D 40 SBMP_SBDNARROWDEP

I 41 SBMP_SBLFARROWDEP
E 42 SBMP_SBRGARROWDEP
F1 43 SBMP_SBUPARROWDIS
I 44 SBMP_SBDNARROWDIS

+ 45 SBMP_SBLFARROWDIS
46 SBMP_SBRGARROWDIS
47 SBMP_COMB0DOWN

48 SBMP_CHECKB0XES

Figure5.14ThepredefinedbitmapsofOS/2PM,declaredinPMWIN.Hwith
the defines SBMP_ and SPTR_.

TheapplicationdescribedinListing5.6presentsyetanotherpeculiarity:Theonly
framecontrolflagthatisspecifiedisFCF_TASKLIST.In fact,thepixelsofthetitlebar
seIvetodisplayallrelevantfactsonVGAresolution.Thisalsomeausthatyouhave
to give up the system menu and the maximize and minimize icons. In order to
terminatetheapplication,acasebranchisintroducedtointercepttheclickingofthe
left mouse button, to which the application will respond by posting the message
WM_QUIT.

Theprogram'slogicconcentratesonprocessingthemessageWM_PAINT,anditwill
can the functions Sfeozopo£.7tferso and Sfeozolco#sO defined in the code. Displaying the
mouse's icon works by first retrieving a handle to each of the bitmaps through the
Wz.7tQ#enysyspo€.77fer() function, and then using this handle in a call to Wz.7td7-¢zuPo£.7t-
ter().. "

®®,

hptr = Wi.nQuerysyspoi.nter(HWND_DESKTOP, j, FALSE) ;

|.f(!hptr)
conti.nue ;

Wi.nDrawpoi.nter(hps, x, y, hptr, DP_NORMAL) ;
®®

2:2:8 0S/2 2.1 Wor:laplace shell progranming

The test performed on the hptr handle allows the program to detect the icons in
the range from 1 to 22 with which there is no associated bitmap. The coordinates x,
y are calculated in such a way as to display all bitmaps in one horizontal row in the
upper half of the screen.

The operation for displaying the system bitmaps is somewhat more complex. The

fTc±.ous:obeFan€dareyinLoadstring(),WinGetsysBitmap(),andwinDrawiBitmap().The first function is used to retrieve from the resource file's STRI NGTAB LE area the
name of a system bitmap as it is described in PMWIN.H. Wz.7tGe£SysBz.£777flp() returns
ahandletothesystembitmap.Thishandleisthenpassedtowz.7tDr¢zoBz.£777¢p(),where
the foreground color is set to CLR_WHITE and the background color is set to
C L R_B LAC K. The display flag is set to DBM_N 0 RMA L.

®®

for(1. -1; 1` < 48; i++)
i

i.f(!Wi.nLoadstri.ng(HAB(hwnd),

0,
1,

si.zeof(buffer),
buffer))
conti.nue ;

'

l.f(1' -7)
kH;

®

hbm = Wi.nGetsysBi.tmap(HWND_DESKTOP, i.) ;

Wi.nDrawBi.tmap(hps,

hbm'

NULL,

&pt,
CLR_BLACK,

CLR_WHITE,

DBM_NORMAL) ;

®®,

Moving an Icon in a Window
InOS/2PM,multipleactionscanbeperformedbydr¢ggz.73g8droppz.ngvariouskind
of icons. This is also true for WPS objects inside a generic folder. The copying or
moving of a file from one directory to another requires you to select a graphical
object-an icon-and then to drag it into some other position on the screen. You do
this by keeping the right mouse button (2) depressed.

What we have learned about displaying PM's predefined bitmaps is extremely
useful for designing an application that can resort to icons for performing practical
operations. Figure 5.15 shows the output of an application that displays an icon in
its client window and allows you to drag it around with the mouse.

Input Tools and Resources 22J9

Figure 5.15 Dragging a graphical object in a PM application by taking advan-
tage of the cursor's functionality.

Before examining the sample code, 1et's consider the possible solutions. There are
three hypotheses that can be considered:

• Replacing the mouse's icon with that of the object to be dragged
• Simulating a complete drag & drop operation
• Implementing a true OS/2 2.1 drag & drop operation, taking advantage of the

appropriate API functions
Of these three ideas, the third one is the one that should be implemented. A

completeexaminationoftruedrag&droptechniqueappearsinChapter12.The first
solutionseemssimpletoimplementandoffers,inpracticalterms,acceptableresults.
Itisanalternativethatcanbeinterestingtoexplore.Thesecondisbasedonconstantly
redrawing the dragged object's icon wherever the mouse is currently located. The
overall outcome is disconcerting because of ffickering that is difficult to get rid of.
So, in practice, taking advantage of the Drg API of PM is the way to go to implement
a professional looking drag & drop operation.

Ifyoureplacethemouse'siconwiththatoftheobject'sicontobemoved,thewhole
chore is assigned to PM, thus preventing further intervention. The only negative part
ofthisisthedisappearanceofthemouse'straditionalarrowpointer.hListing5.7you
can see the application's source code.

2:30 0S/2 2.1 Workplace shell progranming

The icon is loaded as soon as the WM_C REAT E message is received. At that moment,
the overall on-screen size of icon is computed, and the coordinates are stored in a
staticRECTLstructure.Thepositionofthelowerleft-handcornerisstoredinaP0INTL
structure that will be used later for displaying the icon while processing the
WM_PA I NT message.

®,,

case WM CREATE:

[
// 1oadi.ng the poi.nter
hptr = Wi.nLoadpoi.nter(HWND_DESKTOP, NULLHANDLE, ID_PTR) ;
// poi.nter di.mensi.ons
rc.xRi.ght = SYSVAL(SV_CXP0INTER) + STARTX ;
rc.yTop = SYSVAL(SV_CYP0INTER) + STARTY ;
rc.xLeft = ptl .x = STARTX ;
rc.yBottom = ptl .y = STARTY ;

// i.con di.mensi.ons
uscx = (USHORT)SYSVAL(SV_CXP0INTER) ;
uscy = (USHORT)SYSVAL(SV_CYP0INTER) ;

)
break ;

®,

case WM PAINT:

[
HPS hps ;

hps = Wi.nBegi.npai.nt(hwnd, NULLHANDLE, NULL) ;
Gpi.Erase(hps) ;
Wi.nDrawpoi.nter(hps, ptl.x, ptl.y, hptr, DP_NORMAL) ;
Wi.nEndpai.nt(hps) ;

)
break;

®®

The logic that governs the movement of the icon is concentrated in the processing
ofthewM_BUTTONIDOWNandwM_BUTTONIUpmessages.Whentheleftmousebuttonis

pressed inside the client window of the application, you must first check that the
cursor's coordinates fall inside the area occupied by the icon on the screen.

®®,

case WM_BUTTONIDOWN:

I
// check i.f we are cli.cki.ng on the i.con
ptl.x = (LONG)SHORTIFROMMP(mpl) ;
ptl.y = (LONG)SHORT2FROMMP(mpl) ;

// ski.p i.f not on the i.con
I.f(!Wi.nptlnRect(HAB(hwnd), &rc, &ptl))

break ;
®®®

)
®®®

Input Tools and Resources 2:31

Once this test is passed, the boolean identifier f D r a g is set to T RU E.

®®

fDrag = TRUE ;

®,

Then, replace the mouse's arrow pointer icon with the icon corresponding to the
imagepresentinthewindow.Toachieveaperfectoverlapbetweenthemouse'sicon
and the image in the client area, it is necessary that the feof spot be located exactly in
the icon's center. The function Wz.7tse£Poz.77ferpos() requires as its parameters the
handle of the desktop window and the new coordinates expressed in screen units.
The central point of an icon is easy to find, starting from the lower left-hand side of
the rectangle that corresponds to the image's on-screen size. Once that position has
beencomputed,itscoordinatesareconvertedintoscreenunitswithWz.7tM¢pWz.7idozo-
Points().

®,®

// overlapped new mouse poi.nter to the exi.sti.ng i.con
ptl.x = rc.xLeft + uscx / 2 ;
ptl.y = rc.yBottom + uscy / 2 ;
Wi.nMapwi.ndowpoi.nts(hwnd, HWND_DESKTOP, &ptl ,1) ;
Wi.nsetpoi.nterpos(HWND_DESKTOP,

(SHORT) ptl . x '
(SHORT)ptl.y) ;

®®®

The display of the new mouse pointer that corresponds to the selected icon is a
task performed by the Wz.7tsefpo€.7tfer() function.

// show new poi.nter
Winsetpoi.nter(HWND_DESKTOP, hptr) ;
break ;
®,,

Once these operations are complete, the mouse pointer looks like the selected icon,
and it will look that way as long as it stays within the client window. If it is moved
outside the client window, the mouse pointer changes into the standard icon for the
underlying window. On the title bar, that is the standard arrow, or over the sizing
border it will be the double-headed arrow, and so on. To ensure that if and when the
mouse returns to the client window, the selected icon gets restored automatically,
you must intercept the WM_MOUS EMOV E message. If the mouse movement is not the
consequence of selecting the icon-that is, if fDrag is FALSE-then the default
processing is performed by Wz.77De/W.77dozt7Proc() : the window's predefined icon (the
traditional arrow) is displayed on the screen. h the other case, the mouse pointer
icon is overridden by the previously selected icon. This solution is actually a little
redundant-for each WM_MOUS EMOV E some time is wasted forcing the repeated ap-
pearance of the pointer corresponding to the icon. However, it is a way to ensure that
theprogramworkscorrectly.In fact,draggingtheiconislimitedtotheclientwindow

232 0S/2 2.1 Workplace shed progranming

area. In this case the mouse pointer is represented by the northwest pointing arrow.
When it returns to the client window, the cursor again changes into the selected icon.
The problem is solved by calling Wz.7tse£Poz.7tfer().

case WM_MOUSEMOVE:

l.f(!fDrag)

break ;
Wi.nsetpoi.nter(HWND_DESKTOP, hptr) ;

return (MRESULT)1L ;

®®,

Thefinalpartofthelogicgovemingthemovementofaniconisthatregardingthe
WM_BUTT0 N 1 U P message. The first operation to carry out is that of checking that the
mousebuttonistrulyreleasedafterapreviouswM_BUTTONIDOWNperformontheicon:
You have to test the value of f D r a g .

®®®

case WM_BUTTONIUP:

// ski.p i.f we are not draggi.ng t
l.f(!fDrag)

break ;

// stop draggl.ng
fDrag = FALSE ;

®,,

The values contained in the two S H 0 RT of mp 1 refer to the coordinates of the mouse
on the screen, expressed in client window units. The mouse has been moved on the
screen, but its position is unchanged with reference to the icon-it is always at the
centeroftheobject.Computingtheperimeteroftherectangleoccupiedbythemouse
cursor on the screen is therefore a simple mathematical operation based on the value
ofmp1.

// calculate new posl.tl.on

ptl.x = rc.xLeft = SHORTIFROMMP(mpl) -uscx / 2 ;

ptl .y = rc.yBottom = SHORT2FROMMP(mpl) -uscy / 2 ;
rc.xRi.ght = uscx + rc.xLeft ;
rc.yTop = uscy + rc.yBottom ;
®,,

Now assign the mouse pointer the typical look of the selection arrow by calling
Wz.7tQ#enysyspoz.7tfcr() and Wz.7tse£Poz.7tfer(). The mouse's arrow will be positioned
exactly at the center of the icon as soon as it is redrawn in its new position, while the
icon's bitmap is always fixed in its starting position-the ordy item that is moved is
the mouse's cursor (see Figure 5.15).

Input Tools and Resources 2:33

•,®\

// show arrow poi.nter
Wi.nsetpoi.nter(HWND_DESKTOP,

Wi.nQuerysyspoi.nter(HWND_DESKTOP,

SPTR_ARROW,TRUE)) ;

®®®

The output of the icon is an operation that affects the processing of the WM_PA I NT
message. By invalidating the whole client window you can make sure that the icon
is displayed at its target on-screen position.

// show the i.con i.n the cli.ent area
Wi.nlnvali.dateRect(hwnd, NULL, FALSE) ;

break ;

®,®

Before abandoning the application, you must destroy all objects used by the
program, including the icon's handle.

®®,

case WM_DESTROY:

Wi.nDestroypoi.nter(hptr) ;

break ;

®®,

The technique used in Listing 5.7 can be useful to implement applications that
require the user to handle small graphical objects or bitmaps.

Moving a Bitmap in a Window
The technique used for moving an icon can be extended to graphical objects that are
a little larger, like bitmaps. However, you will have to face the problem of increased
ffickering and of the mouse being less responsive to the user's movements.

When you need to move bitmaps that are larger than an icon, a good solution is to
draw on the screen an outline rectangle that is the same size as the icon, and then
moveonlytherectanglecorrespondingtothemovementsofthemouse.Thissolution
isofferedbythesystemitself,whentheuserismovingawholewindow:Thewindow
remains fixed in its starting position on the screen, while the user moves an outline
of the window. Only when the user releases the left mouse button will the window
actually be transferred to the new position.

Although the logical scheme to follow is simple and linear, when you try to
implement it you will face problems due to flickering and to a certain degree of
complexity of the code. In fact, the operations are:

2:34 0S/2 2.1 Workylace shed progranming

• htercept the pressure of the left mouse button, and decide whether that action
was performed in an on-screen rectangle occupied by the bitmap;

• Position the mouse cursor exactly at the center of the bitmap's rectangle;
• Intercept the WM_MOUSEMOVE message, and decide whether it is subsequent to a

previous WM_BUTTONI DOWN message;
• In processing the WM_MOUS EMOV E message, you have to display/clear a rectangle

that is the same size of the object being moved (the operation can be performed
directly in the code dealing with the message or forced by sending a WM_PAI NT
message);

• Intercept the message WM_BUTTONIUP , and decide whether it is subsequent to a

previousvalidwM_BUTTONIDOWN,andrepositiontheobject.

These are by no means impossible operations, but to come to our rescue we have
PM's W£.7tTr¢ckRec£() API function, which is designed specifically for this kind of
operation:

#defi.ne INCL_WINTRACKRECT
B00L APIENTRY Wi.nTrackRect(HWND hwnd, HPS hps, PTRACKINF0 pti.) ;

P¢r¢fflefer Description
hwnd Handle of the window where the image is being moved
hps Handle of the presentation space of the window given by hwnd
pti Pointer to a TRACKINFO structure
Retwn vahae D escription
BOOL Success or failure of the operation

The first parameter identifies the window inside which the dragging operation is
performed. The second one refers to the presentation space of that window, while
the third is the address of a TRAC KI N F0 structure.

Withwz.7tTr¢ckr7t/o()theapplicationcanassociatethemouse'smovementswiththe
display on the screen of a rectangle the size of which can be set at will to represent
the object you want to move. The task performed by this function is rather complex,
as is its governing internal logic, even though its syntax is extremely simple. To
understand how to use Wz.7tTr¢ckJ7t/a() you must know more about the components
of the T RAG K I N F0 structure:

#defi.ne INCL_WINTRACKRECT

typedef struct _TRACKINFO
I // tl.

SHORT cxBorder :
SHORT cyBorder
SHORT cxGri.d ;

SHORT cyGri.d ;

SHORT cxKeyboa
SHORT cyKeyboa
RECTL rclTrack

Ixput Tools and Resources 235

RECTL rclBoundary ;

P0INTL ptlMi.nTracksi.ze ;

P0INTL ptlMaxTracksi.ze ;
USHORT fs;

} TRACKINFO ;

The members cxBorder and cyBorder let you define the width to assign to the
border of the rectangle to be displayed on the screen. These quantities are expressed
inpixels.WithcxGridandcyGri.d,youdefinetheminimumvaluesthatthefunction
will consider as horizontal and vertical movements. If the movement of an object is
controlled through the cursor keys, then the two members cxKeyboa rd and cy Key -
b o a r d indicate the number of pixels traveled in each direction. W£.77Tr¢ckRec£() must
also know the overall size of the object to be dragged, and the surface that will be
covered by displaying it. The rectangle rcl Track defines the original object to be
moved (in the sample, the on-screen size of a bitmap). After using this function, this
member will contain the target position of the object. The second RECTL structure,
rc18oundary,definestheperimeterboundariesthatdelimitallpossiblemovements.
This quantity most often coincides with the size of a window on the screen or with
the entire desktap window.

The minimal amount of movement that an object can make in the two directions
is expressed in the P0INTL member ptl Ml. nTracksi. ze, while the second P0INTL,
ptl MaxTracksi. ze, describes the maximum size. The TRACKI NF0 structure is com-
pleted by a value containing the flags described in Table 5.13. These flags describe
the kind of dragging that is to be performed.

h Listing 5.8 you can see a concrete example of moving a bitmap inside the client
area of a window.

The program will display a bitmap, previously created with ICONEDIT.EXE, in a
preset position of the client window. Pressing the right mouse button-and thus
intercepting the WM_B UTT0 N 2 DOW N message-will first verify that the mouse's posi-
tion is inside the rectangle occupied by the bitmap. If this test is passed, then
TRAC K I N F0 structure is compiled, and the T F_MOV E flag is set.

The starting rectangle corresponds to the bitmap's position in the client window,
while the rectangle describing the dragging boundaries is equivalent to the whole
client window.

When the Wz.7iTr¢ckRec£() is called, no presentation space handle is given, since it
will be the salne Wz.7t+Tr¢ckRec£() function that will take care of identifying a presen-
tation space according to the window handle. Wz.7tT7'flckRcc£() does not return any
value until the mouse button is released (and in the window procedure no message
will be received regarding this operation). To place the bitmap in its new position it
is sufficient to base the operation on the contents of t 1. . r c 1 T r a c k.

h Figure 5.16 you can see how the application looks immediately after the mouse
button has been pressed on some pixel of the bitmap in the client window.

As long as you keep the left mouse button pressed, you can move the bitmap
outline on the screen. Figure 5.17 shows this phase of the application's execution.

2:36 0S/2 2.1 Workplace shell programming

Table 5.13 Options to Instruct How Wt.7cTr¢ckRecf() Should Behave When
Dragging an Object

Flag Vahae Description

TF LEFT
TF_TOP
TF RIGHT
TF BOTTOM
TF_MOVE
TF_SETPOINTERPOS

TF_GRE

TF_STANDARD

TF ALLINBOUNDARY

OxOool
Ox0002
0x0004
0xOOO8

0xOOOF
0xOO10

Drag the left border of the rectangle.
Drag the upper border of the rectangle.
Drag the right border of the rectangle.
Drag the lower border of the rectangle.
Drag any border of the rectangle.
Repositious the pointer according to the
presence of the previous flags: TF_LEFT,
TF_TOP, TF_RIGITT, TF_BOTTOM, and
TF_MOVE.

Ox0020 Limits the action of dragging to the area
specifiedbythememberscxGridandcyGrid
in the TRACKINFO structure.

Ox0040 The height and width of the grid are all
multiples of the height and width of the
border.

OxOO80 Dragging the rectangle is not allowed
outside of the area identified by the
rclBoundary member of the TRACKINFO
structure.

TF VALIDATETRACKRECT 0xO100
TF PARTINBOUNDARY 0x0200

Validates the dragged rectangle.
Draggingtherectangleispartiallyinsidethe
area identified by the rclBoundary member
of the TRACKINFO structure.

The Wz.7tT7i¢ckRec£() function can track all mouse movements thanks to its own
message loop that operates independently of the application. This will be true until the
user releases the mouse button, or presses the ESC or the Enter key. However, you can
also track a rectangle without having to press the left mouse button, provided, though,
that the action was initiated by some command different from pressing the left mouse
button.ThisiswhathappeuswhenyoumoveorresizeawindowbyselectingtheMove
or Size command from the title bar menu. This will move the whole window by calling
the Wz.7tT7i¢ckRcc£() function. The example in Listing 5.8 lets you drag the bitmap with
the keyboard cursor keys after pressing the Enter key.

ASSOCTABLE
The ASSOCTABLE resource is a kind of compromise between a text resource and a
binary resource. The outcome is evident and closely related with the operational
philosophy of WPS. It allows an application to define one or more object generators

Input Toads and Resources 2:3;7

Figure 5.16 The selection of a bitmap with the mouse will cause the
outline rectangle to appear around the image.

Figure 5.17 Tracking the mouse after the bitmap has been selected and
after calling Wt.#Tr¢ckRecf().

2:38 0S/2 2.1 Wor:lqalace shell programming

inside the Te77cpzflfes folder; this will allow you to originate files simply by dragging
an object. Applications Hke Lotus 1-2-3, Describe, and many others, furnish their RC
fileswithanASSOCTABLEresourcetoextendthenumberofobjectsthatcanbepresent
in Tc774pZ¢fes. The creation of a new Lotus 1-2-3 wdrksheet simply requires opening
the folder and dragging the appropriate object (Figure 5.18).

The syntax of ASSOCTAB LE is textual, although it will reference the name of a file
containing an icon, like this:

ASSOCTABLE assoctablelD

(
assocname, extensi.ons, flags,1.confi.1e

)

The resource file can contain a number of association tables, and each one must be
identified by a unique ID (assoctablelD) defined in the header file. The body of an
ASSOCTABLE must contain one or more definitions for establishing the kind of
document (file) that is to be associated with an application. The syntax will support
the presence of a text string enclosed by double quotes (a s s ocn ame) that describes
the kind of file generated by the application. Any text string is valid. However, it is
agoodpracticetoavoidoverlylongnamesbecausetheyareawkwardtohandieinWPS.

¢=.;f¥"dE;eedver sh#e, osraEP,uns eye%L HPLEget"D Fg

ftesourRE,kehop #
PPODINFO BMP

a -.: - . X- RERE

ill RE RE RE E RE RE in
Car BitmapBMP Colorpalette 1993Europeonchempions 1993ltallonchamplons HERE DataFile DIgitalAudlowAV

RE ill in EE E RE`RE RE RE RE
DigltalAudiowAV Microformat]cFerFAX MIDIMID MIDIMID Sourcefilec Sourc8filec Folder FontpalettB Iconlc0 MetafileMET

RE RE RE RE EE
PIFfilBPIF PointerpTF` Pnnter Program Schemepalette

RE
iEHERE

Figure 5.18 The Templates folder contains a standard object and objects
created by installed applications.

Input Tools and Resources 2:39

Table 5.14 Flags of ASSOCTABLE

Flag Value D e scription

EAF_DEFAULTOWNER 0xOool Defines the owner application.
EAF UNCHANGEABLE 0x0002 The definitionis unchangeable.
EAT REUSEICON 0x0004 Allows to reuse the icon referenced in a

previous ASSOCTABLE directive.

The extensi. ons item refers to a text string (also enclosed by double quotes) that
corresponds to the extension of the document ffles produced by the application. The
classificationoffilesaccordingtothe7t¢777e.exfe7tsz.o74sytemisnotatypicalfeatureofthe
IIfFsfilesystem,butitissoingrainedinpcusersthatitwillprobablyneverdisappear.
If an appfication generates documents that are characterized by a certain constant
extension(DOC,TXT,XXX,orwhatever),thenitisconvenienttoindicateitinthesyntax
ofASS0CTABLE.Thefileswiththatparticularexteusionwillautomaticallybeassociated
with the application, and if they are displayed in WPS, they will disguise themselves
with the indicated icon. The flags of ASSOCTAB LE are Hsted in Table 5.14.

The name of a file containing the icon to associate with the specified documents
completesthesyntaxofASS0CTABLE.Figure5.19showstheTe77zpZ¢fesfolderwiththe
objectproducedbytheASSOCTapplicationlistedinListing5.9.

RE RE RE RE
EdirmEMpcoEBtt"993EffiEChffin"9ffienChanpffiEHHinDa`afaD'g'talrfu°WAVRE

DIgrtalAudiowAV MicTofomlaticfocFA>{ MIDIMID MIDIMID Sourcofilec Sourc8filec Folder Fontpalette lconlco MetafilBMET

EE Ea E Ea EE
PIFfilepIF PoinlerpTR Pmter Program SchemBpalette

RE
iEEEEHE

Figure 5.19 The ASSOCT application and the object produced automatically
in the Templates folder.

Menus
The term 77te71# does not identify a specific item, but a series of windows that can be
quitedifferentonefromanother.Themenubarappearsbeneaththetitlebar.Within
this bar there are some text strings known as fop-Zez7ez menus. Generally, by selecting
a top-level menu you will cause a drop-dozure menu to appear, which can, in turn,
contain yet another, second-level, drop-down menu. The window to the left of the
titlebarisalwaysamenu.WiththeintroductionofWPS,anewkindofmenuhasbeen
introduced,knownasthezt7z.7tdozoco7tfe#£771e74#.Theshilaritiestoadrop-downmenu
areseveral;theonlydifferenceisthatitcanbepositionedvirtuallyanywhereonthe
screenandthatitspositionisnotrelatedtothemenubar.

The shape, appearance, and display mode can vary substantially. The common
element is that au menus are always windows that belong to the predefined class
WC_MENU . Despite the fact that menus are actually windows, it is quite rare to use
W£.7ic7'e¢few£.7idozoo, and usually only in very special cases that will be examined in
thischapterandinChapter9.Ahaostinvariably,thedesignerwillprefertodefinethe
overau structure of the menu bar and the related drop-down menus directly in the
resource file, through a MENU directive. Yet another element that can cause some
confusion has been introduced by WPS. The new interface of OS/2 2.x systems
requiresthatthesoftwaredesignermodifythestandardbehavioroftheApltofollow
the development model of WPS. We will discuss these situations, starting with the
explorationofthetitlebarmenu,thenproceedingtothemenubar,themenutemplates,
the accelerator tables, and the window context menu.

Let's take a look at Figure 6.1, containing Lotus 1-2-3 for PM. File and Edit are two
top-level menus because they appear in the menu bar. To the left of the titlebar you
can also see the icon of the titlebar menu.

Whenatop-1evelmenuisselected,mostoftenadrop-downmenuwiubedisplayed
on the screen. Figure 6.2 shows the drop-down menu that is associated with the File
top-level menu in Lotus 1-2-3.

Adrop-downmenuiscomposedofstackedoptionsdirectlyselectablebytheuser.
Everysingleoptionisalsoknownasa77te7t#z.fe77LTheresourcefilesyntaxprovidesa
MENUITEMdirectivefordescribingtheseitems.Theselectionofatop-1evelmenuwill
usually display a drop-down menu from which a single option can be selected with
the mouse, keyboard, or accelerator (¢ccezer¢fors are key combinations expressly
definedbythesoftwaredesignertomckeiteasierfortheusertoperformaselection).

241

24;2 0S/2 2.1 Wor:laplace shell progranming

gr 2.~a. .foL,r Os/2t LS gd{t#JSSrkshfet Ba8ge §rapht j2ata j±t[|ftg fuuli#isas; ff # -rfe# F¥¥lrtyffieRE*
A :A1equE+` per. rna * fu *" *"*#toihiFT----aL

_REfflELifRE^ lEL"_ELJ ife,]ELJ[E¥J! IffiiLH]!¥~]REr¥]RE¢HRE.REd*ysffi=lgffiEdF¥RE *riS#rfefiferf=¢]

i*,

ffl_-- I:1± jLrffl }O]B|
------JIJ-------------.I ,I I

HI I L i J ,
\--- .I---,-- -lTF i--tL-
i---:-:----.:----

==1=I--_- _ _----I--,, ==-
ii-,--. i -_i
-- - - -

----~, -
t`-----±= __._+= I~-----I___----i---.-,I,-,,, I----+i----+-I,i- ---- --I--=E±- --

+---+-
-----~®®.,®®

¥
\,

.RE ',.-. ife
SHEETIWG2 StiEET2WG2`

Figure 6.1 Lotus 1-2-3 2.0 for OS/2 as a sophisticated menu bar.

Figure 6.2 A typical drop-down menu in Lotus 1-2-3.

Me7t#s 243

Each standard PM window will also have a menu to the left of the titlebar. h the
16-bit world, this was called the system menu, although the newer terminology is
fi.fzez7¢r 777e7i#. This menu is characterized by a custom icon for the application and an
associated drop-down menu. By pressing the left or right mouse button on this icon,
or by pressing the ALT+Spacebar key combination, you will make the drop-down
menu appear (Figure 6.3).

The titlebar menu will also appear whenever you press the left mouse button once
over an iconized window (Figure 6.4). This situation, though, is quite rare since the
introduction of the WPS interface.

The minimurn common denominator among all these objects is that they all belong
totheWC_MENUclass.Thefactthattheyarewindowsisalmostirrelevantwhencreating
menus.PM'sAPIfurnishesthesoftwaredeveloperwitharichsetoftoolsforcreating
andmanagingmenus,whichcanbeusedtodiversifyandcustomizeapplications.We
will discover the true nature of PM's windows by examining a number of listings of
growingcomplexity.Whatisimportanttonoticeisthedifferencesthatareoftenfound
between the API conventions and the development model adopted by WPS.

The Titlebar Menu
The titlebar menu appears in every PM top-level window that has the FC F_SYSM ENU
flag set (the name of this flag has not been changed so as to support backward

Figure 6.3 The titlebar menu of the OS/2 2.1 System Editor.

2:44 0S/2 2.1 Wor:laplace shell progranming

Figure 6.4 The titlebar menu allows you to control an application also when
it is minimized.

compatibility). According to style rules, each top-level PM window should provide
thiskindofmenutoallowuserstocontroltheapplicationeveniftheydonothavea
mouse. This can be done by setting the FCF_SYSMENU flag as a drop-down menu
containing eight options, divided into three areas by horizontal separation bars.

Oftenitwillnotbepossibletoselectalloptionsatalltimes,sincethefirstfivecontrol
thepositionandsizeofawindowonthescreen,andareincertainsituationsmutually
exclusive. This is the first piece of evidence of the dynamic control of the behavior of
awindowaccordingtothecontextinwhichitisused.Table6.lliststhemenuoptions
thataregeneratedbysettingtheFCF_SYSMENUflag.

As we have seen in Chapter 4, each structural element of a generic PM window is
assigned an ID by the frame window. For the titlebar menu, this ID is F I D_SY SM EN U.
This means that the icon of this menu is a frame control of the WC_MENU class. Then,
there is the associated drop-down menu. Naturally, this is also a window belonging
to the WC_M ENU class. Since its contents are standard (Restore, Move, and so on), each
option is also assigned a unique ID, as is su]rm.arized in Table 6.2.

The selection of any of the titlebar menu options is handled by PM through the
WM_SYSC0MMANDmessage,addressingitexclusivelytotheframewindow.

Me7t%s 245

Table 6.1 The Options of the Titlebar Menu in a PM Application

Options D es cription

Restore

Move

Size

h4ininrize

Maxinrize

This option is active only when a window has been maximized or
ndnirfuzed: its purpose is that of restoring the window to its size and
positionbeforeitwasmaximizedorminimized.
The movement of a window on the screen can be performed with the
mousebykeepingitsleftbuttonpressedoncethepointerispositioned
overthewindow'stitlebar.WithMoveyoucanachievethesameresult
through the keyboard. After selecting this option, the mouse pointer
changes into a four-headed arrow; by using the cursor keys and then
pressing Enter you can set the window's new position permanently.
Move can be selected only if the window has a titlebar, that is, if the
flag FC F_TITLEBAR is set.

Withthisoptionyoucanresizeawindowinanyofthefourdirections
by using the cursor key. With a mouse the same action is performed
directly on the screen by acting on the window's sizing border. A
window can be resized only if it has the frame control flag
FC F_S I Z E B 0 RD E R set.

Selecting this option is equivalent to pressing the left mouse button
over the mhimize icon that appears to the right of the titlebar.
Minirfuzecanbeselectedonlyifthewindowhasbeencreatedwiththe
flag FC F_M I NBUTTON or FC F_M I NMAX set.

Selecting this option is equivalent to pressing the left mouse button
over the maximize icon that appears to the right of the titlebar.
Maxinrizecanbeselectedonlyifthewindowhasbeencreatedwiththe
flag FC F_MAXBUTTON or FC F_M I NMAX set.

This option will hide the window from the user's view, parking it in
the Mirinrized Window Viewer container.
To close a window, the only direct tool provided by the system is the
selectionoftheCloseoptioninthetitlebarmenu.Bydefault,adouble-
cHck with the left mouse button over the titlebar menu icon will select
the Close option and thus terminate the application.

Window list The selection of this option allows you to directly access the Window
List, which records all active tasks in the system.

WM_SYSCOMMAND 0x0021 .Descr£.pfi.o#

mpl USHORT uscmd Cine of the defines with the s c_ prefix
mp2 E::gRE::;oo=::r i:pi#:t!e:::oetriiae:d:;#i.:rF(eFr:;:;

Return value Reserve d

2A6 0S/2 2.1 Wor:laplace shed programming

Table 6.2 The IDs of the Options in the Titlebar Menu of PM

Option Vahae D escription

SC SIZE 0x8000
SC_MOVE 0x8 0 01
SC_MIN"IZE 0x8 0 02
SC_MAXIMIZE 0x80 03
SC_CLOSE 0x8 0 04
SC_RESTORE 0x8 0 08
SC_TASKMANAGER 0x8 011
SC_HIDE 0x8 02a

Size Option
Move option
Minimize option
Maxinize option
Close option
Restore option
Window List option
Hide option

This message is unknown to many programmers, unless they are adventurous
enough to try subclassing a frame. WM_SYSCOMMAND reaches only a frame window
procedure,neveraclientone.ByinspectingPMWIN.Hyouwindiscovermanymore
defineswiththesc_prefix(Table6.3)thatcomplementthoselistedinTable6.2.These
are other IDs that can be added to the standard ones in the titlebar menu.

The number of values for the titlebar menu is an indicator of the variability of this
drop-downmenu'slook.Toseethismoreclearly,justdisplaythetitlebarmenuofany
folder of WPS, and compare it with the equivalent drop-down menu of the system
editor. The difference is enormous.

The Titlebar Menu and WPS
h Chapter 2 we discussed the development model to follow when creating a PM
application. Menus are affected by the model, and even more particularly by the
ergonomic design and behavioral rules of the program. h theory, you can choose
among:

• Model CUA 89
• Model CUA 91
• VVPS interface.

From the point of view adopted in this text, this is No probze777¢! There should be no
doubtaboutit:YouhavetodevelopWPScompliantapplications.Thischoice,though,
is somewhat muddled by PM's API conventions, which while enriched by new
functions in versions 2.x, are still tied, for compatibhity reasons, to the CUA 89 model
introduced by the first versions of the operating system.

An example is given by the system menu. The API provides the FC F_SY SM E N U flag
and the FI D_SYSMENU ID. It is important to note that when you create a standard
windowyouactuallyobtainadrop-downthatisnotcompliantwiththerulesofWPS.
Fromthispointon,wewillgivenewmeaningtotheexpressionge7zer{.cPMappzz.cofz.o7t.
We will mean a program that identifies itself with a window on the screen, associated

Merms 2A;7

Table 6.3 The Defines Introduced by the SC_ Prefix, and Used by the WM_SY SCOMMAN D
Message in mpl

Option Value

SC_NEXT
SC_APPMENU
SC_SYSMENI
SC_NEXTFTENE
sC_NIXTwneow
SC_RELPREYS
SC_HELPINDEX
SC_HELPEXTENDED
SC_SWITCHPANELIDS
SC_DBE_FIRST
SC_DBE_LAST
SC_BEGINDRAG
SC_ENDDRAG
SC_SELECT
SC_OPEN
SC_CONTEXTMENI
SC_CONTEXTHELP
SC_TEXTEDIT
SC_BEGINSELECT
SC_ENISELECT
sc_wrmow

Ox8005
0x8006
0x8007
0x8009
0x8010
0x8012
0x8013
0x8014
0x8015
0x8018
0x801F
0x8020
0x8021
0x8022
0x8023
0x8024
0x8025
0x8026
0x8027
0x8028
0x8029

with a titlebar menu rather than a system menu. Then there is the zt7£.77dozu co77fex£
771e7ttt, a menu that is identical to the titlebar drop-down, though it is displayed
anywhereintheclient.Often,thetitlebarmenucanenhancethelookofawindow.
Furthermore,anditisimportanttobeawareofthis,thechosendevelopmentmodel
is that of SDI.

It is very convenient to get a menu displayed by pressing the right mouse button
any place over an object. WPS has accustomed users to operate this way. This
operation, however, does not produce any effect in the system editor and in others
items in the Productivity folder. The system editor and almost all of the ¢ppzefs
provided with the system are old 16-bit applications that were developed before the
release of OS/2 2.x, or that are not compliant with the new style rules. As such, they
should not be followed.

There is a fundamental inconsistency between what you wish to do with menus,
andtheeffectsproducedbytheAPI.Let'sexaminetheAplsregardingtheinteraction
with the system menu; then we will analyze what is necessary to change it into a

2;48 0S/2 2.1 Wor:laplace shed programming

titlebar menu, that is, into an object compliant with the rules of WPS. There is a lot of
work to do and many things to discover here. All new applications written for OS/2
2.1mustfo11owtherulesoftheWPSinterface,whichis,effectively,anewwayofusing
a PC. Menus play a crucial role.

The Apls of PM and the System Menu
The icon that appears to the left of the titlebar is actually a window belonging to the
WC_MENU class, and is identified by the FID_SYSMENU ID. This window provides an
areafortheusertointeractwiththeappfication,andfortheapplicationtodisplaythe
drop-downmenuthatisknown,accordingtotheterminologyintroducedbyCUA91,
as the titlebar menu. This menu can present a wealth of options (Figure 6.5).

Bypressingtherightorleftmousebutton,youwilldisplaythedrop-downmenu,which
isalsoawindowoftheWC_MENUclass.Theconceptthatyoumustunderstandisthis:We
aredealingwithwindows.Forthefirsttime,though,thesearenotwhdowsbelongivg
toclassesregisteredbythecode,butarerepresentativesOfoneofthefifteenpredefined
PM classes. You need to adopt a different strategy with respect to what you have
alreadyleamed,becauseyoucannotcontroltheclass'swindowproceduredirectly.

Figure 6.5 The titlebar menu in the OS/2 System folder.

Me7t7£s 249

UsingtheFCF_SYSMENUflagfreesthedesignerfromallproblems.Totheleftofthe
titlebar, the standard icon will be displayed. If this icon is selected, it will present the
drop-downmenucontainingtheoptionsdescribedinTable6.1.Wecancallthismenu
thesysfe77777ce7t#.Assuch,itisgoodprogrammingpracticenevertochangeit,leaving
in it the ordinary options for handling the window's positioning and sizing. It is
unlikely that a user with a mouse will ever lose time by selecting any of these menu
items. Most often, the only interaction with the system menu will be to double-click
on its icon, an operation which is equivalent to selecting the Close option. This will
close the window and terminate the application.

ThestatusoftheoptionsinthesystemmenuishandledautomaticallybypM.When
a window is maximized, the Maximize options will no longer be selectable. A simple
customization is that of replacing the standard icon with another one. This is what
happens,forinstance,inthesystemeditor.Thefunctionwz.#Cre¢fesfdwz.#dozu()allows
youtoretrievetheapplication'sowniconfromaresourcefile,andthisiconreplaces
the standard icon for the system menu. If you just want a simple system menu, the
onlycodeyouneedtoknowisthatforsettingaFCF_SYSMENU.

Giving a Menu to a Window
Let's have a look at the menu bar. A menu bar (or ¢cffo7t bar) is simply a window. This
window can be created by calling the Wz.7tc7'e¢fewz.77dozu() function, as in au examples
seen in the preceding chapters. It is also a resource according to the development
modelofPM.Itis,however,preferrabletodelegatethegenerationofamenutoPM's
API by reading and loading a 77ze7z# fe77cpZ¢fe defined in the resource file. The rules to
follow when writing a menu template are very simple, and allow for the easy
maintenance and updating of an application's menu structures.

The first operation when creating a menu is defining a menu template. Once the
menu template has been created, load it and transform it into a window by taking
advantageofPM'sAPI.Eveninthiscase,thereareanumberofsolutionsavailableto
the application's objectives. Once a window has been provided with a menu, it is
necessary to modify the source code in order to catch the messages generated by the
system when the user makes selections.

Creating a Merm Template
The IBM Too]Jdi does not provide any tool for creating menu templates in a simple
way.Therefore,youmusttypethestructureofamenutemplatedirectlyinaresource
file or in some other ASCH file. As we have seen in Chapter 5, a resource in a RC file
isahaostalwayscharacterizedbyanID;thisisalsotruefortheMENUdirectiveforthe
resource compiler.

ThesyntaxoftheMENUdirectiverequires,inadditiontotheID(chosenintherange
betweenoand64KB),thatyoualsospecifyloadingoptionsandmemorymanagement
Options.

2:50 0S/2 2.1 Workplace shed progranming

MENU menu-i.d [load opti.ons][memory management opti.ons]

I
®®,

I

The ID is essential for its subsequent use with Wz.77C7`c¢£csfdwz.7zdozt7() or with
Wz.77Lo¢dMe7t#(). By using Wz.7tcrc¢fesfdwc.7tdozu(), the generation of a menu bar is
completelytransparenttoth`eprogrammer.Thefunctionitselfperformsalltheopera-
tions of reading the template and transforming it into a series of windows (the menu
bar and the associated drop-down menus). h Chapter 4 we exained the FC F_ flags
involvedinthecreationofframecontrolslikethetitlebar,thesizingborder,thesystem
menu, and others. h the examples thus far, we have used the FC F_STANDARD flag for
the Wz.7tcrc¢£esfdw{.77dozt7() function, and subtracted from it the values corresponding
toFCF_MENU,FCF_ICON,andFCF_ACCELTABLE,accordingtothevariousrequirements.

These three frame control flags govern the generation of those elements that can
adorn a window but that are not necessary for the appfication's functioning. The
second common feature is their operation. Each references a resource declared in the
RC file. To create a window equipped with a M ENU, I CON, and ACC E LTAB LE resource,

you must assign the same ID in order to ensure that Wz.7tcrc¢£Sfdwz.77dozo() works
correctly when the window is created. Ih fact, the presence of any one of these three
flags,andtheabsenceofitscorrespondingresourceintheRCfilewillcausearun-time
errorfortheapplicationandpreventitfromappearingonthescreen.Ihordertoavoid
this, the creation of a menu template and its subsequent use with the FC F_MENU flag
in Wz.7tcre¢£esfdwz.7tdozo() win automatically generate a menu bar in a PM window.

With Wz.77Lo¢dMe7t#() you can instead load a menu template from an application's
resource file.Thevalueretumedbythisfunctionisahandletothemenu,anditisthis
handle that allows you to manage the object and use it effectively in the program.

#defi.ne INCL_WINMENUS

HWND APIENTRY Wi.nLoadMenu(HWND hwndFrame,

HMODULE hmod,

ULONG i.dMenu) :

Parameter
hwndFrame
hmod
idMenu
Return Vahae
HVVND

Description
Handie to the frame window with which the menu is associated
Handle of the module from which the resource is to be loaded
ID of the menu template to load
Description
Handleofawindowbelongingtotheclasswc_MENUorNULLHANDLE
in case of error

This function loads a menu template from the resource file, creates a menu type
window, and displays it on the screen immediately below the titlebar, and thus
reducestheareaavailabletotheclientwindow.Todothis,though,itisnecessarythat
thefirstparametercorrespondstothehandleofaframewindowthat,atthatmoment,
is missing a control with the F I D_M E N U ID.

Mc7t7ts 251

The ID indicated as the function's third parameter must correspond to the ID
specifiedintheresourcefflewiththeMENUdirective.Thesecondparameter,thehandle
ofthemodule,defineswhichexecutablemoduletheresourceshouldbeloadedfrom.
Remember, in the development model of PM, the resource file effectively becomes
part of the executable file, once it has been compiled. The handle hmod must always
reference an EXE file or DLL.

The value assigned as the ID of a menu template must be an integer from 0 and
64Kb. Often, though, it is convenient to resort to a definition through the #defi. ne
directive to make it easier to maintain the application.

®,

MENU RS_MENU

I
®,®

where RS_M EN U is defined like this in the application's header file:

®,,

#defi.ne RS_MENU RS_ALL
®®

This kind of definition corresponds to the strategy outlined in Chapter 5 for
identifyingaresourceoftypeMENU,ICON,orACCELTABLE,thatneedstobeassociated
directlywithawindowatthetimeofitscreation.TheMENUresourceisnotlimitedto
this particular case, as we will see, after getting to know the zu3.77dozo co7tfcxf 77te##.

The load options indicate how the system loader should act when the application
is loaded into memory. Table 6.4 summarizes the two possible options. The resource
will be handled in memory according to what is specified for the memory manage-
ment options (Table 6.5).

ThedefaultcombinationforagenericMENUresourceisLOAD0NCALL,MOVEABLE,and
D I SCARDAB LE.

The Menu Template
htheblockenclosedbythepairofbracesoftheMENUdirective,youhavetoinsertthe
SU8MENUandtheMENUITEMdirectives.Fromasyntacticalpointofview,theactionbar's

Table 6.4 Load Options for a Resource Loaded into the System's Memory

Option D escription

PRELOAD

LOADONCALL

The resource is loaded by the system at the time the applica-
tion is executed.
The resource is loaded by the system only when the
application calls Wz.7tLo¢dMe7i#() or some other function for
creating a window.

2:52 0S/2 2.1 Wor:laplace shell progranming

Table 6.5 Memory Management Options for a Resource Loaded into the System's
Memory

Option D es cription

FIXED

MOVEABLE

DISCARDABLE

The resource is loaded and always kept in memory at some
fixed address.
Theresourceispositionedinmemoryaccordingtotheneeds
of PM's 77te77cony 777¢77¢ger; it can be moved if it is necessary to
avoid excessive memory fragmentation problems.
The resource can be relinquished by the system if there is a
request for more memory than what is available at the
moment; the dz.sc¢rd3.7tg operation consists of the resource's
memory image being destroyed, and thus the need of
referencingtheoriginalcopypresentintheexecutablefflefor
any subsequent reference.

top-level menus can be defined both with a SUBMENU as well as with a MENUITEM
directive.hthefirstcase,inadditiontodefininganewtop-1evelmenu,youalsohave
to create the drop-down menu that must appear on the screen when the user selects
thecorrespondingtop-1evelmenu.WithMENUITEM,theselectionofatop-1evelmenu
corresponds to the direct execution of an action without any other intervening drop-
dour menu.

TheCUA91specsstronglyadvisethatyoudefinetop-1evelmenuswithaSU8MENU,
anddefertheusageofMENUITEMonlyfordescribingthedrop-dozu7tmenus.

MENU menu-i.d [load opti.on][memorty management opti.ons]

(
SUBMENU top-level name, ID

(
®®,

)
®®®

I

The name you give to the SUBMENU directive-top-l evel name-is a text string
enclosed by double quotes, and it is the name that will subsequently be displayed in
themenubar.TheIDmustbeavalueintherangeOnd4Kb.WhenselectinganID,itis
necessary to use unique numbers within each block. It is acceptable, as far as the
resource compiler is concerned, that two menu items belonging to two different
drop-downmenusshareasameID.Whatisessentialisthattheuniquenessisimposed
withineachdrop-downandamongalltop-1evelmenus.ThesameIDscanbeusedfor
different resources in an RC file. Sometimes, though, it is better to assign the same ID
to intemal items of two distinct resources. This is the case, for instance, of a string

Me7t%s 253

specified in a STRINGTABLE and a MENUITEM. This solution is permitted and even
advisable when the application window presents an information area.

The description of a drop-down menu takes place when you declare several
MENUITEMdirectivesinsidetheblockenclosedbybracesafteraSUBMENUdirective.

MENU menu-i.d [load opti.ons][memory management opti.ons]

I
SUBMENU top-level name, ID

I
MENUITEM opti.on name, opti.on ID [,[style],[attri.bute]
®®®

I
®®

)

The opti on n ame is a text string within double quotes that corresponds to the text
to be displayed in a drop-down menu, while the ID is always an integer between 0
and 64Kb. Tables 6.6 and 6.7 list and describe all the styles that you can use to
customize the look of a drop-down menu.

hmostcases,menuitemsaresimplytextstringswithouttheMIS_TEXTstyle,which
is implied. Most of the styles listed in Tables 6.6 and 6.7 should not be used because
they are in contrast with the menu design style rules. The only styles used regularly
are MIS_SYSCOMMAND, MIS_BITMAP, MIS_OWNERDRAW, and MIS_HELP. For others,like

MIS_SEPARATOR, it is much more convenient to resort to a SEPARATOR directive to

produce a horizontal separator bar.
The menu attributes are lirfuted in number (Table 6.7) and directly affect the look

ofeachsingleMENUITEMpresentinaSUBMENUblock.
Tables 6.6 and 6.7 stress the fact that all styles and attributes refer to options

introducedbyaMENUITEMdirectiveinaSU8MENUblock.Previouslywedidnotdiscem
any greater difference between a MENUITEM within a SUBMENU, in contrast with it
appearing i-ediately below a MENU directive. h fact, MENUITEM can originate a
top-level menu free of any drop-down menu. h this case, though, the text string
corresponding to the menu (or, more rarely, the bitmap), cannot present any further
style modification.

The attributes that are used most frequently are M I A_D I SAB LED to disable a menu
item and M I A_C H EC KE D to draw a check-mark symbol to the left of the item's text.

Keyboard Access
chOS/2systemwithoutamouseisalmostaninsulttocommonsense.However,the
CUA 91 specifications cater to those users who do not have a mouse or who are stiu
uncomfortable with the friendiy desktop rodent.

Each option in a menu window-including all those for all kinds of menus exam-
ined up to this point-must allow for keyboard combinations that let the user make
a selection. The titlebar menu is activated by the sequence ALT+Spacebar. The first
top-1evelmenu(theleftmostoneinthemenubar)isaccessedbypressingtheALTkey

Table 6.6 Styles for Customizing and Modifying the Aspect of a Drop-Down Menu

Style Vahae D es cription

MS TEXT

MIS_BITRAP

MIS_SEPARATOR

OxOool Default style for any MENUITEM; it is not
necessary to set it explicitly.

Ox0002

Ox0004

MS_OWNERDRAW 0xO 0 08

MIS_SUBMENI

NIS_hThTMENI

OxOO10

Ox0020

Altemative style for a drop-down menu
option: hstead of describing a` MENUITEM
with a text string, you can use a bitmap.
Predefined style that will make a horizontal
separator bar appear in a drop-down menu.
h place of using this style flag, which will
always require you to specify a text string to
qualify the menu option, you might prefer to
use a MENUITEM SEPARATOR directive,
which produces the same result.
With this flag you can inform the menu
window that you wish to handle all drawing
operations of the menu options and drop-
down menus yourself. This control will be
passed to the owner window of the menu
through the message WM_DRAWITEM followed
byawM_MEASUREITEM.

This flag is used to indicate that a certain
option takes on the role of a SUBMENU: The
use of this flag is limited to the dynamic
creation of a menu, rather than referencing a
template in the resource file.
This flag allows you to create a menu
sparming multiple lines. According to the
CUA specifications, it is preferable not to use
this layout when structuring a menu
template.

MIS_SYSCOMMAND 0x0040 This style will modify the application's
standard behavior in response to a user's
selecting a menu option; the action will issue
a WM_SYSCOMMAND message rather than
the typical WM_COMMAND.

MIS HELP OxOO80 This style modifies the application's default
behaviorinresponsetotheuser'sselection:In
this case the code will receive a W.M IIELP
message when the user selects an option that
has this flag set.

coritirmed

254

TaLble 6.6 (Continued)

Style V ahae D es cription

MS_STATIC OxO100 You can set this flag to avoid a drop-down
menu text option being selected via the key-
board or the mouse: The text appears simply
hike a static piece of information and will not
issue any message to the application.

MIS_BUTTONSEPRATOR 0X0200 #Sashtye:;Wmaesnuus,esdin¥ev±etrs:°# ::Xn:exrcLfiseivt:Lxyt

inside a menu rather than left-align it.

MIS_BREAK °X°4°° v¥:csaELyesF:ale:1:?pal: ainders°i-sdt:#oFoe:ei

Theuseofthisflagisrare,mainlybecausethe
CUA specifications recommend that drop-
down menus should appear in one column
only.

NIs_BREAKSEPARATOR 0X080° pT::i:¥sLeo±=ers]:sd a¥ti:°nmLPsinfi9t=dw:F j?s:

playing a vertical bar between two neighbor-
ing columns in a multi-column drop-down
menu; the same considerations expressed
above still hold.

Table 6.7 The Menu Attributes in PM

AItribute Vahae D es cription

NIA_NODISMISS 0x0020 Prevents a drop-down menu from disappearing after
the selection of an option: The parent will still remain
the desktop.

MIA_FRAMED Oxl000 Encloses the option within a rectangular border.
NIA_CHECKED 0x2000 Draws a check-mark symbol to the left of the indicated

MENIITEM.
NIA_DISABLED 0x4000 Disables the MENUITEM preventing the normal

sending of the message WM_COMMAND, WM_SYS-
COMMAND, or WM_HELP to the application: The
selection via the keyboard or the mouse will be
ineffectual.

MIA_IHLITED 0x8000 The ``highight" in os/2 2.1 consists of displaying the
selected menultem with a three-dineusional ``sculpted"
look.

255

2:56 0S/2 2.1 Workplace shell progranming

or the Flo function key. Furthermore, all top-level menus and all menu items of the
drop-downmenus,provideasecondary.formofaccessgivenbythepairofkeySALT
plus a letter key chosen by the designer when writing the template.

The PM development style rules recommend that the pressing of the ALT key
followed by a letter allow access to a top-level menu, and its associated drop-down
menu (if any). The software designer must therefore pick a different letter for each
top-level menu in order to provide the system with an unambiguous way of refer-
encing each menu present in the menu bar. The chosen letter is known as 77t77e777o7tz.c
code and appears underlined on the screen. The ASCII code of 126-the tilde ~-is the
escape symbol used by the resource compiler to demarcate the mnemonic code for
accessing a menu via the keyboard. For instance, in the case of a File menu-which is
almost invariably the first one in the menu bar-mnemonic code is the letter F:
therefore ALT+F will cause the File menu's associated drop-down menu to be dis-
played. h the menu template the letter F is preceded by a tilde.

MENU RS_MENU

I
SUBMENU "~Fi.le", MN_FILE

I
MENUITEM` "~New", MN_NEW

®,,

)
®,,

)

Adrop-downmenucanthenhaveseveraloptions:hthiscaseitisnecessarytopick
out a unique letter for each MENU ITEM in order to allow for its selection through the
keyboard. There is a fundamental difference between the mnemonics for top-level
menus and those for the options in a drop-down menu. To access the first ones, you
have to press the ALT key and then any of the underlined letters (like F in the File
menu). On the other hand, to select an option in a drop-down menu that is already
displayed on the screen, it is sufficient to press the underlined letter (like N for New).

Merm Style Rules
In order to define the layout of a menu in a PM application, it is necessary to adhere
to some style conventions and follow some practical rules. In the first place, you
should never develop a number of top-level menus larger than the action bar. The
menu bar must only occupy one row alone, corresponding to the window's width.
The user is familiar with this kind of interface, and there is no sound reason for
changing this practice.

Drop-downmenusshouldnotbetoolarge,bothintermsofnumberofitemsaswel1
as in terms of overan width. It is not possible to determine an optimal number of
optionsoralimittothecharactersthatmakeupanoption.However,whatisimportant
istobeawareofwhathappensintheapplication'sclientwindowwhenadrop-down
menu is displayed. (Since the environment is multitasking and multithreaded, it is

Menus 257

alwayspossiblethatthecontentsoftheclientwindowmaychangedynamically,even
if the user is engaged in the selection of a menu option.)

Furthermore,theoptionsthatappearinthevariousdrop-downmenusthatcharac-
terize an application should fall in one of three categories: co77777t¢7tds, exfe7ided co777-
mands, arid state setters (Table 6.8).

h some appHcations the menu bar will have top-level menus ending with an
exclamation mark. This is a convention used to indicate that the selection of that
top-level item win not cause any other drop-down menu to be displayed. The excla-
mationmark(!)doesnotconformtothemodemdevelopmentmodelinspiredbythe
CUA91specifications,andthusisanobsoletestylerulethatshouldnotbefollowed.
This kind of menu item can easily be transformed into an option inside a drop-down
menu(maybesettingitapartfromtheotheroptionsbyusingahorizontalSEPARATOR
bar).

A final consideration relates to the positioning of the help menu in the menu bar.
According to the CUA 91 specifications the help menu must be placed as the last,
rightmost menu in the menu bar, although often it appears to the extreme right. Yet
another important aspect introduced by WPS should not be overlooked. All folders
lack a menu bar! This is not an oversight, but a precise implementation choice of the
designersofOS/2,whichcontrastswiththeruleso£CUA91.Wewillgetbacktothis
subject at the end of this chapter.

Table 6.8 The Three Categories That Classify the Menu Items That Can Appear in
the Menu Structure of a PM Application

C ategory D escription

Co-ands

Extended
Co-ends

State Setters

Anyoptionthatwillcausetheimmediateexecutionofanactionon
part of the application. The text string that defines the option must
present a unique underlined pick letter, but no other special style
attribute.
This option will ultimately execute a command, but it will require
the user to fill in a dialog in order to define all the details that affect
the command to be executed. The text string of these menu items
arealwaysterminatedbythreeperiods(ellipsis)inordertoindicate
that a dialog window (see Chapter 8) will appear after their
selection.
Atypicalexampleofthiscategoryistheopen...command:byselecting
thjsoptionyouwillseeadialogwindowthata]lowsyoutoselectthe
file to be loaded, and the drive and the directory where it is located.
Theperformedactionisrichinflexibifity.
There are some options that behave like toggle switches. For
example, in EPM the Stream Editing menu (Figure 6.6).

2:58 0S/2 2.1 Workplace shell progranming

fas s +

i,Stdr::nmc?edaife¥iiaisi:iE:

Figure 6.6 The Stream Editing menu in EPM is a typical state setter.

Defining Templates
Nowthatyouknowa]laboutbasictoolsandfundamentalstylerules,youcangoahead
andcreateamenutemplatetobeinserteddirectlyinaresourcefile(Listing6.1).

Listing 6.1 A Menu Template in a Resource File

// CNTXT.RC

#defi.ne INCL_WIN

#i.nclude <os2.h>
#i.nclude "cntxt.h"

ICON RS_ICON CNTXT.IC0

BITMAP 100 CNTXT.BMP

MENU RS_MENU

{
SUBMENU "~Fi.le" , MN_FILE

I
MENUITEM "~New", MN_NEW

Me7t#s 259

MENUITEM "~Open", MN_OPEN

MENUITEM "~Save", MN_SAVE„ MIA_DISABLED

MENUITEM "Save ~As...", MN_SAVEAS„ MIA_DISABLED

MENUITEM SEPARATOR

MENUITEM "E~xl.t", MN_EXIT

)
SUBMENU "~Edi.t" , MN_EDIT

I
MENUITEM "~Undo\tAlt+Backspace", MN_UNDO„ MIA_DISABLED
MENUITEM "~Redo\tshi.ft+Alt+backspace", MN_REDO„ MIA_DISABLED
MENUITEM SEPARATOR

MENUITEM "Cu~t\tshi.ft+Delete", MN_CUT„ MIA_DISABLED
MENUITEM "~Copy\tctrl+Insert", MN_COPY„ MIA_DISABLED
MENUITEM "~Paste\tshi.ft+Insert", MN_PASTE„ MIA_DISABLED
MENUITEM SEPARATOR

MENUITEM "~Delete\tDelete", MN_DELETE„ MIA_DISABLED
MENUITEM SEPARATOR

MENUITEM "~Fi.nd...", MN_FIND„ MIA_DISABLED

MENUITEM "~Select all\tctrl+/", MN_SELECTALL„ MIA_DISABLED
MENUITEM "~Deselect all\tctrl+\\", MN_DESELECTALL„ MIA_DISABLED

I
SUBMENU "~Help", MN_HELP

I
MENUITEM "Help ~i.ndex", MN_HELP1, MIS_HELP
MENUITEM "~General help", MN_HELP2, MIS_HELP
MENUITEM "~Usi.ng help", MN_HELP3, MIS_HELP
MENUITEM "~Keys help", MN_HELP4, MIS_HELP
MENUITEM SEPARATOR

MENUITEM "~Product I.nformati.on", MN_PRODINFO

)
)

h this portion of a resource file you will only have two #i. ncl ude directives, in
addition to the template itself: the first one refers to OS2.H and can even be absent
because no defines present in that file are ever referenced in this resource file.
However, its presence is justified by the subsequent additions that we will make to
this file.

The second include fileHNTXT.H-is specific for this application and contains
essential data both for the resource compiler and for the following execution of the C
compiler. Each SUBMENU and MENU ITEM directive in Listing 6.1 has an ID of its own,
and that ID is defined in this specific header file (Listing 6.2).

Listing 6.2 The Header File for the Resource File Listed in Listing 6.1

// CNTXT.H

#defi.ne RS_ALL 300
#defi.ne RS_ICON RS_ALL

#defi. ne RS_MENU RS_ALL

260 0S/2 2.1 Workplace shell progranming

#defi.ne RS_ACCELTABLE RS_ALL

#defi.ne RS_TBMENU 350

#defi.ne sT_CLASSNAME 10

#defi.ne ST_WINDOWTITLE 11

#defi.ne MN_FILE 99

// Defi.nes for MN_FILE menu

#defi.ne MN_NEW 100

#defi.ne MN_OPEN 101

#defi.ne MN_SAVE 102

#defi.ne MN_SAVEAS 103

#defi.ne MN_EXIT 104

#defi.ne MN_EDIT 200

// Defi.nes for MN_EDIT menu

#defi.ne MN_UNDO 201

#defi.ne MN_CUT 202

#defi.ne MN_COPY 203

#defi.ne MN_PASTE 204

#defi.ne MN_CLEAR 205

#defi.ne MN_HELP

#defi.ne MN_HELP1

#defi.ne MN_HELP2

#defi.ne MN_HELP3

#defi.ne MN_HELP4

#defi.ne MN_PRODINFO

The numbers used do not conform to any special rule of PM; they can be defined
simply according to personal preference, like assigning sequential IDs starting from
each top-level menu and including each menu item, and even the SUBMENUs in a
SU8MENU.TheamplechoiceinassigningtheseIDsmakesiteasiertodefinesmallblocks
of sequential values for the single objects, like the File and the Edit menus. Further-
more,aconventionalapproachinwritingamenutemplateisthatofusingstringswith
theprefixMN_,justtoremindyouthattherearemenuitems,followedbythetextthat
appearswithinthedoublequotes,oranabbreviationofthattext.Thisapproachmakes
it a lot simpler to interpret the labels even in the source code, and gives the standard
look to PM applications, fachitating later maintenance of the code.

Itwouldbepossibletoinsertthedefinescontainedintheheaderfiledirectlyinthe
resource file, but, as we will see later, this is not sound practice.

Each ID in the resource file listed in Listing 6.1 will have a corresponding define in
the header file; the whole menu template is identified by RS_MENU , while the two
SUBMENUs File and Edit are identified by MN_FI LE and MN_EDIT. When this menu
template is loaded in an application, it win generate two top-level menus, File and
Edit, starting from the left side of the menu bar.

Me7t%s 261

By carefully examining Listing 6.1, you will have noticed the presence of the \t
symbolinsidethetextstringsoftheEditmenu.Thisnotationindicatesatabcharacter
that serves to align the following portions of text on a virtual tab stop inside the
drop-down menu. The creation of a menu window, in fact, follows the structural
scheme outlined in Figure 6.7.

PMwillalignalltextorbitmapsthatappearinadrop-downmenuinthreecolumns.
Theleftmostcolurrmisleftfreetoholdthepotentialcheck-marksymbolforstatesetter
options.Thecentralcolumn,whichwillbeofvaryingsizedependingonthetextthat
is actually inserted, will acco]rm.odate the string or the bitmap that identifies each
MENUITEM. The third, rightmost column will align all accelerators, and the arrow
symbol for indicating that a drop-down menu option is associated with yet another
SUBMENU. The second SUBMENU is displayed automatically next to the arrow that
indicates it (Figure 6.8).

WiththeadventofWPS,anewkindofsubordinateconditionalmenuhasalsobeen
introduced. It is always a second level menu, indicated by an arrow inside a small
button. The technical term is 77zz.7ci.-pctsfeb"ffo7i (Figure 6.9).

Complex Men Templates
The typical structure of PM applications provides for the presence of multiple top-
level menus associated with drop-down menus. Each drop-down menu must corre-
spond,atthemenutemplatelevel,toaSUBMENUdirective.Adrop-downmenucanin
tun contain another drop-down, and so on. The structure of the menu template
becomes accordingly more elaborate, compared to what you have seen so far.

check-in

ii#I!#j*1\iIIIi

+3ftyJ+q

erator'able
t\arkmenuitemaccel

column text string col
(fixe d (variable (v an
width) width) width)

Figure 6.7 Structural scheme of a drop-down menu in PM.

262 0S/2 2.1 Workplace shed progranming

Figure 6.8 A SUBMENU of a SUBMENU is indicated by the presence of an
arrow in a MENUITEM; its selection will cause the second drop-down menu
to be displayed.

®,,

MENU RS MENU

I
®®

SUBMENU "~Opti.ons" , MN_OPTIONS

[
MENUITEM "~Search" , MN_SEARCH
MENUITEM "~Replace", MN_REPLACE
MENUITEM "~Goto", MN_GOT0

SUBMENU "~Fonts", MN_FONTS

I
MENUITEM "~Helveti.ca", MN_HELVETICA
MENUITEM "~Couri.er", MN_COURIER

MENUITEM "~Ti.mes", MN_TIMES

)

SUBMENU "~Background", MN_BACKGROUND

[
MENUITEM "~Whi.te", MN_WHITE
MENUITEM "Re~d", MN_RED

MENUITEM "~Blue", MN_BLUE

Menus 263

]
®®

)
®,®

).
®®®

TheFontsstringappearsinthedrop-downmenuthattheapplicationdisplayswhen
Options is selected. To the far right of the MENU ITEM, a right-pointing arrow means
that there will be yet another drop-down menu if the user selects Fonts (Figure 6.10).

ThecomplexityislimitedonlytothepresenceofmultiplesuBMENUsinsidethemenu
template, while no extra effort is required on part of the programmer. The previous
resourcefilefragmentdoesnotprovideforanystyle(MIS_)orattribute(MIA_)forthe
puaposeofmakingthetreestructureofthevariousblocksstandoutbetter.However,
itisgoodprogrammingpracticetocustomizeatemplateinordertogiveitexactlythe
lookitshouldhavefortheapplication.ThepresenceoftheSearchoptionsuggeststhat
this part of the template refers to a program used for editing text. It can be assumed
that when the program is loaded there will be no text available to edit, and thus the
Search option could initially be disabled, and then enabled as soon as a document is
loaded or some text is typed in.

E}~RErBtiifegresgrS th t=Qti ig [*j~ ` ha¥+#esrife£ *EN`Y ¥ ffi `*#gr# ac¢REffi

E E E@ ERE EE AA fa
Selecbelnstall DeviceDmrerlnstall MigrateApplicallons Colorpalette Country Fontpalette Keyboard

® EE AdEE= ® H
Mouse Schemepalette Sound SpoolBr ERE Systemclock WINOsresetup

Figure 6.9 The window context menu of the desktop of an OS/2 2.1 system
will have three menu items equipped with subordinate conditional menus.

Z64 0S/2 2.1 Wor:1aplace shell progranming

Figure 6.10 The structure of a drop-down menu that provides for a second
drop-down menu will display a small horizontal arrow.

Syntax Rules for Menu Templates
Consideringthecrucialroleplayedbymenusintheuser-applicationinteraction,itis
important to follow closely all the style rules dictated by CUA 91, so that all applica-
tionsconformtowhatisamarketstandard.Thismightseemunimportant,especially
whenthinkingaboutaprogram'squalityinabsoluteterms;however,itisappreciated
by most nonprofessional computer users. Some style rules were implied in the
previous paragraphs. Now we will have a look at au rules in an orderly marmer.

Themenubarmustalwaysbealoneandbelaidoutononesingleline,eventhough
multiple options might allow the implemention of hybrid forms, like horizontal
menusormenusspanringseveralcoluinns.hthemenubar,thereshouldbetop-level
menus only, each featuring just one single text string (or, more rarely, one bitmap)
with the first letter capital. Top-level menus must not have any kind of accessory
element, like empses or exclamation marks, and it must always be possible to select
them. Furthermore, top-level menus always fall in the co77t777¢77ds category, and they
originate a drop-down menu, or sometimes perform an action immediately. (The

`menubarcanappearonmultiplelinesoulyifthewidthofthewindowislimitedand
insufficient to accommodate all top-level options on one line.)

Menus 265

If a top-level menu includes a drop-down menu, this will be declared with the
S U BM E N U directive, and will not produce any kind of direct action with regards to the
application. On the other hand, if the selection of a top-level menu causes an imme-
diate action from part of the program, then this will have been declared a M E N U I T EM.
As we will see in the next few paragraphs, the selection of a MENU ITEM will always
cause a message to be sent to the window procedure of the client area with which the
menu bar is associated. h the case of a top-level SUBMENU, its selection will simply
cause the associated drop-down menu to be displayed, but no selection message is
ever sent to the chient area's window procedure.

Drop-downmenusmustbeorganizedinsuchawayastopresentjustoneMENUITEM
per line, possibly grouped and delimited by a horizontal line. The subdivisions are
usefulfordefiningblocksofrelatedoptions,andwillmakeiteasierfortheusertofind
the options needed. The text string that characterizes each MENU ITEM should not be
excessively long, so that overly large portions of the application's client area are not
hidden from sight.

ThedefinitionofaSU8MENUsproutingfromapreviousSU8MENUisatypicalfeature
ofaMENUresource,althoughitshouldnotbeoverused.hfact,thepresenceofseveral
concatenated S U BM E NU S will usually make it harder rather than easier for the user to
make a selection, as the application becomes impaired by an overburdened interface.
The maximum number of concatenated S U 8 M E N U S that can reasonably be accepted is
two. This is a rule that will be followed in all the samples presented here and in the
menu generator furnished in this text and described further ahead in Chapter 9.

Furthermore, the CUA 91 specifications are uncompromising on this issue, and
define the technique for implementing multiple cascading drop-down menus as ``...
a solution valid only when no other technique can be adopted." h practice, it is
advisablenottodefineanydrop-downmenusbeyondthefirstlevel.Ifyoureallycan't
do without them, keep to second level drop-down conditional menus.

For any MENUITEM, either top-level or part of a SUBMENU, it is necessary to pick a
letterasthermemonicforkeyboardselection.Thedefinitionofauniqueletterpertains
to all top-level menus, and all options within a drop-down menu. It is possible,
however, to use the same letter adopted in a top-level menu inside its associated
drop-dour menu.

When defining accelerators, it is important to follow the standards set by the major
commercial applications, and follow the conventions used by them (Ctrl+hs, for
instance) and avoid combinations of two or more keys.

Loading a Menu Template
Itisnecessarytomakesomechangestotheapplication'ssourcefileinordertoexploit
the a menu resource described in the RC file. First, you have to insert the #i. n cl ude
"menuapp . h" directive so that the code can get to know the IDs assigned to the

MENUITEMinthemenutemplate.

2;66 0S/2 2.1 Workplace shell programming

Thereareseveralwaystoloadamenutemplate.Themoststraightforwardistotake
advantage of the services provided by Wz.77Crc¢fesfdwz.7tdozu(). First, get rid of any
operation setting the FC F_M ENU flag if you ever defined the FC F_STANDARD style as a
starting point. (This is what has been done in all previous examples.) The syntax of
Wz.7tcrc¢£est¢Wz.77dezt7() for a window associated with a menu bar expects as its eighth
parameter,the ID of the resource, that is, RS_M ENU in Listing 6.1 or RS_A LL if you also
have an icon. ,

A second method is to handle the situation as described in Chapter 5: RS_A L L is the
ID assigned to the menu, the icon, and the accelerator table (which is absent for now)
in the resource file. By indicating RS_A L L, you instruct Wz.7tc7`c¢fesfdwz.7idozu() to load
the resources indicated by the FC F_ flags and identified by that ID (the M E N U and the
ICONresourceinourexample).Listing6.3containstheMENUAPpappfication'scode,
showing a menu window, as you can see in Figure 6.11.

In Listing 6.3 you can see some new PM programming elements. The resource ffle
containsthedefinitionoftheicontobeassociatedwiththeappfication'swindow.The
ID assigned to this resource is the same one specified in the M E NU directive. h fact, in
thesourcecodetheFCF_flagsspecifiedareallthoseprovidedbyFCLSTANDARD,with
the exception of FC F_AC C E LTA 8 L E. This means that when the window is created with
Wz.7tc7`c¢£csfdwz.7tdezt7(J the icon MENUAPP.ICO will be assigned in addition to the
menu template.

®ffiDgAosreE:,unssystomc,oa.e80urRErks,,ooifFowPPODINFOBMP

%{Bfti"ERE-.i:fine;osreSystem`ngPMSptEre-9tm-
dA . , e . . , . I, . = .I:I REgri
•.. .-., ..,....-. . ,. , ..-i -. i-. -,. ...,i,L... -

k

SNOOPEFIE}E@Templtites
-.,`

I-. ,.« = -: -, , ¥ . . . :i. , ,.. RE

E a FED EH RE AA fa
Se ectfve Install Device Driverlnstall MlgrcteApplicatons Colorpalette Country Fontpalette Keyboard

© Bill AEEE a EH
Mouse Schemepalette Sound Spooler ERE Systemclock WINOsresetup

Figure 6.11 The MENUAPP application has a menu bar.

Merms 2J6FT

Finally, the resource file also contains a STRINGTABLE resource with some text
strings used by the application. h the code you can see that Wz.7tLo¢dsfrz.7€g() is called
to load the class name before registering it and before creating the window:

// MENUAPP.C

#i.nclude "menuapp.h"
®,®

CHAR szclassName[15] ;

CHAR szwi.ndowTi.tle[15] ;

ULONG flFrameFlags = FCF_STANDARD & ~FCF_ACCELTABLE ;

®,

// load class name from resource fi.le
Wi.nLoadstri.ng(hab. NULLHANDLE,

ST_CLASSNAME,

si.zeof(szclassName), szclassName) ;

Wi.nLoadstri.ng(hab, NULLHANDLE,

ST_WINDOWTITLE,

si.zeof(szwi.ndowTi.tle), szwi.ndowTi.tle) ;

// regi.ster class
Wi.nRegi.sterclass(hab,szclassName,

C 1 i. e n t W n d P r o c ,

CS_SIZEREDRAW,OL) ;

// create mai.n wi.ndow
hwndFrame = Wi.ncreatestdwi.ndow(HWND_DESKTOP,

WS_V I S I B L E ,

&fl FrameFl ags ,
szcl assName ,
szWi.ndowTi.t1e,

OL,

NU LLHANDLE ,

RS_ALL,

&hwndcli.ent) ;

®®,

The set of windows controlled by the frame window is enlarged with another
element: the menu bar. It is an ordinary PM window belonging to the W C_M E N U class,
characterized by an appropriate handle that allows you to identify and use it, even
though it has been created independently by Wz.7tc7'c¢£esfdwz.7tdozt7(). To access the
handie, call the Wz.77Wz.7zdozoFro77£JD() function and pass it the F I D_M E N U ID:

HWND hmenu ;

®®,

hmenu = Wi.nwi.ndowFromlD(hwndFrame, FID_MENU) ;

®,®

Z68 0S/2 2.1 Workplace shell programming

Once the menu template has been created and loaded indirectly via Wz.7t-
Cre¢fcsfdw£.7tdozo(),itispossibletointeractwiththenewwindow,andtheapplication
will be aware of the selections performed by the user from the various top-level and
drop-down menus.

If, instead, you wish to operate independently from Wz.7tc7'e¢£esfdwz.7tdozo(), then
you must first use the function W€.7tLo¢dMe77tt() or W€.7tcrc¢feMe7tt{(). While the first
one will essentially read a menu template and then transform that information into a
window belonging to the WC_M ENU class, the second one will also return a handle to a
menu, a menu that, however, does not exist and that will have to be created from
scratch.

#defi.ne INCL_WINMENUS
HWND APIENTRY Wi.ncreateMenu(HWND hwndparent, PV0ID pvmt) ;

P arameter D escription
hwndparent Handie to the parent window with which the menu is associated
pvmt Pointer to a memory area containing the information. regarding

a menu template
Retwn vahae D escription
Hl/\IN.D Handle of a wc MENU class window or NULLHANDLE in

case of error

ThefirstparameteridentifiesboththeparentasweuastheowneroftheWC_MENU
class window created by this function. The second parameter is a binary format menu
template, that is, the format it is transformed into by the resource compiler. As
describing a menu through a template is so convenient, this second solution is rarely
used.

Menus, Parenthood, and Ownership
You must be very careful with the first parameter. The menu bar is a child window of
the frame, identified through the ID FI D_MENU. Although the results produced by a
user's selecting the various menu items available, the frame window is the owner and
parent of the menu bar.

The return value of this function is the handle to the new menu window. (h PM,
different from what happens in MS Windows, there i§ no specific type of handle for
menus, and thus you simply usea a HW N D.)

Au drop-down menus are child windows of the system's desktop, a window
belongingtotheclass#32776andisinvisibletotheuserbecauseitiscoveredbyWPS.
This is only half the picture. Drop-down menus are in fact a very interesting case of
windows with interchangeable parents. Up to this point, you have been accustomed
to thinking about the parent-child relationship as something that is static and un-
changeable. h PM, different from what happens with human beings, it is possible to
change parents simply by calling Wz.7ese£Pore7zf() described in Chapter 4. The drop-

MerLus 269

downparentisHWND_DESKTOPwhentheyarevisible,andHWND_O8JECTfortherestof
the time. HWND_OBJECT is equivalent to HWND_DESKTOP as far as the permanently
invisible windows' hierarchy tree is concerned. The drop-clowns will always have as
their owner the menu bar. Figure 6.12 summarizes all these relationships.

Theclientwindowhasnorelationship,neitherparenthoodnorownership,withthe
menus. The selection of a top-level menu by pressing the left mouse button will cause
the corresponding drop-down menu to be displayed, and thus will cause its parent to
change from the object window to the desktop. It is not possible to determine in
absolute terms which pixels will be covered by a drop-down menu when it is
displayed. Most often, it will be a portion of the client window, but sometimes the
vertical space available in a cHent window is not enough. For this reason, the parent
ofadrop-downmenuisthedesktopwindow(HWND_DESKTOP),apartfromthevertical
direction in which the window is displayed. Figure 6.13 displays the parenthood
relationship of a drop-down menu.

Modifying the Window Procedure
The selection of any kind of menu item-inside a S U 8 M E N U or outside-will cause the
WM_COMMAN D message to be sent to the window procedure of the client window with
which the menu window is associated q]oth windows are children of one same frame
window, and are thus sibling windows). The space taken by the menu bar is obtained
from the window by consuming pixels from the frame and reducing the height of the
client window by the amount of pixels returned by the function:

lHei.ght = Wi.nQuerysysvalue(HWND_DESKTOP, SV_CYMENU) ;

The generation of the WM_COMMAN D message addressed to the client window proce-
dure takes place only for those menu items expressly declared with the MENU ITEM
directive in the resource file, or in some equivalent template image constructed in
memory. Any other specimen of a WC_MENU class window of the SUBMENU type (thus
top-level menus or those inside a drop-down menu), will not send a WM_COMMAND

I

menubar < %:::::a=:::::

dropdoun <

titlebar menu

PARENT: HWND_DESKTOP (when visible)
HWND_OBJECT (when hidden)

OVVNER: menu bar

PARENT: frame window
OW'NER: frame window

Figure 6.12 Relationship existing between the window of WC_MENU class,
the frame, and the client window.

2:70 0S/2 2.1 Workplace shell programming

Figure 6.13 A drop-down is displayed upward if the pixels available below
the menu bar are not enough.

message to the appHcation's window procedure, but will only change the visibility state
of the associated drop-down. There exists an interaction between the cifent area and a
top-1evelmenu,representedbythereceiptoftheWM_INITMENUmessage.Thisisakindof
initia]ization message that is sent as a, consequence of the focus being transferred to the
menu bar. Catding the WM_I NITMENU message is useful also for setting up dynamic
changestothecontentsofanyassociateddrop-down.WM_INITMENUwillnotbeissuedby
selectingatop-1evelMENUITEM.

On the basis of these considerations, it is clear that the window procedure of an
applicationgearedwithamenubarwi]lreceiveaWM_C0MMANDmessageforhandlingthe
selections performed by the user. Figure 6.14 summarizes the relationship that exists
between the menu bar and the internal structure of a PM appfication.

The message WM_COMMAND contains in mpl the ID of the selected MENUITEM. h the
window procedure it will be possible to identify the origin of wM_COMMAN D by looking at
mpl.PM'sAplprovidesthesoftwaredesignerwiththecoMMANDMSGmacro,whichmakes
it easy to extract the selected MENU ITEM's ID from mpl, and the information about the
source of the message (keyboard, mouse, or accelerator) from mp2 by acting directly on
the CMDMSG structure:

Menus Z7L

MPESULT EXPENTPY Clientwndproc(...)

(
I ,®S./Z Sij~!.l€ifi'-Efit'..F = 'Ufi.till...I•'J.x'-..I...``,`,, `.,-..,`r.,,.,`,,-...`.. ..,..`r.. .:':,1

> case wM_COMMAND:< menuitemselection
switch(COMMANDMSG(&msg)->cmd)

(

case menuitem lD:

)

Figure 6.14 The selection of a MENUITEM will issue the WM_COMMAND
message to the window's window procedure.

#defi.ne INCL_WINMESSAGEMGR
typedef struct _COMMANDMSG

I
USHORT cmd ;

USHORT unused

USHORT source

USHORT fMouse

} CMDMSG ;

// mpl

// mp2

typedef CMDMSG *PCMDMSG ;

Here's the COMMANDMSG macro:

#defi.ne COMMANDMSG(pmsg) ((PCMDMSG)((PBYTE)pmsg + si.zeof(MPARAM)))

The COMMANDMSG macro requires you to give it the address of the identifier that
contains the message issued to the window procedure (the second parameter of any
window procedure, generany called ms g).

To get to know the ID and thus detect which menu item has been selected in the
application's menu, you have to discover what value is present in the cmd member of
CMDMSG, as you can see in the following code fragment:

®®®

case WM_COMMAND:

swi.tch(COMMANDMSG(&msg) -> cmd)

I
case MN COPY:

break ;

case MN_UNDO:

break ;

case MN_CUT:

break ;

case MN_PASTE:

2:72. OS/2 2.1 Workplace shell progranming

break ;

case MN CLEAR:

break ;
case MN_NEW:

break ;

®®,

defa ul t :
break ;

)
®®,

)
®,

ThecaseMN_conditionswillneedtoberefinedwithspecificcodeforimplementing
the appHcation's functionality, considering the request formulated by the user
through the selection. It is therefore possible that the code fragment dealing with a
WM_COMMAND message may be quite long. It is quite common to factor out from the
windowprocedureallthelogicdealingwithmenuhandlingbydefiningastand-alone
functionthatwillbecalledimmediatelyafterthereceiptofaWM_C0MMANDmessage,as
in the following example:

®®®

case WM COMMAND:

Docommands(hwnd, msg, mpl, mp2) ;

break ;
®,,

where DoCo77z77t¢7tds() is a function developed along these lines:

voi.d Docommands(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2)

(
®,

swi.tch(COMMANDMSG(&msg) -> cmd)

I
case MN_xxx:

®,®,

break ;

)
®®®

)

Any subsequent addition of a new M E N U I T EM to a menu template will require that
you implement a corresponding number of case branches inside the DoCo77t777¢77ds()
function.

Menus 2:73

hListing6.3theWM_C0MMANDmessageisprocessedinordertodisplayinaLmessage
box the ID of the selected menu item, along with its corresponding text. The text of
each menu item is retrieved directly from the drop-down to which it belongs. After
the detection of WM_COMMAND the appHcation sends a MM_QU ERY ITEMTEXT message to
the action bar. To do this, it is necessary to have the menu's handle. You can get this
information in many ways. h MENUAPP's code you will find the two macros PAPA
and M ENU that serve this purpose by acting on the client window's handle, hwn d. It is
alsopossibletointercepttheWM_INITMENUmessagethatwillcontaininmp2thehandle
of the drop-down associated with the selected top-level. Through this information it
is easy to quickly get to the handle of the menu bar, as it is the owner.

To retrieve the text string associated with the selected menu item, you can try
something new: Send a message to the menu window. This consists of setting up an
addressee that is a window belonging to a predefined class. The message MM_OU E RY -
ITEMTEXT is specific for WC_MENU class windows, as you might infer from the MM

prefix, which stands for 777e7t# 77cess¢gc. The complete list of messages for the WC_M E N U
class appears in Table 6.9.

ThesyntaxofMM_OUERYITEMTEXTshouldhaveinmp1theIDofamenuitem,andin
mp2theaddressofacharacterarray(abuffer)1argeenoughtoaccommodatethemenu
item's text string.

MM_QUERYITEMTEXT 0xO18b

mpl

mp2

Return Value

USHORT usltem
SHORT smaxcount
PSZ pltemText

SHORT sTextLength

Description
ID of the menu item
Size of the character array in mp2.
Array of characters containing the
menu item's text
Length of the text string or 0 in case
of error

®,,

case WM_COMMAND:

swi.tch(COMMANDMSG(&msg) -> cmd)

I
case MN COPY:

®®

case MN PRODINFO:

Wi.nsendMsg(hmenu, MM_QUERYITEMTEXT,

MPFROM2SHORT(COMMANDMSG(&msg) -> cmd,

si.zeof(szBuffer),
MPFROMP(szBuffer)) ;

®,,

The selected option's text string is inserted into szBuffer, gn array of CHAR.
Naturally,thetextstringwillalsocontainanyaccessorystyleelements,1ikeanellipsis,
a tilde, or a tab character. The Sfrz.7tgp¢rser() function has been designed specifically
for getting rid of all unwanted characters in the text of a menu item:

Table 6.9 The MM_ Messages That Govern the Interaction with the Menus of a
PM Application

Message Vahae Description

"_INSERTITEM
MM DELETEITEM
"_QUERYITEM

" SETITEM

MM_QUERYITEMcour\IT
MM_STARTMENUMODE
MM_ENDMENUMODE
"_DISMISSMENU

OxO180 hserts anew menu item.
OxO181 Deletes a menuitem.
Ox0182 Returns data about a menu item in a

MENU-ITEM structure.
Ox0183 Sets the values from a MENUITEM

structure.
Ox0184 Returns the number of menu items.
Ox0185 Signals the start of a menu selection.
Ox0186 Signals the end of a menu selection.
Ox0187 ffides from view a drop-down menu

featuringtheNIA_NODIshAISsattribute
(whichnolongerappearsinpMWIN.H).

MM_REMOVEITEM 0xO 18 8

MM SELECTITEM 0xO189
MM_QUERYSELITEMID 0xO 18 a
MM_QUE RYITEMTEXT 0xO 18b
MM_QUERYITEMTEXTLENGTH 0xO18c

MM SETITENIIANDLE 0xO18d

MM SETITEMTEXT 0xO18e
MM_ITEMPOSITIONFRONID 0xO 18f

MM_ITEMIDFROMPO SITION 0xO 19 0

MM_QUERYITEMATTR 0xO 191
MM SETITEMATTR 0x0192

MM ISITEMVALID 0x0193
MM_QUERYITEMRECT 0x0194

MM_QUERYDEFAULTITEMID 0x0431

MM SETDEFAULTITENID 0x0432

Removes a menu item from the menti
structure.
Selects a menu item.
Returns the ID of the selected menu item.
Returns the text of a menu item.
Returnsthelengthofthetextofamenu
item.
Associates a handle with a menu item,
typically that of a bitmap.
Sets the text of a menu item.
Retumsthepositionofamenuitemon
the basis of the specified ID.
Returns the ID of a menu item starting
from the indicated position.
Retrieves a menu item's attributes.
Sets the attributes (MIA_) of a menu
item.
Tests if a menu item is selectable.
Returns the menu item size in a RECTL
structure.
Returns the menu item ID of the select-
ed item in a conditional cascade drop-
down.
SetsthemenuitemIDoftheselectediten
inaconditionalcascadedrop-down.

274

Menus 2:75

®®,

Stri.ngparser(szBuffer`) ;
®®®

The``cleaned-up"stringwillbeleftbythefunctioninsz8uffer.There'snotmuch
left to do other than prepare the new text to be displayed with the Wz.7tMess¢geBox()
function:

®®,

spri.ntf(szstri.ng, "Command: yos ID: %3d", szBuffer,

COMMANDMSG(&msg) -> cmd) ;

Wi.nMessageBox(HWND_DESKTOP, hwnd,

szBuffer ,
"Message Recei.ved",

0' MB_OK) ;

break ;

®,®

An menu items described in the menu template will produce the same output: a
messageboxthatnotifiesthemenu'sIDandtext.TheonlyexceptionistheExitoption.
The effect produced by its selection is the posting of the WM_OU IT message into the
application's message queue. That will terminate its execution:

®®®

case MN_EXIT:

Wi.npostMsg(hwnd, WM_QUIT, OL, OL) ;

break ;
®®®

h general', thele will be no defaul t branch in the swi. tch block dealing with a
WM_COMMA,ND message, for the very reason that you intend to find all possible condi-
tions described by the template. h the specific case of MENUAPP (Listing 6.3), it is
possible to avoid to indicate the diverse conditions and replace them all with one
simple defaul t .branch. h this waLy, all IDs with the exception of MN_EX IT will be
subject to the same kind of processing from the application.

RENUAPP (Figure 6.15) can also be used to te.st the fun€tioning of the ALT+
mnemonic key combinations to select a top-level menu and then a menu item in the
corresponding drop-down.

Recognizing the Source of a Selection.
hthenextexampleyouwi]ltrytodeterminethesourcethatoriginatedtheselectionofa
MENUITEM.Thepossiblesourcesarethekeyboard,themouse,andanacceleratorcombi-
nation (with the keyboard). To know about the source, you only need to extrapolate the

2:76 0S/2 2.1 Workplace shell progranming

=#RE;`:% w¥d¥;ealr Sh#er DBA osreEprms ap%°aesQuiHohshofroD¥oBMPF#

REfflEEZEEEEEHRE'.REosrasystem`ng-gun-SNO0FEREXEE@Templates

fl:i.. i..-. .. 8 . - . -.... . --. . S - . -.. -,. -. -.i. ,. ..i.-., -a. -. -..... # i. ffi

f. .=-. . . -. - -a .. .i.--. - . - - -.. ...i -. . -:. ...-. , ` . - .-i-i` -`.-

k ,

...

EE

Figure 6.15 When a menu item is selected, the application responds by dis-
playing a message box.

information in mpl and mp2 through the COMMANDMSG macro and compare the returned
value with what is histed in Table 6.10.

ThememberfMouseoftypeB00Lindicateswhetherthemessageistheconsequence
of some pointing action through the mouse (TRU E) or through the keyboard (FA LS E).
Onthebasisofthis,itispossibletobuildanapplicationthatusesmenuwindows,and
interacts with the user to detect the selection of a menu item. TThis data does not have
any greater usefulness within an application (except, maybe, that of collecting statis-
tics on the frequency with which accelerators are used compared to the mouse or the
keyboard-andmaybeallowacleverpieceofsoftwaretoconfigureitselfonthebasis
of the user that is at the console and of the information previously collected). Listing
6.4 has been implemented along the same lines as the previous one, i.e., to retrieve
information through the COMMAN DMSG structure to detect the kind of input tool used
to select a menu item.

ComparedtoListing6.3,theonlynotablechangeisthatpertainingtotheprocessing
that takes place in the code fragment dealing with the WM_COMMAN D message.

®®®

//determi.ne source
swi.tch(SHORTIFROMMP(mp2))

M€IT„s rrJ7

(
case CMDSRC_ACCELERATOR:

strcpy(szSource, "accelerator") ;
break ;

case CMDSRC_MENU:

strcpy(szSource, "menu") ;
break :

default:
strcpy(szSource, "other") :
break ;

I
®,,

Table 6.10 Values of the Source Member in mp2 According to the
COMMANDMSG Structure

Define Value Description

CMDSRC_PUSHBUTTON 0xOool Indicates that the wM_COMMAND mes-
sage has been sent to the application's
window procedure as a consequence of the
selectionofap#sfez7#£fo7t.Thisconditionhas
nothing to do with menu handling issues,
but anticipates the fact the interaction
between the user and a pushbutton-the
windows belonging to the WC_BUTTON
predefined class-get notified to the appli-
ation through the same WC_COMMAND
message.

crosRc MENu Ox002 Indicates that the presence of a wM_COM-
MAND message in the application's win-
dow procedure is the consequence of the
selection of one of the MENUTIEMS that
make up the application's menus.

CMDSRC_ACCELERATOR 0x003 The wM_COMMAND message is the con-
sequence of the user pressing some key-
board accelerator (described in the next
section).

CMDSRC_OTHER 0xOOO The source of the wM_COMMAND message
carmot be recognized precisely, probably
because the message was generated by
some other control or by the application
itself.

Z78 0S/2 2.1 Workplace shed progranming

With the SHORTI FROMMP macro, you can retrieve from mp2 the information identi-
lying the input source that generated the WM_COMMAND message. The conditions to
considerareCMDSRC_MENUandCMDSRC_ACCELERATOR,inadditiontoagenericdefault
branch. Now the output in the message box is more complete than in the previous
example, as you can see in Figure 6.16.

Changing Attributes Dynamically
The menu templates presented in the preceding paragraphs and in Listings 6.3 and
6.4 did not have any style or attributes (respectively M I S_ and M I A_). Often though,
thecustomizationofthemenuitemsstartsatthetemplatelevel.Imagine,forexample,
that you are writing a template for a word processing application. The appHcation's
designdoesnotexpectanydocumenttobeloadedautomatica]ly,unlessitistheresult
ofanassociationamongobjectsorofadrag&dropoperation.Theproposedscenario,
thus, does not foresee the possibility of performing any storage operations with
options like Save and Save as ..., for the simple reason that `at that moment there is
nothing to save. Hence, it is convenient to set up a menu template that takes into
consideration these design constraints, and assigns each menu item appropriate

¥L¥o##;rfe:EL+d#S opEMne§§age R€;#ckELife #¥£±¥fa¥:£rmf#

#id ;#! I,,1fty a

#

a asg Durbf±!men u #
t8pe;mouse

&fi¥ -:i:fa:¥

Figure 6.16 Output of the program in Listing 6.4, as it appears after selecting
a menu item with the mouse.

Mems 2:79

attributes.YoumightwanttousetheMIA_DISA8LEDattributetodisallowtheselection
of a menu item that would issue the WM_COMMAN D to the client's window procedure.
The attributes have to appear after the styles; so the Save menu item will take on the
following look:

MENUITEM "~Save". MN_SAVE„ MIA_DISABLED

The same 1.ogic seen for M I A_D I SAB LED can be applied to all other attributes. The
Save option appears colored in gray inside the drop-down menu, and is unselectable.
Its selection through the mouse or the keyboard will automatically emit a beep, and
it win not issue a WM_COMMAND message. It makes sense that a potential user of our
hypothetical word processor will sooner or later want to save an edited document.
Therefore, the Save option must change its state during the application's execution,
and must abandon its condition of being disabled. h order to do this, you must send
the message MM_S ET I TEMATTR directly to the menu window, indicating the ID of the
menu item involved in the change, in addition to the precise attributes needed.

After MM_QUERYITEMTEXYT, MM_SETITEMATTR is a second message specific to
wc MENu windows.

MM_SETITEMATTR 0x0192

mpl

mp2

Return Value

USHORT usltem
USHORT usinclude-
submenus

USHORT usattrbutemask
USHORT us attributedata
BOOL fsuccess

Description
ID of the menu item
l^7hether the search for the menu
item will exclude the SUB-
MENUs (FALSE) or it win in-
clude them (TRUE)
Attributes to consider
State of attributes (set/cleared)
Successorfailureoftheoperation

The logic governing these messages demands that the addressee always be a menu
window. The designer can specify either the handle of the menu bar or the handie of
a drop-down menu directly. This last piece of information is not accessible directly,
but it can be retrieved by sending a MM_a U E RY I T EM message.

This means that the MM_ messages are sent to the menu bar, which, being the owner
of all drop-clowns associated with the top-levels, will dispatch them directly to the
item concerned (and this is yet another reason for which all IDs at the menu template
level should be unique). This approach simplifies a great deal of the software de-
signer's work. Once you get to know the handle of the menu bar and the IDs, it is
possible to access any of the menu items present in the menu structure. The sending
of the MM_S ETITEMATTR message will always take place through the Wz.77Se7tczMsg()
function, with the following syntax:

®®,

Wi.nsendMsg(hmenu, MM_SETITEMATTR,

MPFROM2SHORT(MN_SAVE, TRUE),

MPFROM2SHORT(MIA_DISABLED. FALSE)) ;

®®

2:80 0S/2 2.1 Workplace shed progranming

EI

Thehandlehmenureferstothemenubar,whichyouknowhowtoretrieve.Thetwo
packedsHORTinmplidentify,respectively,themenuitemreferredtobythemessage
(MN_SAVE),andthewayitshouldbesearchedfor.ByspecifyingTRUE,youinformpM
that the search should extend to all drop-clowns present in the menu structure. Since
the use of attributes is limited by the style rules to menu items alone, this second
parameter is almost always set to TRU E.

SomewhatmorecomplexisthemeaningofthetwosHORTsinmp2.Thefirstonespecifies
the attribute you are acting on (you could even indicate multiple, attributes through a
bitwiseoR).Thesecondonerepresentsthenewstate.htheexample,youwanttoinform
PMthattheattributeMIA_DISABLEDthatispresentintheMN_SAVEmenuitemhastobe
cleared. Another alternative and better solution could be the fonowing one:

®®®

Wi.nsendMsg(hmenu, MM_SETITEMATTR,
MPFROM2SHORT(MN_SAVE, TRUE),

MPFROM2SHORT(MIA_DISABLED, ~MIA_DISABLED)) ;

®,®

callingfortheremovalofthebitcorrespondingtotheMIA_DISA8LEDattribute.Listing
6.5 is an evolution of the preceding ones. The menu items Save and Save As... are
disabled directly in the template residing in the resource file. The user will be able to
selectthemonlyafterloadingadocument(intheexample,youwillonlyhavetoselect
the Open option from the File menu). Furthermore, the menu item New will initially
have a check-mark symbol. Subsequent selections will modify this attribute, and
implement a behavior typical of a state setter. (Note that the setting of the
MIA_CHECKEDattributefortheNewoptionisnotcompliantwithCUAspecifications,
but is useful for the leaming purpose of this exarnple.)

The New option must display a check-mark symbol if it did not have one in its
former state. The logic that governs the processing of this ID must first evaluate the
stateofthecorrespondingmenuitem,withrespecttotheMIA_CHECKEDattribute.The
message MM_QUERY ITEMATTR will return a boolean value reflecting the state of the
appropriate attribute (or attributes). On the basis of the value returned by this query,
youcangoaheadandsendtheMM_SETITEMATTRmessageindicatingthattheattribute
should be set or cleared, whichever is the opposite of the, current condition.

®®,

case MN_NEW:

{
B00L fvalue ;
fvalue = !Wi.nsendMsg(hmenu, MM_QUERYITEMATTR,

MPFROM2SHORT(MN_NEW, TRUE),

MPFROMSHORT(MIA_CHECKED)) ;

Wi.nsendMsg(hmenu, MM_SETITEMATTR,
MPFROM2SHORT(MN_NEW, TRUE),

MPFROM2SHORT(MIA_CHECKED,

(fvalue) ? MIA_CHECKED `: ~MIA_CHECKED)) ;

).
break ;

®,

Me7t#s 281

When, instead, the user selects the Open menu item, you have to enable the Save
and Save As... options-simulating an effective loading of a document in the hypo-
thetical word processor.

®

case MN_OPEN:

Wi.nsendMsg(hmenu, MM_SETITEMATTR,
MPFROM2SHORT(MN_SAVE, TRUE),

MPFROM2SHORT(MIA_DISABLED, ~MIA_DISABLED)) ;

Wi.nsendMsg(hmenu, MM_SETITEMATTR,
MPFROM2SHORT(MN_SAVEAS, TRUE) ,

MPFROM2SHORT(MIA_DISABLED, ~MIA_DISABLED)) ;

break ;
®,®

The operation is performed for every selection of Open; naturally, the code should
also provide somewhere the condition that disables the Save and Save As... options if
the word processor no longer has open documents that can be saved.

Messages and Macros
h the preceding examples, you have seen a certain level Of interaction between the
appfication (the cfient's window procedure) and the windows of the WC_M ENU dass, by
means of sending MM_ messages. This is the only solution available. However, to make
the software designer's life a tittle easier and to make the program listing somewhat
simpler, starting with version 2.0 of OS/2 some handy macros have appeared. They are
aseriesofdefinesthatencapsulatewhatlookslikeafunctionbythesendingofparticular
MM_ message to a WC_M ENU class window. The advantage offered by this solution is that
ofavoidingpartofthesyntaxofeachmessage,1eavingituptothemacrotodefinesome
of the parameters. The menu macros are hited in Table 6.11.

One of the most promising aspects of these macros is that they are documented in
the online help system. To leam about their syntax, just invoke the help system, just
as for any other function (the Win prefix emphasizes this aspect even more). h the
listingspresentedinthischapter,wehavealwaysusedthesyntaxbasedonanexplicit
W.7tse7tdMsg(), for instructive purposes.

Loading a New Menu
When you develop complex PM applications, a solution embraced by some software
houses is that of following the M#Zfz.pze Doc#77ce7tf J7tfer/#ce development model. The
structure of a MDI application allows for multiple child windows to be displayed in
the client area of a top-level window. Lotus 1-2-3 for OS/2 2.1 is a typical repre-
sentative of this category of applications. h 1-2-3 there are s.everal different kinds of
document windows: worksheets, macro sheets, and graph sheets. Each document

2:82 0S/2 2.1 Workplace shell progranming
i

Table 6.11 The Macros Present in PMWIN.H That Simplify Some of the Operations
Regarding Interaction with WC_MENU Class Windows

Macro D es cription

WincheckMenultem
(hwndMenu, id, fcheck)

W.inlsMenultemchecked
thwndMenu, id)

WinEnableMenultem
thwndMenu, id, fEnable)

WinlsMenultemEnabled
(hwndMenu, id)

WinsetMenultemText
thwndMenu, id, psz)

WinlsMenultemvalid
(hwndMenu, id)

Sets / clears the MA_CHECRED attribute for the ID menu
itembysendingtheMM_SETITEMAITRmessage.
States whether the ID menu itenL is didylayed together with a
check-mark eyrmbol Q4M_QUREYII"AITIR).
ELables/disables the ID menu item by setting/ clearing
the NIA_DISABLE attribute through the MM_SETTTE-
MAITR. message.
States whether the ID menu item is enabled/disabled
Q4M_QUERYITEMATIR).
SetsthetextofthelDmenuitrm.Qth4_SHH-TEMIEXI).

States whether the ID menu item is valid (MM_IS-
ITEMVALID).

window is lacking a menu bar (according to CUA specifications), and resorts to the
main windows menu bar. h the case of work sheets and macro sheets, the options
shown in the menu bar and in the associated drop-down menu will satisfy all user
requirements. For graph sheets, there will be some different options, such as those for
selecting the type of graph. Lotus 1-2-3 responds to this need by loading a second,
different rienu template into the application as soon as focus is given to a graph
document. If focus is later transferred to a work sheet or a macro sheet, the original
menu is restored (Figure 6.17).

There are several ways to accomplish this. The simplest is to generate inside the
resource file two distinct menu templates that are selectively loaded into the program
according to the document window that is active at any given moment @y intercept-
ing the WM_ACTI VATE message in the window procedure of the document classes). It
is also possible to destroy or remove one or more top-level menus (and thus their
associated drop-clowns), and replace them with new ones for the new working
conditions.hthiscase,itwillbenecessarytowritemorecodefortheapplication,and,
above all, you will have to face some formidable problems, because menu handling is
not as clean in PM as it could be.

The two menu templates defined in the resource file have some similarities, as not
alloptionsneedtobechanged.Themenuitemsthatarecommontothetwotemplates
share the same IDs, since they will be subject to exactly the same kind of processing.
h this case, selecting different IDs would not hold any advantage, but would just
unnecessarily burden the application. When the program's main window is dis-
played, a menu has to be loaded. The operation is always performed by cauing
W£.7£Cre¢fesfdw£.7tdozu(), being careful that the resource has the same ID as the

Me7t«s 283

1

§

3

#b 2

4 5

EI

Figure 6.17 The contents of Lotus 1-2-3's menu bar changes according to the
active document window.

window's icon, and maybe even as the accelerator table (if' any). This template is
referred to as the 77c¢€.7z fe77tpJ¢£e. When the ``triggering" event happens, you will have
todestroythemenuthatisdisplayedatthatmoment,1oadthesecondone,anddisplay
it. Listing 6.6 represents the application TWohAINUS equipped with two menus in
the resource file. The second one is replaced by the first one when the user selects the
option New from the menu File. To restore the window to its starting condition, just
select the option Back from the menu File. The biggest difference between the two
menus is the order of the top-level menus: File, Edit, and Help for the first one; and
Help, Edit, and File for the second. Figure 6.18 shows two different executions of
TWohAINUS, each one featuring a different menu bar.

The menu bar handle is stored in the s t a t i. c class identifier hmen u by intercepting
WM_I N I TM E N U. This application's governing logic is concentrated in the ca s e branch
dealing with the New menu item's processing. The destruction of the menu window
is performed with Wc.7tDcsfreywz.7tdozo(). The destruction will make the menu bar
disappear from the window, then the new menu is loaded through Wz.7tLo¢dMe7t#().
Theoperationcollapsesintoonecallboththeactualloadingandtheassociationofthe
menuwiththeapplicationwindow,sincethefirstparameterofthefunctionispassed
bythehandleoftheframewindow.Thereisnothingelselefttodootherthantodisplay

Z84 0S/2 2.1 Workplace shell programming

=£:;f wi¥d!;ealr shEer DE"sreEgrans Syste9:oJtesou,H,LshofaoD¥oBMPF#M

REmEZEHfl±',ffi;osreSystem`qS?PivlsFYEXE-an-SNOOPEREXEG@Temp'ate§

EEggg[:;jfi:i5¢E]l|| > ~ §r^€| f€a¥orfn jprLgr|u-~------L-.A^L°-.a.^?fi?se;:::£gr~.` ` ,_ ``:^nf:~i:::-I-ta-.^^-A:I ,` , , ,, ,` . . `` +igREHi

ELgirsREffiREgrth-hh-~--i-TREgr dr¥ :ng#dr+pr aethng# *S ffi Th #

to ...lTHHEHE±EEm'il-|ti.- E¥
-..-,. . - -;: ±.. -. -.i..i.-. -...... . .. --.

ifeBa-

aeEjit ,

EE

Figure 6.18 The same window shows in the first case the starting menu, and,
below, the menu loaded after the selection of the option New.

the new menu by forcing a refresh of the application's frame by sending the message
WM UPDATEFRAME.

case MN_NEW:

Wi.nDestroywi.ndow(hmenu) ;
hmenu = Wi.nLoadMenu(PAPA(.hwnd), NULLHANDLE, RS_SECOND) ;

Wi.nsendMsg(PAPA(hwnd), WM_UPDATEFRAME,

MPFROMSHORT(FCF_MENU),OL) ;

break ;
®®,

Listing 6.7 reports a modified version of TWOMENUS. h this case the handles of
the two menus are stored in two different s t a t I. c class identifiers, directly in the code
of WM_C REAT E: in such a way, they are always available in the program. Of these two
menus, the first one is loaded when the application's window is created. For the
secondone,instead,specialhandlingisused.DuringtheprocessingoftheWM_CREATE
messagethesecondmenuisloadedwithwz.7£Lo¢dMe7t#(),specifyingHWND_OBJECTas
its parent window. Before terminating the processing of the WM_C R EAT E message, it is
necessary to set the owner of the second menu; that is done by referencing the
application's frame window with Wi.7tse£Ozt77ter().

Me7t«s 285

®®®

case WM_CREATE:

hmenul = MENU(PAPA(hwnd)) ;

hmenu2 = Wi.nLoadMenu(HWND_OBJECT, 0, RS_SECOND) ;

Wi.nsetowner(hmenu2, PAPA(hwnd)) ;

break ;
®®®

WhentheapplicationreceivesthewM_COMMANDmessageregardingtheMN_NEwmenu
item(requestingtheswitchtothesecondmenu),itonlyneedstoexchangetheparents
ofthetwomenuwindows.ThemainmenuacquiresasitsparentHWND_OBJECT,while
thesecondonewillgetasitsnewparenttheapplication'sframewindow.Tocomplete
the exchange between the two menus, you must force the window's output to update
bysendingtheWM_UPDATEFRAMEmessage.

®,,

case MN_NEW

Wi.nsetparent(hmenul, HWND_OBJECT, FALSE) ;

Wi.nsetparent(hmenu2, PAPA(hwnd), TRUE) ;

Wi.ndsendMsg(PAPA(hwnd), WM_UPDATEFRAME,

MPFROMSHORT(FCF_MENU), OL) ;

break ;
®®®

Bitmaps As Menu Items
Menu items are not limited to text strings alone. A bitmap can play the same role, and
does not impose any harder work on the software designer. hserting a bitmap in a
menu item is a very easy operation in PM, both in the resource file as well as during
program execution. Let's start with the changes necessary in the resource file's menu
template.EachmenuitemmadeupofabitmapwillhavethespecialMIS_BITMAPstyle
set, in order to be distinguished from the default M I S_TEXT style. h place of the text
string enclosed in double-quotes, you will have the fonowing notation:

#bl'tmaplD

where bl. tmaplD conesponds to the ID assigned to a bitmap-a BM? ffle previously
indicatedina8ITMAPdirective.Therefore,thecompletesynfaxrequiresyoutodedaresome
bitmapsearfierintheresourcefile,andthenusethoseIDsforeachbitmappedmenuitem.

®®

BITMAP 1 RED.BMP

®,,

MENU _RS_MENU

I
SUBMENU "~Colors", MN_COLORS

I

2:86 0S/2 2.1 Workplace shell progranming

E MENUITEM "#1", MN_RED. MIS_BITMAP

®®®

i
®®®

]

The source code will not require any modification as far as message handling of
menu item selection is concerned, even if the menu item is a bitmap. The window
procedure will always receive the WM_COMMAND message containing the ID of the
selected menu item. Listing 6.8 presents the BMPMENU application illustrated in
Figure 6.19. As for text menu items, the size of the drop-down menu will be deter-
mined by the largest menu item.

Theselectionofthismenuitemwiucausetheclientar.eatobecoloredthesamecolor
as the bitmap.

Menus Built by the Application
Menu items can be text strings or bitmaps (maybe more colorful and pleasant to look
at than those in Listing 6.8). This is not the whole story. PM's API function set also
allows you to delegate to the application the task of handling the generation and

Figure 6.19 Structure of a drop-down menu containing bitmaps.

Menus 287

output of menu items. This will generate o`zo7ter-dr#zo-type menu items, which means
thatthetaskofcontrollingallpaintingoperationsisdelegatedtothewindow'sowner.
The basic requirement is setting the M I S_OW N E RD RAW style for each menu item that is
not to comply with the rules for the WC_MENU class for drawing its output; instead it
will defer the whole operation to the appfication's intemal logic.

Why would you want to create menu items whose output is controlled directly by
the application 's code? The answer is simple. Menus are windows belonging to the
WC_MENU class, and, as such, they are completely external to the code written by the
programmer. The ordy operations that are allowed are a certain degree of customiza-
tion through styles and attributes (M I S_ and M I A_), and a limited interaction through
the sending of MM_ prefixed messages. If the programmer intends to overcome the
standard operating limits of menu items, there is no other way than that of directly
handling the menu's output.

For example, the check-mark symbol carmot be changed through API services. If
ever you had to use a different kind of symbol, you would have no other choice but
tosettheMIS_OWNERDRAWstyleforthatparticularmenuitemandsetuptheapplication
(inthewindowprocedureoftheclasstowhichtheclientareabelongs)bywlitingthe
appropriate code to handle the situation. h practice, the assignment of M I S_OW N E R -
DRAWisinterpretedbytheWC_MENUclass'swindowprocedureasanordertocallsome
extemal procedure capable of processing the WM_PAI NT message. The transfer of
execution is accomplished by sending the WM_D RAW ITEM message, which contains all
information necessary for drawing ,in a window, that otherwise would be almost
impossible. Since the governing rules for implementing owner-draw windows are
identical for all predefined window classes that support this feature, we will defer
treatment of the subject to Chapter 7.

Accelerators
The Edit menu presented in the previous listings always had some textueven in the
colun`n reserved for accelerators (Figure 6.9). For the moment, these strings have not
beenassociatedwithanyoftheapplication'sresources.Tomakethemwork,youhave
to define an accelerator table in the RC file. An flccezer¢for is a combination of one or
more (generally two) keys, which correspond to the selection of a menu item. The PM
application model provides for this additional selection tool in order to make opera-
tionsquickerforexperiencedusers.hfact,pressingapairofkeysisoftenmuchfaster
and easier than performing a manual or mouse selection of a certain menu item.

Not all menu items will have equivalent accelerators: Only those options that are
important in the application's logic should have accelerators-for instance, those
options dealing with cut and paste operations, like Cut, Delete, Copy, and Paste on
the Edit menu.

ThestringCtrl+hsthatappearstotherightintheCopymenuiteminformstheuser
that this altemative keyboard combination is available to perform a copy of the object
selected earlier. To make this keyboard combination operative, you must create an
AC C E LTAB L E resource in the resource file, along the following syntax:

2:88 0S/2 ,2.1 Workplace shed progranming

ACCELTABLE accellD [load opti.ons][memory management opti.ons]

I
®®®

I

ACCELTABLE ,like many other directives we have already seen for the resource
compiler, requires an ID and some optional load and memory management options.
TheACCELTABLEblockwillaccommodateallkeycombinationsthataretobeequated
t6 the manual selection of a menu item. These statements consist of four parts:

key, menui.temlD, key type, opti.ons

Thekeyitemreferencesthevariouspossiblecombinations.Mostoften,itwillbethe
define of a virtual key, as it is defined in PMWIN.H. At other times, it will be a single
key, or a symbol enclosed in double quotes, or even the ASCH code of a symbol. After
this element you must put the ID assigned to the menu item to which the accelerator
should refer. The key type is a piece of information allowing the resource compiler
torecognizethekindofkeycombination.Theacceleratordeclarationiscompletedby
one or more options to indicate potential additional keys. Let's examine the Edit
drop-down menu as it has been defined in the earlier examples.

®,®

SUBMENU "~Edl.t" , MN_EDIT

I
MENUITEM "~Undo\tAlt+Backspace", MN_UNDO„ MIA_DISABLED
MENUITEM "~Redo\tshi.ft+Alt+backspace", MN_REDO„ MIA_DISABLED
MENUITEM SEPARATOR

MENUITEM "Cu~t\tshi.ft+Delete", MN_CUT„ MIA_DISABLED
MENUITEM "~Copy\tctrl+Insert", MN_COPY„ MIA_DISABLED
MENUITEM "~Paste\tshi.ft+Insert", MN_PASTE„ MIA_DISABLED
MENUITEM SEPARATOR

MENUITEM "~Delete\tDelete", MN_DELETE„ MIA_DISABLED
MENUITEM SEPARATOR

MENUITEM "~Fi.nd...", MN_FIND„ MIA_DISABLED
MENUITEM "~Select all\tctrl+/", MN_SELECTALL„ MIA_DISABLED
MENUITEM "~Deselect all\tctrl+\\", -MN_DESELECTALL„ MIA_DISABLED

)

The accelerator needed for the Undo menu item corresponds to the pressing of the
A LT and BAG KS PAC E keys. The accelerator table must look like this:

ACCELTABLE RS ACCELTABLE

i
VK_BACKSPACE, MN_UNDO, VIRTUALKEY, ALT

®,

I

The Backspace key does not have a proper ASCH code and is described by the
VK_BACKSPACE define in PMWIN.H. MN UNDO is the ID of the Undo menu item. All
this means that the key combination ALT+BACKSPACE will cause the WM_COMMAND
message to be`sent to the application, with M N_U N D0 as the command that is buried in

Mc7t#s 289

theCMDMSGstructure.TheoptionsVIRTUALKEYandALTinformtheresourcecompiler
thatthefirstdefinition-anunber-referstoavirtualkeydefinedinpMWIN.H,while
ALT is a key that has to be pressed together with BACKSPACE in order to obtain the
desired result.

Let'snowcompletetheacceleratortableforthemenuEdit,inaccordancewiththe
rules just described.

®®®

ACCELTABLE RS_ACCELTABLE

I
VK_BACKSPACE

VK_BACKSPACE

VK_DELETE,
VK_INSERT,
V K_I N S E RT ,
VK_DELETE,
„/„'
„\\„ .

MN_UNDO,

MN_REDO ,

MN_CUT,

MN_COPY ,

MN_PASTE ,

MN_DELETE,

MN_SELECTALL

VIRTUALKEY, ALT

VIRTUALKEY, ALT, SHIFT

VIRTUALKEY, SHIFT

VIRTUALKEY, CONTROL

VIRTUALKEY, SHIFT

VIRTUALKEY

CHAR. CONTROL

MN_DESELECTALL, CHAR, CONTROL

)
®®

Table6.12surnmarizestheparametersthatcanqualifyanACCELTABLEresourcein
an RC file. CHAR, SCANCODE, and V I RTUALKEY are mutually exclusive, as are SYSCOM-
MAND and HELP.

Table 6.13 Hsts all virtual keys as defined in PMWIN.H.

Table 6.12 Items That Characterize the Declaration of an Accelerator

P aramcter D escription

C-
SCANCODE

VIRTUALKEY

SHIFT

CONTROL
ALT
s¥ScoMMfun

HELP

LONEKEY

The first item specified in an ACC E LTAB LE definition refers to a
character in the ASCH set.
The first item specified in an ACC E LTAB LE definition refers to a
keyboard scancode.
The first item specified in an Ace E LTAB LE definition is a virtual
keydefinedinPMWIN.H.
Theacceleratorkeymustbepressedtogetherwithoneofthetwo
SRET keys.
TheacceleratorkeymustbepressedtogetherwiththeCtrlkey.
The accelerator must be pressed together with the Alt key.
Striking the accelerator combination issues the WM_SY S COMMAN D
message in place of the default WM_COMMAND message.
StrikingtheacceleratorcombinationissuesthewM_HELpmessage
in place of the default WM_COMMAND message.
hdicates that the first item in the declaration of the accelerator
(the key) can be pressed alone.

Table 6.13 All Virtual Keys Defined in PMWIN.H

Key Vallte D escription

VA_BUTTONI
VK_BUTTON2
VK_BUTTON3
VA_BREAK
VK_BACKSPACE
VK_TAB
VA_BACKTAB
VK_NEWLRE
VA_SIIIFT
VK_CTRL
VK_ALT
VK_ALTGRAF
VK_PAUSE
VA_CAPSLOCK
VK_ESC
VA_SPACE
VA_PAGEUP
VA_PAGEDOWN
VK_END
VK_HOME
VK LEFT
VA_UP
VK_RIGHT
VA_DOWN
VK_PRINTSCRN
VK_INSERT
VK_DELETE
VK_SCRLLOCK
VA_NUMLOCK
VK_ENTER
VK_SYSRQ
VKFI
VA_F2
VK_F3
VK_F4

Mouse button 1 1
Mouse button 2
Mouse button 3

(

Break key
Backspace key
Tab key
Backtab key
New line key
Shift key
Control key
ALT key
ALT GRAF key (on European keyboards)
Pause key '
Caps Lock key

+

Escape
Space bar
Page up
Page dour
End
Home
Left cursor key
Up cursor key
Right cursor key
Down cursor key
Print screen

i

hsert
Delete
Scroll lock
Number lock
Enter key
Systemrequest
FunctionkeyFI
Function key F2
Function key F3
Function key F4

(continued)

290

Me7t#s 291

Table 6.13 (Co74ft.7t#ed)

Key Value D e s cription

VKF5
VK_F6
VKF7
VK_F8
VA_F9
VK_Flo
VK_Fll
VK_F12
VK_F13
VK F14
VK_F15
VK F16
VK F17
VK F18
VK_F19
VK F20
VK_F21
VK F22
VA F23
VK F24

Function key F5
Function key F6
Function key F7
Function key F8
Function key F9
Function key Flo
Function key Fll
Function key F12
Function key F13
Function key F14
Function key F15
Function key F16
Function key F17
Function key F18
Function key F19
Function key F20
Function key F21
Function key F22
Function key F23
Function key F24

E]

Associating an accelerator table with a window is a very simple operation. As with
otherresourceslikeMENuandlcoN,youonlyneedtosettheFCF_ACCELTABLEflag(in
addition to the appropriate ID) in order to make Wz.77C7`cflfesfdw£.77dozo() perform the
trick. The implementation is quite straightforward. h Listing 6.9 you can see the
ACCEL application, sindlar to TWOMENUS. There are always two menu bars, but
only one of them has an accelerator table. This further complication allows us to
analyze the rules to follow for loading an accelerator table dynamically.

hgeneral,thjsoperationisperformedwiththeW3.77C7ie¢£csfdwz.7zdozt7()function.Accel-
erators are in fact a resource that can be hooked to a fralne window or to the message
queueofthesystem.Mostoftenyouwi]lchoosethefirstsolution,1eavingthesecondone
forprocessingstandaLrdaccelerators]ikethoseforthetitlebarmenu.TheflagFCF_STAND-
ARDalsoindudesFCF_ACCELTA8LE.Whenyoucreatethemainwindow-equippedwith
rthe first menu-then the accelerator table is also loaded automatically. By pressing the

acceleratorALT+BACKSPACE,youwi]lproducetheeffectshowninFigure6.20.

2J92. OS/2 2.1 Wor:laplace shell programming

®dELoE^osreEgranssystemcioagsauroE¥,kehr,nifFexpMPF\ODINFOBMP

',/,,`EEHEEEEEEERE:'ffi';osrasystem`ngPMSpt'E;XE-annB111SNOOPEBB¢G@Templates EEixp&"d¥rr!¥igrs¥{ei¥or§T `T - -_-~^*`W¥ in_"==ffiT-m~=a=rfeT=##| ff% gE
IrEREffLREJ§§Fb{*ct..f!ii#:p* ha„ „ J'-TREFT *`S#ELA,`` , ` ,#fr #¥fu

:€di#:un;;3p;:::ageBece,:###;#=kffi:=RTfpr

Figure 6.20 The message box will present information that allows you to
identify the source of selection of the menu item.

Theswitchtothesecondmenucausesaprobleminthewayacceleratorswork.Since
this kind of resource is associated with the frame window and not with menus
(although it appears to be more closely related to this second kind of window),
pressing the key combination ALT+BACKSPAC E will always cause the display of the
message box shown in Figure 6.20. To avoid this bag you have to destroy the
acceleratortablewhenyouloadthesecondmenu.Whenyougetbacktothefirstmenu,
you will have to reload the accelerator table from the resource file. To perform these
operations,youcairLcahiwinLoadAccelTable(),WinDestroyAccelTdele(),WinQueryAccd-
T¢Z7Ze(), and Wz.77Se£AccezT¢Z7Ze(), as you can see in Listing 6.9. An accelerator table can
also be created dynamically during the application's execution by calling Wz.7t-
C7'c¢feAccezT¢Z7Ze(). Except for some very special cases, it is better to create accelerators
directly in the resource file+it's also more convenient.

Run-Time Menus
Up to this point, the term 77te7t# has indicated both top-level menus in the menu bar
and the drop-down menus that are displayed after the selection of a top-level menu.

il

Mc7t«s 293

Byexaminingthesetwowindowsindetail,youwillfindtherearesubstantialdiffer-
ences, both behavioral and functional. Top-level menus almost always imply a drop-
down menu, sometimes caned a s#Z7777e7t#. The options of a submenu can be simple
menu items or even other submenus that introduce other menu items.

Each top-level menu contains, among the information that characterizes it, the
handleoftheassociateddrop-downwindow.Thishandleisusedtochangetheparent
of the drop-down when the user selects through the mouse or the keyboard the areaL
occupied by the menu bar. This action is followed by the display of the drop-down
menu. On the basis of this, it is natural to think about creating a drop-down type
windowandassigrfugitanyportionofthescreen.Theonlyoperationthatyouneed
tocompleteisthatofdefiingtheparentandtheownerwindowastheclientwindow
of the application, rather than the desktop window and the menu bar. The result is
whatappearsinFigure6.21,whereamenuiscreatedthroughW£.7tcre¢fewI.7cdozuo.

The class WC_M ENU does not have a predefined data structure. h order to be able to
use W£.7tcrc¢£ewz.77dozt7() and the WC_MENU class, you must define a data structure of

your, own to describe the general information regarding the menu and each menu
item. Listing 6.10 refers to the application in Figure 6.21.

The creation Of a menu window can take place only after compiling a dynamically
allocated memory area with the appropriate information for defining each menu item.
Oncethisoperationisterinated,theretumedhandleisusedintheprogramdynamically

Figure 6.21 A drop-down menu positioned inside the client area of a window.

2:94 0S/2 2.1 Workplace shell progranndng

to display a drop-down menu each time the user clicks the left mouse button. The
menuappearsselectedwiththecurrentcoloroftheclientwindow,duetothesending
oftheMM_SELECTTITEMmessage.Thechoiceofoneofthethreecolorswillchangethe
background of the client window of the application.

WPS Menus

EI

At this point we can start to have fun, and give our PM application a look similar to
thoseofWPSobjects.Thiswillkeepusbusy,buttheoutcomewillberewarding!The
operatingsystemdoesnotfumishanyprogramthatfullycomplieswiththestylerules
introduced by WPS. The system editor, E.EXE, is an old 16-bit application. The
advancededitor,EPM.EXE,hasmanysimilaritiestotext-basedproducts,withonlya
few interesting functions, like dragging the titlebar.

The first objective to reach is that of replacing the standard system menu with
something more customized and closer to the application. The same menu must be
abletoappearinanypositionoftheclientareainTesponsetotheuser'spressingthe
rightmousebutton(2)orthekeycombinationsHIFT+Flo.Thefollowingmustbedone
to accomplish this:

• Clear the FC F_SY SM E N U flag when creating the main window

• Create a menu template in the resource file containing all the options specific to
the window / application

•IntercepttheWM_CREATEmessageandtakecareofloadingthemenutemplate,and
associate it with the window

• Intercept the WM_CONTEXTM ENU message to display the zu£.7tdozo co77fc#£ 77ce7tt4

•ProvideforthedisplayofthewindowcontextmenuinresponsetotheSHIFT+Flo
accelerator

• Emphasize the cHent window (optional)

ThesystemmenuproducedwithFCF_SYSMENUcontainsonlysomeoftheinforma-
tionthatappearsinthemuchlargerandcomprehensivewindowcontextmenuofthe
application. The solution implemented in Listing 6.11 allows you to prepare a menu
templatewithanabundanceofoptionsdirectlyintheresourcefile.Thesealsoinclude
theoptiousdealingwithwindowmanagement(Move,Size,andsoon)asasecondary
menu introduced by the Window item. This is a typical feature that can be found in
all of WPS's folders (Figure 6.22).

The menu template also caters for the Help and Open options, in addition to many
others that are specific to the application. The menu templates will present a nuneric
reference to a bitmap as its top-level menu. This is actually the icon that win appear
to the left of the titlebar.

Without the FCF_SYSMENU flag, the window would not have the titlebar icon. This
deficiency will not be apparent, though, because by using the WM_C REAT E message you
will actually create a new one. Menus are windows belonging to the predefined class

Menus 295

Figure 6.22 The window context menu of the OS/2 System folder highlights
the contents of the secondary Window menu.

WC_MENU.AswewinseeinChapter7,thepredefinedclasseshavesomeuniquefeatures.
h addition to the messages, styles, and attributes of the menu items, there will also be
somestylesthatcanbesetatthemomentthewindowiscreated(Table6.14).

The syntax of the menu template does not provide any means for specifying the
values given in Table 6.14. These are styles in the true sense of the term, and can be
assigned to a window just like WS_ styles. When creating a titlebar menu, set the
MS_TITLEBUTT0Nstyleinordertoachievethedesiredeffect.Firstofall,1et'sloadthe

Table 6.14 The Styles Available for Creating Windows of the WC_MENU Class

Style Vahae D e scription

MS_ACTIONBAR
MS_TITLEBUTTON
MS_VERTICALFLIP

OxOOOOOoolL Style of the menubar.
OxOOO00002L Needed for the titlebar menu.
OxOOO00004L Allows a menu to be flipped ver-

tically if the underlying space is
insufficient.

MS_CONDITIONALCASCADE 0xOO000040L Produces a mini-pushbutton.

2:96 0S/2 2.1 Wor;1aplace shell progranming

titlebar menu template from the RC file. Wz.7tLo¢dMe7t#() retuns the handle of a
window of the type WC_MENU, characterized by a bitmap as its top-level element. To
addthenewstyle,justretrievethestylepacketthatisalreadyassigned,andresetit.
TheactioncanbeconductedwiththepairoffunctionsWz.7zQ#enyw.77dozoLrLo7tg()and
WinsetwindowuLong()..

®,®

ulstyle = Wi.nQuerywi.ndowuLong(hmenu, OWL_STYLE) ;
Wi.nsetwi.ndowuLong(hmenu, OWL_STYLE, ulstyle I MS_TITLEBUTTON) ;

®,

Thisisnottheonlychangethatyouneedtomaketothemenutemplate.Conditional
menus are introduced by a 7#{.7t€.-p%sfez7ttffo# object, through the assigrment of the
MS_CONDITI0NALCASCADE style, to an option described with the SUBMENU directive.
Theimplementationofmini-pushbuttonsasaclassstyleisodd-itwouldhavebeen
simpler if it were assigned through the style of a single menu item! However, to set
upamini-pushbutton,wewilldevelopafunction,Se£Co71d{.f{.o7t¢JMe#c£0,thatwflltake
as parameters the handle of the menu and the ID of the menu item to change.
Furthermore,itisnecessarythatthesubmenualwayscontainatleastonemenuitem
withthecheck-marksymbol.Pressingthemini-pushbuttonwiudisplaythesubmenu,
while a click on the text string corresponding to the SUBMENU win automatically
execute the menu item with the check mark. Practical implementation relies on
retrieving the style of the items that lead to the conditional submenus, and on the
subsequentadditionofMS_CONDITI0NALCASCADE.

®®®

ulstyle = Wi.nQuerywi.ndowuLong(hmenu, OWL_STYLE) ;
Wi.nsetwl.ndowuLong(hmenu, OWL_STYLE, ulstyle I MS_CONDITI0NALCASCADE) ;
®,®

Thelastoperationtobeperformedissimple,thoughextremelyimportant.Youmust
maketheframewindowunderstandthatthemenujustbulltmustbetreatedasaframe
control.TodothisyouhavetosettheIDastheFID_SYSMENUvalue,sothatthewindow
gets equipped with a true titlebar menu:

®®,

Wi.nsetwi.ndowushort(hmenu, QWS_ID, FID_SYSMENU) ;
®®

InFigure6.23youcanseethefinalresult.Tochangeanoldandinadequatesystein
menu into something more WPS-compliant, you really don't need to do much. The
CNTXTapplicationisdressedupwithamenubarandassociateddrop-downmenus,
according to the traditional development scheme.

Interactions between the Menu Bar and the Client Window
Theopfrousthataretypicalofthesystemmenuhaveanbeencoflectedinthesecondlevel
drop-downmenuintroducedbyWindow.AsthisisamenuwiththeFID_SYsnAINUID,

Merms 2!97

` < s¥# E*}_#-w¥dFEeal, sh#e, Dgp.S¢E:,uns sys2,uSe3.u,Eulshofa..¥.BMPFg,

EEEEHH±ffi; RE Windo-w context` riT\enu - , E#WlncIO '``agoen • I... I. .: --..-.i--z„++-r"r^;-v-w-

_elp

a a

£reate ar*othe#[fi fr
osre system`q*?f"sF+/E!¢-rmI-sNOOpER EspG@T8mpla`es

Sreata§haa*Ondg,ir:;fi£OP8¢+iJio¥e`.<i=£ifete+*h%+:ed¥

i windout &ngdyifeq#»

CtQ§S ` ,#¥: aerfu=,>__,_*

Figure 6.23 CNTXT has replaced the traditional system menu with a drop-
down menu equivalent to its own window context menu.

PM itself win take care of dynamically enabling and disabling the various options,
according to the window's current state. This is a great convenience. Furthermore,
whenwritingthemenutemplate,someoptionswillhavetheMIS_SYSCOMMAND
flagsettoinducetheWM_SYSCOMMANDmessagetobeissuedinplaceoftheusual
WM_COMMAND message. The selection of any menu item lacking the MIS_SY-
SCOMMAND flag win cause a WM_COMMAND to be sent to the frame window.
However, the frame window will just forward the message to the client window.
Consequently,anyinteractionwiththetitlebarmenucanbedetectedandactedupon
inthewindowprocedureoftheclientwindow,justasifitwereamenuitemassociated
withthemenubar.Someoptionsinthetitlebarmenuareidenticaltothoseavailable
in the menu bar.

Window Context Menu
Withthechangesdescribedintheprecedingparagraphswehavegivenourapplica-
tionamuchbetterlook,farmoreintunewiththestylerulesofWPS.Let'sgoonand
implementthezt7z.7tdozoco#fc#£7#e71#.Theroutewewillfollow,asalways,istogetthe

2J98 0S/2 2.1 Wor:laplace shell programndng

most with the least effort. The window context menu is identical to the titlebar menu,
the only difference being the absence of the icon. We can therefore rely on the same
menutemplatedescribedintheresourcefileandloadasecondcopyofit,alwayswhen
the WM_CREATE message is detected. A most important aspect to keep in mind is that
of the value of the first parameter to pass to Wz.7tLo¢dMe77#(). h the case of the titlebar
menu we have indicated as the parent the handle of the frame window. For the
window context menu, however, you must specify the handle of the desktop,
HWND_DESKTOP.

hpopup = Wi.nLoadMenu(HWND_DESKTOP, NULLHANDLE, RS_TBMENU) ;

Cince you have the WC_M ENU class window, you can assign it an ID. However, any
IDwillnotdo:Itmustbe,onceagain,FID_SYSMENU.

Wi.nsetwi.ndowushort(hpopup, QWS_ID, FID_SYSMENU) ;

Togetridofthetop-level(theicon),youhavetoquerythemenuwiththemessage
MM_QUERYITEM. All information that describes it will be contained in a MENUITEM
structure.

Wi.nsendMsg(hpopup, MM_QUERYITEM,

MPFROM2SHORT(FID_SYSMENU, FALSE),

MPFROMP(&mi.)) ;

Herein you will find the handle of the associated drop-down menu, which is the
windowyouwanttodisplayinresponsetotheuser'spressingtherightmousebutton
or the S H I FT+Flo keyboard combination.

hpopup = mi..hwndsubMenu ;

The whole is completed by assigning mini-pushbuttons to the appropriate menu
items. The identifier hpopup will initially represent the whole menu. Later, after
assigningthecontentsofthehwndSubMenumemberoftheMENUITEMstructure,itwill
identify the window context menu. All of this processing is placed inside the code
dealing with the WM_CREATE message, and the hpopup identifier is assigned stati c
storage class in order to simplify displaying the window context menu. h practice,
the application looks up the same menu template both for its titlebar menu as well as
for its window context menu, thereby ensuring that the two objects are the same.

Detecting WM_CONTEXTMENU
ThesequencethatgeneratesthemessagewM_CONTEXTMENuhasalreadybeenexamined
in Chapter 5, when studying the mouse. h mp2 you will have the mouse position
expressedinwindowcoordinates,providedthemessagewasactuallygeneratedwith
the mouse (TRUE in mpl). When intercepting WM_CONTEXTMENU you must keep this
distinction in mind, which forces us to query the position of the pointer on the screen
with Wz.77Q#e7t/Pot.7tferpos() if the source was the S H I FT+F 10 keyboard combination.

#defi.ne INCL_WINP0INTERS
B00L APIENTRY Wi.nQuerypoi.nterpos(HWND hwndDesktop, PP0INTL pptl) ;

Menus 2:99

P ar ameter D e scription
hwndDesktop Handle of the desktop window or HWND_DESKTOP
pptl Address of a pon`ITL structure
Return value D e scription
BOOL Success or failure of the operation

htheP0INTLstructureyouwillfindthemouse'spositiononthescreen,expressed
indesktopunits.ThisisanoptimalsituationforasubsequentcalltoWz.7tpop#pMe7tc/().
If,ontheotherhand,theuserhaspressedtherightmousebutton,theinformationwill
be contained in mp2, but this time in window units. You have two possible solutions.
Eitheryouquerythemouse'spositionagainwithwc.7tQ#enypoz.7tferpos(),or,inthecase
of a right mouse button click, retrieve the values from mp2 and convert them with
Wz.7tM¢pWz.77dozopoz.#fs(). The two altematives are equivalent. The window context
menu will always have the desktop as its parent, while its owner is one of the
application's windows. The only thing left to do is to call Wz.77Pop#pMc7t#() to display
the window context menu.

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.npopupMenu(HWND hwndparent,
HWND hwndowner,

HWND hwndMenu,

LONG x,

LONG y,

LONG i.dltem,
ULONG fs) :

Parameter
hrmdparent
hrmdowner

X

y
iditem
fs

Return Value
BOOL

Description
Handle of the parent window, generally HWND_DESKTOP
Handle of the owner window, generally the ¢#77cc window of
the application i
Lower left comer of the menu on the X axis
Lower right comer df the menu on the Y axis
ID of the item to be selected by default .
One or more PU_ flags

Description
Success or failure of the operation

Thefirsttwohandlesdefinetheparentandtheowner.Forawindowcontex=tmenu,
the best choices are HWND_D ES KT0 P and the frame window, respectively. In fact, this
menu can also appear outside the main window, as you can see in Figure `6.24.

By defining the frame window as the owner, you ensure that you will get the same
resultspreviouslyseenforthetitlebarmenu.ThemessageswiththeMIS_SYSCOMMAND
style will reach the frame window, while all others will be submitted to the client
window. Furthermore, this solution also has the advantage of delegating to PM all
handling of the menu items in the Window submenu.

300 0S/2 2.1 Workydace shell progranming

Figure 6.24 By pressing the SHIFT+Flo keys you can display an object's window
context menu, even if the mouse pointer is completely outside of its window.

The position of the lower left comer of the menu must be expressed in units of the
parent window. Since HWND_DESKTOP has been chosen as the parent window, the
coordinatesareexpressedinscreenunits.Thefifthparametercorrespondstothemenu
item you want to be selected by default. The value 0 will automatically select the first
item. The syntax of Wz.7tpop%pMe7z#() is completed with the flags listed in Table 6.15.

After intercepting the message WM_CONTEXTM ENU, the interactions with the mouse
buttonsareterminated.Forthisreason,youneverhavetousetheflagPU_M0USE8UT-
TONXDOWN.Hence,theuserwillfindinthewindowcontextmenufunctionalitysimilar
to that of the WPS objects. The selection of menu items can be performed both with
theleftmousebutton(PU_MOUSEBUTTON1)aswellaswiththerightbutton(PU_MOUSE-
BUTTON2), in addition to the keyboard (PU_KEYBOARD). The menu always appears
where the mouse's hot spot is, unless it cannot fit in the available space. The flags
PU_HCONSTRAINandpu_VCONSTRAINareveryuseful,whiletheflagpu_POSITI0NITEM
is not recommended for a window context menu. The PU_SELECTITEM flag is not
useful,sinceWPSrulesrequlrethatthefirstmenuitemalwaysbeselected.Inpractice,
the set of flags that can be used is the following:

PU_NONE I PU_HCONSTRAIN I PU_VCONSTRAIN I PU_MOUSEBUTTONl I

PU_MOUSEBUTTON2 I PU_KEYBOARD

Me7t«s 301

Table 6.15 The PU_ Flags Used for Handling the Window Context Menu

Flag Value Description

PU NONE

PU_POSITIONONITEM

PU HCONSTRAIN

PU_VCONST~

OxOOOO The button that displayed the menu does
not interfere with its processing.

OxOool Positions the menu so that the z.dlte77t menu
item appears exactly under the mouse
pointer.

Ox0002 Changes the position of the menu on the x
axis in order to ensure the whole object is
visible.

Ox0004 Changes the position of the menu onthe Y
axis in order to ensure the whole object is
visible.

PU MOUSEBUTTONIDOWN 0xOOO8 The menu is initialized when the left
mouse button is released.

PU MOUSEBUTTON2DOWN 0xOO10 The menu is initialized when the right
mouse button is released.

PU MOUSEBUTTON3DOWN OxOO18 The menu is initiaHzed when the center
mouse button is released.

PU SELECTITEM 0x0020 Evaluates the I.dJfe77t parameter as the ID of
a menu item, causing it to be selected.

PU MOUSEBUTTON1 0x0040 Enables the left mouse button to select the
menu items.

PU MOUSEBUTTON2 0xOO80 Enables the right mouse button to select
the menu items.

PU MOUSEBUTTON3 0xO100 Enables the center mouse button to select
the menu items.

PU KEYBOARD 0x0200 Enables the keyboard to select the menu
items.

The function W{.7tpop#pMe7t#() will return immediately and leave the menu dis-
playedonthescreen.hsuchasituation,theapplicationwillhavelostthefocus,now
transferred to the menu. To make the window context menu disappear, you have
choices other than selecting a menu item. Pressing the ESC key will terminate all
operationsofthe777e77#77€odekind(i.e.,focusonawindowofclasswc_MENU).Thesame
holds true for clicking any of the mouse buttons in any place outside the menu. It is
important to stress another peculiarity. The activation of the window context menu
with SHI FT+Flo win cause the message WM_I N ITMENU, and then WM_MENUEND, to be
received by the client's window procedure, although these two messages are ad-
dressed to the frame only, in response to a click on the mouse's right button. h Figure
6.25 you can see the CNTXT application which displays the titlebar menu; in Figure
6.26 you can see the identical window context menu.

302 0S/2 2.1 Wor:laplace shell progranming

Figure 6.25 The titlebar menu of CNTXT.

•!=. E

§re8t8 ariother H¥]
£Op a"¢ #
eshQ¥e"{
Cr8#at& ghadow„t

a g3i,t::f€£`g`itrff; +

.., ...---.-.

~C1 qua§¥jiirfuJ,=frog##S¥ffi:+u

-. . * `

i!i§:ii:fzeB#*rty£§!ii:ife};F:
+ .-. +.-
I flose Att+F4

1 windoir }i§! 'ct`rt+uEs+8`

Figure 6.26 The window context menu of CNTXT.

Me7t#s 303

Emphasizing an Object
The last case to consider is how to emphasize the client window when the window
contextmenuisdisplayed.Beforedescribingthecoderequiredforthis,weshould
discuss some considerations. In WPS only a few objects actually have this kind of
menu. In addition to folders, the complete list includes the system clock (but not
thecolorandfontpalettes,forinstance),andafewotherobjects.Pressingtheright
mouse button in a container will cause an object to be emphasized by a rounded-
angled frame. The same is not true for the clock. The style rules are somewhat
vague here. The general case is that of emphasizing any application/object. Look
at Figure 6.27. To what object does the menu refer? Probably not the desktop,
because the rounded frame is missing; but it is also not intuitive to associate it
with the clock.

Thepresenceofanemphasizingborderwouldhavesolvedthisproblem.Andthat
is what is going on in the CNTX example (Figure 6.28).

To draw the rectangle, we can call the Gpz.Box() function, which is both simple and
flexible to use.

Figure 6.27 The window context menu of an object can also appear outside of
the object.

304 0S/2 2.1 Workplace shell progranming

GE)
Templates

EE ffi
Minimized Shredder

Vvindowvlcner

®
DE„sraE£,uns Sys,a,r,cioa,esourRE,Lshon #

fi E= fi fi E@ %
CommandPrompts Dmres Games Productwty Startup Systemselup

HPLge",D EE
CDPM ERE

Figure 6.28 Even if the menu is completely outside, it is clear which object is
its owner, thanks to the emphasizing border.

#defi.ne INCL_GPIPRIMITIVES

LONG APIENTRY Gpi.Box(HPS hps,

LONG IControl ,

PP0INTL pptlpol.nt
LONG IHRound,

LONG IVRound) ;

Parameter
hps
lcontrol
pptlpoint
lrmound

lvRound

Return Vahae
LONG

Description
Handle to the presentation space
Define with the prefix DRO_
Angle opposite to the current position in the presentation space
Quantity used to determine the approximation of the angle on
the X axis

Quantity used to determine the approximation of the angle on
the Y axis

Description
GPI xxx define

Me„„s 305

Table 6.16 The Defines for the Second Parameter of Gpi.Box()

Flag Vahae D es cription

DRO_FILL IL The rectangle is filled with the current color.
DRO OUTLINE 2L Only the outline is drawn.
DRO OUTLINEFILL 3L The outline is drawn and the rectangle is filled.

The handle to the presentation space is obtained through Wz.7tGefps(), and sub-
sequently released with Wz.7tReze#seps() directly in the code of the WM_CONTEXTMENU
message.hthiscase,therearen'tanyp¢1.7tfz.77gproblems,sinceanyactioncarriedout
on the menu items, on other portions of the window, or on another window, will
always produce just one effect: issuing message WM_SETFOCUS. The emphasizing
border is cleared in the code fragment associated with the WM_SETFOCUS message
(since it is not possible to use either WM_INITMENU or WM_MENUEND, because these
messageswillnotalwaysreachtheclient'swindowprocedure).inTable6.16youcan
see the defines used by the Gpz.Box() function.

AtthispointyouonlyneedtogiveafinallookatthewholeofcNTXT'scode(Listing
6.11), and always remember to build window/objects equipped with a window
context menu.

T`he Predeftned
Window Classes
hPMthereareasmanyas15predefinedwindowclasses,alldescribedinPMWIN.H
andPMSTDDLG.HwheretheyareidentifiedbytheWC_prefix(Table7.1).Theactual
design of the predefined window classes was done by IBM's engineers following the
traditional plan that we have seen in the previous chapters. The registrations and the
windowproceduresofthepredefinedwindowclassesarealltobefoundinsidesystem
DLLs, which are always loaded when OS/2 boots. This gives the predefined window
classes a total and permanent visibility and accessibility from any executable or DLL
module subsequently loaded.

Table 7.1 The 15 Predefined Window Classes in OS/2 2.1

Cl ass Value

WC_BUTTON
WC_COMBOBOX
WC_CONTAINER
WC_ENTRYFIELD
WC_FFLAME
WC_LISTBOX
WC_NINE
WC_NIE
WC_NOTEBOOK
WC_SCROLLBAI
WC_SLIDER
WC_SPREUTTON
WC_STATIC
WC_TITLEBAR
WC_VALUESET

((PSZ)Oxffff0003L)
((PSZ)Oxffff0002L)
((PSZ)Oxffff0025L)
((PSZ)Oxffff0006L)
((PSZ)OxffffooolL)
((PSZ)Oxffff0007L)
((PSZ)Oxffff0004L)
((PSZ)OxffffoooaL)
((PSZ)Oxffff0028L)
((PSZ)Oxffffooo8L)
((PSZ)Oxffff0026L)
((PSZ)Oxffff0020L)
((PSZ)Oxffff0005L)
((PSZ)Oxffffooo9L)
((PSZ)Oxffff0027L)

307

308 0S/2 2.1 Workylace shell progranming

The main advantage of having a significant and assorted set of predefined classes
isobvious.hthefirstplace,manyofthetypicalfunctionalitiesofanapplication-like
handling keyboard input-can easily be delegated to these windows. It is quite
unlikely that an application will be identified wholly with one of the predefined
windowclasses.Mostoften,thiskindofwindowshowsupasachildwindowofsome
other window. For this reason the termi co7tfroz is often used to stress the role of co77froz
eze777e7tfs that these windows play within a PM program.

The application designer does not need to know anything about the internal logic
and structure of the predefined class's window procedures, but will need to know all
mechanisms and rules for using them:

• Appropriate messages
• Notification codes
• Window styles
• Data structures

Each of these predefined classes is characterized by a set of messages of its own, in
addition to the standard WM_ messages. These messages, which are introduced by a
class-specific prefix, are the main tool by which the software designer interacts with
a control. The notification codes are sent from the control's window procedure to the
owner's window procedure in order to tell it how the received message was actually
processed.Thewholepictureisthencompletedbyagroupofstylesusedtocustonrize
the window's look, and, in some cases, by data structures that set some window
behaviors (Table 7.2).

Table 7.2 The 15 Window Classes and Their Associated Data Structures

Class D ata structure

WC BUTTON
WC_COMBOBOX
WC_CONTAINER
WC_ENTRYFIELD
WC_F-E
WC_LISTBOX
WC MENU
WC MLE
WC_NOTEBOOK
WC SCROLLBAR
WC SLIDER
WC_SPINBUTTON
WC STATIC
WC TITLEBAR
WC VALUESET

btncd
Absent
multiple
e'fd
fcdata
Absent
Absent
Absent
Absent
sbcd
sldcdata
Absent
Absent
Absent
vscdata

The predef tnedwindow classes 309

Before getting into the nuts and bolts of each predefined window class, it is
importanttounderstandthedrivingphilosophybehindthesewindows.

The Message Flow
One of the concepts that has been stressed in the first chapters, is message flow. A
window procedure will receive all messages pertaining to its class, one at a time.

Imagine a message as an airplane and the window procedure as the landing strip.
No matter how heavy the air traffic might be, only one airplane at a time can utilize
thelandingstrip.Itisfundamentalthatanytypeofaiaplane(message)canfindinthe
landing strip (the window procedure) all elements that it needs (adequate length,
distance signs, light guides and so on). The messages will run through the window
procedureandinsomecaseswillbeintercepted,ortheywillflowdirectlytoWinDe-
fwindowproc(); often, during their processing, they cause yet other messages to be
issued. This logic is valid even for the windows belonging to the predefined classes.
Thoughthereisafundamentaldifferencewithrespecttothewindowprocedureofa
genericclientwindow,itisimpossibleforthedesignerto``trace"inanywaytheflow
of messages passing by (the airplanes do not land on some landing strips of our
airport).

Let's examine how the same action can have different effects when performed on a
window of the one class or the other. A double-click of the left mouse button on the
titlebar(awindowofclassWC_TITLEBAR)willcausethewindowtobemaximizedor
restored on the screen, according to its current state. A double-click on the client
window win not produce any effect. h the first case, this means that the window
procedureoftheclasswc_TITLEBARcontainsacaseconditionforwM_BUTTONIDBLCLK
wherethedescribedbehaviorisimplemented.Actually,thisisonlyahypothesisthat
is based on the experience and on the study of the functional model of PM; it is not
basedonanydirectknowledgeoftheintemalworkings.Furthermore,weknowthat
the mouse is a kind of independent input device that will invariably report its own
positiontothewindowoverwhichthepointerislocatedatthatverymoment(unless,
naturally, the mouse is captured). The double-click performed on the titlebar is an
actionthatpertainsexclusivelytotheclasswc_TITLEBARanditswindowprocedure.
The final result of this operation is the maximizing/restoring of the window, which
affects the frame window, the client window, and all other window components that
showuponthescreen.Howdoesthisinteractionamongwindowsofdifferentclasses
takeplace?Theexplanationistobefoundinthecriteriathatwerefollowedwhenthe
predefined class's window procedure was designed. once a message has been re-
ceived, this category of window procedure will almost invariable issue many other
messages to the child windows and to the owned windows. This explains why the
action is so well coordinated between the titlebar, the frame, and all controls. How-
ever, this is not the only reason. Once the processing phase is over, each window
procedureofanypredefinedwindowwillnotifyitsownerastowhatactiontookplace.
That'showtheframewindowisableto``understand"thatitmustmaximizeorrestore

STD 0S/2 2.1 Workplace shed progranming

itselfonthescreen.Figure7.1illustratestherelationshipthatexistsbetweenawindow
procedureofawindowbelongingtoapredefinedclassandthatoftheownerwindow.

The analysis of the nature of the menu windows in Chapter 6 gave you some clues
aboutthiskindofrelationship,especiallytheinteractionsthattakeplacebetweenthe
drop-down menus and the menu bar.

Peeping through Windows
Before examining the windows belonging to the predefined classes, 1et's study the
properties of the data produced by PM when creating a window. For this purpose,

PM

PREDEFINED CLASS WINDOW PROCEDURES

Buttonwndproc(...)

(

MPIESULT EXPENTPY Clientwndproc(.

switch(msg)

(

)

// send notification code to the owner

WinsendMsg(hwndowner,WM_CON"OL„..);

)

Listboxwndproc(...)

(

®,,

switch(msg)

(

)

// send notification code to the owner

WinsendMsg(hwndowner,WM_CONTROL,...);

)

every other predefined window procedure

Figure 7.1 Scheme of interactions among windows related through an
ounership relationship.

The predef tned window classes &L1

EI

Figure7.2IntheclientwindowofSN00PERyoucanseelotsofinformation
regarding the structural elements of a window.

+

you can try the SNOOPER application, which is a simple PM uti]rty that allows you
to discover some information that might be interesting for anyone developing soft-
ware for this envirorment. Listing 7.1 presents the source code of SNOOPER, which
is shown in action in Figure 7.2.

SNOOPERdoesnotlookverysophisticated.|tsoutputisjustaseriesoftextstrings
writtendirectlyintheclientwindowoftheapplication,thankstoGp{.Cfe¢rsfr2.ngAfo.
ThefunctioususedinthecodeofSNOOPERretrievetheinformationdisplayedinthe
chaul window., these furmchoas aire WinQueryclassNane(), WinQueryclasslnf a() , Win-
Querywindowushort(),WinQuerywindowuLong(),WinQuerywindow(),and?+hats.

The logic that governs SNOOPER is based on capturing the mouse input, an
operationthatisimplementedbyinterceptingeachsinglemousebuttonclick.Apress
ontherightmousebuttonwillfreethemouseandrestorethestandardoperatingrules.
Oncethemousehasbeencaptured(aclickontheleftbutton),anyoperationperformed
withitwi]lbeaddressedtotheclientwindowofSNOOPER.Byexploitingthedesign
describedinListing5.2forcapturingthemouse,youthenproceedbyidentifyingthe
window underlying the mouse pointer at any given moment, via Wz.7twz.7tdozoFro77t-
Pot.7tf(). Actually, in OS/2 2.1, there is always some window under the mouse's hot
spot.Thesystemwillalwaysfindatleastoneofthesewindows,inthisorder:

3T2. OS/2 2.1 Workplace shell programming

• The desktop o£ OS/2 PM (HWND_DESKTOP)

• The frame window of WPS (child of HW N D_D ES KT0 P)

• A window of class WC_C0 NTA I N E R, client of the preceding frame window

Ofthesethreewindows,twoarealwaysinvisibleandinaccessible,buttheinforma-
tion regarding them can always be retrieved by climbing up the family tree of the
windows.

ApartfromthewindowidentifiedbySNOOPER,allinformationretrievedthrough
theabove-mentionedfunctionsisstoredinastructurenamedSN00P,whichisdefined
in the apphcation's header file together with an adequate pointer.

typedef struct _SNOOP
I

CHAR szclass[34] ;
CHAR szText[34] ;
HAB hab ;

CLASSINF0 clsi. ;

PFNWP pfnwndproc ;

HWND hwndowner ;

CHAR szownerclass[34] ;
HWND hwndparent ;

CHAR szparentclass[34] ;
ULONG ulstyles ;
USHORT uslD ;

HWND hwnd ;

Plo pl.d ;
TID tl.d ;

) SNOOP ;

typedef SNOOP * PSN00P ;
®,®

ThemembersoftheSN00Pstructurearenotdifficulttounderstand,exceptperhaps
for C LASS I N FO, a structure which is specific to the Wz.7tQ#enycz¢ssJ7t/a() function, and
that is described in PMl/VIN.H.

typedef struct _CLASSINFO
(// clsl.

ULONG flclassstyle ;
PFNWP pfnwi.ndowproc ;

ULONG cbwi.ndowData ;

} CLASSINFO ;

C LAS S I N F0 contains the members f l C 1 a s s Sty 1 e, which describe the styles of the
class (a collection of CS_ items specified during registration phase), pfnwi. ndowp roc
tostoretheaddressoftheclass'swindowprocedure,andcbwi.ndowData,whichholds
the number of possible zoz.7cdozo zoords of the class. Among other pieces of information,
you also haNe the Process Ideritif ication Number (P ±D) , the Tlaread Idendif ication Number

Thepredef rued window classes 3L3

(TID), and the address of the window procedure, as it is stored in the window's
reservedmemoryarea.Thislastpieceofinformationisactuallyredundant,butitdoes
playaveryimportantrolebecauseitallowsyoutodeterminewhetherornotthisisa
subclassed window.

The first information retrieved as soon as you get the handle of the window
underlyingthemouse'spointeristhenameoftheclasstowhichthewindowbelongs;
this information is retrieved only after saving the window's handle in the member
snoop . hwnd.

®®

:I::P=hY::N=)#:::::;:|;ssName(hwndsnoop, si.zeof snoop.szclass,
snoop.szclass) ;

®®

The W{.77Q#enycz¢ssM777e() function takes on the following syntax:

#defi.ne INCL_WINWINDOWMGR

LONG APIENTRY Wi.noueryclassName(HWND hwnd,
LONG cchMax,

PCH pch) ;

Parameter
hwnd
cchMax
pch
Return Vahae
LONG

Description
Handle of a window
Sizeofthecharacterarraythatwillcontainthenameoftheclass
Array of characters containing the name of the class
Description
Number of characters in the name of the class

The first parameter identifies a window belonging to the class the name of which
you want to discover. It is not possible to find the name of a class without having
available a window of that class.

Onceyouhavethenameoftheclass,youcaneasilyaccesstheinformationpassed
to PM at registration time with W}.77Reg€.sfcrcz¢ss(). The function W1.7tQ#e7rycz¢ssJ7t/a()
returns the data in a C LASS I N F0 structure:

#defi.ne INCL_WINWINDOWMGR

B00L APIENTRY Wi.nQueryclasslnfo(HAB hab,
PSZ pszclassName,
PCLASSINF0 pclasslnfo) ;

Parameter
hab
pszclassName
pclasshio
Retttm Vahae
BOOL

Description
Handle to the application's anchor block
Name of a class registered in PM
Address of a C LASS I N F0 structure

Description
Success or failure of the operation

314 0S/2 2.1 Wor:laplace shell progranming

The first parameter is the handle of the anchor block of the application that
registeredtheclass.Thesecondparameteristhenameoftheclasspreviouslyretrieved
with W2.7cQ%enya¢ssN¢771eo, and the last parameter is the address of a CLASSI NF0
structure.

®®

Wi.nQueryclasslnfo(HAB(hwndsnoop), snoop.szclass, &snoop.clsi.) ;
®®

h Figure 7.2 you can see that the SNOOPER is not limited to indicating only the
number of the class prefixed by the symbol #, but it will also provide its name like a
WC_define.TheSTRINGTABLEareaofSNOOPER.RCaccommodatesthestringscorre-
spondingtothenamesofthepredefinedclassesthathavethesameDinPMWIN_H:

®,®

STRI NGTAB LE

(+
" - WC_FRAME"

- WC_COMB0B0X"

- WC_BUTTON"

- WC_MENU"

- WC_STATIC"

WC_ENTRY F I E LD"

WC_L I STB0X "
WC_SCROLLBAR"

WC_TITLEBAR"
WC_MLE„

WC_SPINBUTTON"

WC_SLIDER"
WC_VA LU ES ET"

WC_CO NTA I N E R"

WC_NOTEBOOK"

undocumented"

The code fragment that loads the text string corresponding to the class is the
following one:

®,

i.f(1Len < 4 && *snoop.szclass = = `#')
I

l.nt l'Class ;

i.f((i.Class = atoi.(snoop.szclass + 1)) >> Ox28)
1.Class = 100 ;

Wi.nLoadstri.ng(HAB(hwnd), NULLHANDLE,

i.Class, si.zeof(szBuffer), szBuffer) ;
strcat(snoop.szclass, szBuffer) :

)
®®®

The predef tnedwindow classes &L5

I
FunME

#,ZjpRE
"CAI\lEFIAERE

„,„„„.';

osre system

`ng?

PMsayE?a

H EEE i#
Volume Minimized Shredder
Control Windo\h/viewer

8#td?B:xl4bo7gbo
nab: Oxeoool

F#:3#¥:oLt:¥:§:R35m8e:o#o302o7o6o6

!iti7!i-i8][¥!.i!!§38o"

EnE@ H REP ffi
Drr`'eA Osreprogrons Bgsoti|cewL-,rLsi`op PRODINFOBMp FaxpM

E@ E= E@ fi ffi E
Commondprompts Drtves Games ProductMty Stallup ERIEEEEffi

E]
!HFHRErfu-EE

RE
COPME;XE

Figure7.3Themouseispositionedoverthetextlabelunderanicon:Itsclass
is undocumented.

W{.7tLo¢dsfrz.7tg()iscontrolledbyan1.fstatementthatcheckswhetherthenameof
the class is shorter than four characters, not including the # symbol at the beginning.
Thispreliminarytestsavestimebynotsearchingfornonexsistentdefineswhenthe
mouse points to, for instance, a client window registered with a # at the beginning.
The condition of the class name's length can be somewhat maddening. h PM, in
addition to the 15 predefined classes, there are many more undocumented classes.
Their names always start with a #, followed by a five digit number. SNOOPER win
resolve the problem simply by displaying the number of the class, followed by the
text ``#7tdoc#77ce7tfcd." Figure 7.3 shows information of an undocumented window
class.

Once this first obstacle has been overcome, you can go ahead and store the
remaiing information in the S N00 P structure. First comes the handle of the ¢7tcfeor
Z7Zock, then the handle of the parent window, the class of the parent window, and
many others.

Whenyouhaveterninatedallthisdataretrievalactivity,youforcetheissuingof
theWM_PAINTmessagebyinvalidatingthewholeclientwindow.hthecodedealing
with WM_PAINT you prepare for displaying the text strings that constitutes the
program'soutput.ThetextappearsintheclientareathankstoGpz.Cfe¢rsfrz.7tgAf():

316 0S/2 2.1 Workplace shell progranming

®®®

pt.x -10L ;
pt.y = rc.yTop - ITEMHEIGHT ;
lLen = spri.ntf(szstri.ng, "ClassName: %s", snoop.szclass) ;
Gpi.Charstri.ngAt(hps, &pt,1Len, szstri.ng) ;

®

In Chapter 13 you will see a revisited version of SNOOPER, one that is closer to the
development model of WPS and has some very interesting features.

The Structure of Windows
For a developer, an application like SNOOPER is vital. The information gathered
through it can be a source of inspiration. Spying on other PM windows gives you
a complete picture of the diverse ways in which you can exploit styles, flags, and
options. Also, it is important to fully understand the relationship existing among
the various windows.

Figure 7.3 shows SNOOPER displaying information regarding the #32765 of PM
application. The next to last piece of information presented in the client windows
indicates in hexadecimal notation the number of window words declared when
the class was registered. Each window of the #32765 class has eight extra bytes in

:€tdj:±e°nant::::t:tnat:?irhdeao=L°yToti::i:i::tt£::Sy±::ei°±grt°d¥aawn¥:htina:::e°suetbt;tee±:
might accommodate two LONG values... and that isn't that much of a discovery! It
isn't even possible to be sure about the order in which the data items are stored in
the window words and even less about their contents. Exploring other windows
belonging to the predefined window classes, you can gather the results that are
summarized in Table 7.3.

All of the predefined window classes have a number of window words which
byfarexceedthetheoretical1imitof4bytesgiveninChapter4.Thisdiscoverydoes
not contradict the general rule. The predefined classes need to store lots more
informationbecauseoftheuniversalroletheyplay.(Rememberthatonthelanding
strip of your airport there can be many different planes passing by-many mes-
sages sent to different windows belonging to the same class.) For a generic client
window, however, it is wise not to exceed the limit. At the present, stage,
PMWIN.DLL-the DLL containing all API functions with the Wz.7t prefix-is still
a 16-bit component, as you will be able to demonstrate with SNOOPWPS in
Chapter 13. However, the linear addressing scheme that is typical of the 32-bit
world and the intemal functioning logic of PMWIN.DLL is still anchored to the
old model of 64KB segments. Using window words is an optimal strategy for
writing PM applications. Until PMWIN.DLL is converted to 32 bits, it is better to
be prudent and avoid exhausting system resources. Eventually, when a 32-bit
version of PMWIN.DLL does exist, however, applications will perform window

The predef tned window classes &T7

managementmuchfaster,andthesoftwaredesignerwillhavemorehorsepowerto
exploitandhavefunwith.

The Predefined Window Classes and the Window Words
The froctior\s WinQuerywindowushort() and WinQuerywindowuLong() and the con-.
respondingfunctionsforstoringvaluesalltakeintoaccounttheflagsQWS_USERand
OW L_U S ER. These two defines identify, respectively, a two-byte and a four-byte area
inside the window words, which are available to the designer. The values of the
windowwordscolunninTable7.3alsoincludethespaceidentifiedbyOWS_USERand
OWL_USER.

The strategy adopted by the designers of OS/2 PM was in this case a real reward
for developers. The definition of window words is an operation that is auowed only
when a class is being registered, and once that has already been performed for the
predefined classes, the availability of four free bytes constitutes an opportunity for
storingprogram-specificdataeveninsideapredefinedwindow,anentitynotwholly
under the designer's control. Take note of this: It will be very useful in the next few
examples, and in developing complex applications.

Table 7.3 The 15 Predefined Classes in PM and the Amount of Allocated Window
Words

Class W:indow words

WC_BUTTON
WC_COMBOBOX
WC_CONTAINER
WC_ENTRYFIELD
WC_F-
WC_LISTBOX
WC_MENU
WC_MLE
WC_NOTEBOOK
WC_SCROLLBAR
WC_SLIDER
WC_SPINBUTTON
WC_STATIC
WC_TITLEBAR
WC_VALUESET

Oxoola
Ox005a

OxOOOc

Ox0034

0x0060 I

0x0042
0x0022
0xOOO8

0xOOO8

0x0024
0xOOO8

0xOOO8

0xOOOc

OxOOOc

OxOOO8

318 0S/2 2.1 Wor:laplace shell progranming

Table 7.4 List of Some Undocumented Window Classes in OS/2 2.1

Cl ass Style D es cription

#32766 0xaooooooo
#32765 0x92000000

#50 0x90000000

#52 0x90000000

#54 0x80000000

#55 0x80000000

#57 0x80000000

The Desktop of PM.
Window containing a minimized running applica-
tion,s title.
The Criteria window of the hclude page of the
Settings notebook (lower part).
TheCriteriaofthehcludepageoftheSettingnote-
book (upper part).
htemalportionofawindowbelongingtotheclass
WC_NOTEBOOK.
Horizontal arrows for turning pages in a window
belonging to the class WC_NOTEBOOK.
Vertical arrows in a window belonging to the class
WC_SPINBUTTON.

Undocumented Classes
PM also has some undocumented classes. One of these, perhaps the most important
one, is the #32766. The desktop-the ancestor of all PM windows-belongs to this
class.InTable7.4youcanseethenamesofsomeundocumentedclassesthatyoumight
be able to detect by using SNOOPER and other utilities. You should never try to use
theseclasses,becausethereislittleinformationaboutthem,andtheydonotaddmuch
to the rich and powerful PM API.

You should not be concerned if there are undocumented elements in the API,
becausethemissinginformationisnotthatimportant.Concentrateonthepredefined
classes, and you win see that the tools available to the designer are truly remarkable.

How to Create a Window of Class WC

The ``standard" windows created with Wz.7tcre¢£esfdwz.7tdozo() are equipped with
various controls, like other windows belonging to predefined classes. The entire
process is transparent to the user. When you need to explicitly create a listbox, a
combobox, or an entryfield, then you need to call Wz.7?Cre¢£ewz.7cdozt7().

Controls (with this term we usually exclude the classes WC_FRAME, WC_TITLEBAR,
andwc_MENU)seldomtaketheroleofanapplication'smainwindow.Moreoften,they
areaccessoryelementsthatmightsupportthecreationofacomplexwindowequipped
withseveraltoolsforinteractingwiththeuser,ortheyhelpindisplayinginformation

The predef rued window classes &19

retrieved or produced by the application's execution. The syntax of W€.7£Cre¢few€.#-
dozt7() has already been described in Chapter 4. Let's take a look at it again:

hwnd = Wi.ncreatewi.ndow(hwndparent,
szcl assName ,

pszT1.t1e,
ul Styl es ,
X,y,

C;X' C;y '

hwndowner, hwndlnsertBehi.nd,
.d,

pctlData, ppresparam) ;

Theretumvalueisthehandieofthenewwindow,orNULLHANDLEincaseoferror.
Thefirstparameteristhehandleoftheparentwindow.Sincethecontrolsarealmost
never fop-Zez7ezwindows,thepixelsmustbeprovidedbysomeotherwindowinstead
of HWN D_D ES KT0 P. Often it win be directly an application's client window that takes
the part of a control's parent.

Thechoiceofanewwindowcanrangeoveranyofthefifteenpossiblealtematives.
Thetitle,thethirdparameter,wiubeusedinabroadersense.Inaupreviousexamples
of the WC_FRAME class, the title was considered as the piece of text inserted in the
titlebar. However, its real meaning depends on the class to which the window being
createdbelongs.FortheclassesWC_SCR0LLBAR,WC_ENTRYFIELD,WC_MLE,WC_VALUE-
SET,andwc_COMB0B0X,youneedtospecifyNULLinplaceofthisparameteralmosta]l
the time. It does not make sense to contemplate a scrozzz7¢r with a title. It is very rare
toassignatitletoawindowoftheclaSSWC_LISTB0X;ontheotherhanditiscommon
for WC_BUTTON and WC_STATIC. The controls introduced by version 2.x are rather
complex windows, that in some cases (WC_CONTAI NER and WC_NOTEB'00K) require a

prelininarypreparationthatistediousandcomplex,andthateventuallybringsthe
title being assigned.

The position and the size of a window is always expressed in units of its parent,
starting from the lower left-hand corner. A control that always preserves the same
positionandsize,withrespecttoitsparent,isusual.Lesscommonisthecasewhere
a control can move about in the space it has available. In this case, they are rather
called windows.

As far as the owner window's handle is concerned, the possibilities are even more
complex.ByusingSNOOPERtoexaminesomeofthepredefinedwindows,youmight
discover that the menu bar, the titlebar menu, and the sizing icons all have as their
owner the application's frame window. hstead, the client window, created with
W€.7tcrc¢£esfdwz.77dozt7(), does not have any owner, although it can acquire one by
calling Wz.7esefozu7te7'().

Itisimpossibletodefineapropersetofrulestowhichyoucanreferindefiningthe
owner window of a control. Often the parent window plays double-duty as owner,
even though this is not an absolute rule (just think of drop-down menus where the
two roles are distinct).

&2J0 0S/2 2.1 Workplace shell progranming

Thenexthandle,hwnd1nsert8ehi.nd,definesthewindow'son-screenposition.h
addition to specifying a handle, other solutions that are frequently employed are
HWND_T0PandHWND_BOTTOM.Inthefirstcase,thewindowbeingconstructedappears
above all other windows at the same hierarchical level; in the second case it win be
the last one in the list. The next parameter of W{.7tcre¢few2.7Idozoo corresponds to the
IDassignedtothewindows.WehaveneverdealtwiththewindowIDbefore,because
it is not possible to specify it directly with Wz.77Crc¢fesfdwz.77dozo(). However, this
information is necessary for all controls, as it gives to its parent another tool for
accessing it. From the parent you can get to a child window by calling W2.7tw€.72dozo-
Fro77elD0 and providing the correct ID. It is therefore vital to assign a unique ID to
each control

Thetwelfthisapointertoanareaallocatedforaccommodatingdataspecifictothe
window's class. Some of PM's predefined classes have in PMWIN.H and
PMSTDDLG.Hrelateddatastructures.Thisisthecase,forinstance,ofWC_FRAME,but
not of WC_MENU as you can see in Listing 6.10. The syntax of Wi.7?Cre¢few2.7idozoo is
completedbytheaddressofamemoryareacontainingthepresentationparameters.
Bythisexpressionweindicateallinformationthatletsyouvarythecolorand/orthe
defaultfontofacontrol.FirstintroducedwithOS/2PM1.2,thepresentationparame-
ters play a central role when building a window consisting of several controls.

When to Create a Window of a Predefined Class
Any place in the code of a window procedure is good for placing a can to W€.7t-
Cre¢£ew2.#dozoo to create a control. If the parent is a client-the most frequent situ-
ation-thebestplaceisinthecodefragmentdealingwithWM_CREATE.Thereyouhave
available all information regarding the parent, which often is also the owner. Let's
now examine the single characteristics of the various predefined classes, and study
how they are best put to use.

The Class WC BUTTON
To this class belong several windows known as Z7#ffo7ts that differ in shape and look.
The differences are a consequence of setting certain styles when a window is created
(Table 7.5). When building a window with Wz.7tc7'c¢£esfdwz.77dozt7() there is no repre-
sentativeofthisclass,eveniftheirpresenceincormiercialapplicationsiscontinually
growing (toolbars and similar objects often contain many buttons).

AwindowoftheclassWC_BUTT0Nwillalwaysappearinoneoftwopossiblestates:
pressed or not pressed. These two conditions are displayed on the screen in different
waysrelatedbythestylesthatcharacterizeabutton.Thereare,in fact,severalbuttons
thathaveathree-dimensional,circular,orsquarelook,andofferthedesignerdifferent
graphicalandfunctionalsolutions.Theshapeofthebuttonsdepends,inthefirstplace,
on the action of certain style flags when the window is created and on the state in
which it is created.

Table 7.5 The Styles of the Class WC_BUTTON

Style Value D es cription

BS_PUSHBUTTON

BS_CHECKBOX 1L

BS_AUTOCHECKBOX 2L

BS RADIOBUTTON ?L

BS_AUTORADIOBUTTON 4L

BS_3STATE

BS AtIT03STATE

BS_USERBUTTON

BS_BITRAP
BS_ICON

5L

6L

7L

Defines a p#s71Z7##o77, i.e. a button that once se-
lected issues the message WM_COMMAND to
its owner window.
Looks like a small square with some text to its
right; when it is selected it issues the message
WM_CONTROL to its owner window, which is
responsibleforchangingthebutton'slookonthe
screen.
It is sinular to the style BS_CHECKBOX as far as
the co7tfroz's look is concerned and the issuing of
the WM_CONTROL message to its owner win-
dow; automatically displays an X in the square
when it is selected.
Creates a small circle with some text to its right;
generally 7i¢dz.ob#ffo7ts are used in one group;
when selected it posts the message WM_CON-
TROL to the owner window, which is
responsibleformanagingallotherbuttonsinthe
oroup.
Identical to BS_RADIOBUTTON with the only
difference that the button is automatically high-
1ightedand,ifselected,removestheselectionfrom
anyother¢#forfldz.oZ7#ffo71thatbelongstothesame
oroup.
Identical to BS_AUTOCHECKBOX as far as the
co7tf7'oZ's look is concerned and the i'ssuing of the
WM_CONTROL message to its owner window;
automatically displays an X when it is selected,
but the selection also includes the empty square
and a square filled with a gray pattern.
Identical to BS_3STATE as far as the co7tfroz's
look is concerned and the issuing of the WM_-
CONTROL message to its owner window; but
automatically changes its state when it is
selected.
Creates a user-defined button that notifies its
parent about its selection state; the request for
p¢z.7tfz.7tg through WM_IIAINT is instead ad-
dressed to the owner window.

Ox0040L The button displays a bitmap.
OxOO80L The button displays an icon in place of the

traditional text string. (co#£z.7t#ed)

321

32:2 0S/2 2.1 Worlaplace shell progranming

Table 7.5 (Cor!f£.##ed)

Style V alue D e s cription

BS_HELP

BS_SYSCOMhEND

BS_DEFAULT

OxO100L Creates a button that causes the message wM_-
HELP to be issued when it is selected.

Ox0200L Creates a button that issues the message wM_-
SYSCOMMAND when it is selected.

Ox0400L Creates a button with a heavy border, which
indicates that the user is allowed to select the
button by pressing the Enter key.

BS_NOPOINTEREO CUS 0xO80 0L

BS_NOB ORDER 0xl 0 0 0L
BS_NOCURSORSELECT 0x20 0 0L

BS_AUTOSIZE

Creates a button that does not receive the/oc#s
even when it is selected.
Creates a button with no border.
If set together with BS_AUTORADIOBUTTON it
preventsthebuttonfrombeingselectedautomat-
ically when the user moves the cursor over that
buttonthroughthedirectionkeys.

Ox4000L The button takes on a different size from those
assigned to it by the programmer if they are not
largeenoughtocontainthewholeobject.

Apart from the styles BS_SYSCOMMAN D and BS_H E LP that modify ordy the nature of
themessagegeneratedbyusingwindowsoftheWC_BUTT0Nclass,noticehowdifferent
kindsofbuttonscanbereducedtop#sfez7#££o77s,cfecckboxes,and7i¢dz.oZ7##o77s,indicated
by the styles BS_PUSHBUTTON, BS_CH ECKB0X, and BS_RAD I 0BUTTON. The style charac-
terizedbythewordAUTO,asinBS_AUTOCHECKB0X,indicatesthatthemanagementof
symbols used to represent selection, nonselection, and undetermined state (gray
backgroundinacheckbo#),isautomaticauyperformedbyPMoveranofthewindows
that belong to a group. At the begirming of the development of Microsoft's user
interfaces (in fact, PM is still influenced by the design of Windows, which guided its
initial development phase in 1987), buttons were thought of as typical tools inside a
dialogwindow.Thesewindows,aswewillseeinthenextchapter,aretrulycontainers
for controls of different classes. These controls are often grouped into homogenous
areas by assigning to them the style WS_GROUP. The idea of a group refers to this
situation and use of buttons. With time, the evolution of user interfaces, usage rules,
andconventionshavechanged.hthischapterwewill1imitourselvestothewindows
of the class WC_B UTT0 N as child windows of a client window.

The look of a traditional button, a pushbutton requires a three-dimensional look
that is evident when the user ``presses" the button with the mouse or the keyboard.
The selection corresponds, in PM terminology, to being highlighted. On the other
hand,checkboxesarerectangleswithatextlabeltotheirright;radiobuttonsarecircles

The predef rued window classes 82:3

EE

Figure7.4ThelookofbuttonsinPresentationManagercanbeverydifferent.
*

with a text label to their right. Listing 5.6, regarding the display of bitmaps and
predefinedpointers,gaveyouanideaofsomeofthepossiblelooksthatthewc_BUTTON
classwindowscanhave.Figure7.4istheresultofListing7.2inthecreationofvarious
kinds of buttons.

F+ashioriable Buttons
BylookingatFigure7.4,youcanseethatabuttonismissingintheclassicaltext,and
replacedbyanicon.Thisresultisachievedbysettingthestyle8S_IC0Nor8S_BITMAP
iftheimagehaslargerdimensions.Drawnbuttonsarea]mosta77t#sfforapplications
nowadays. Just think of the S77c¢7`£€.co7ts in Lotus's product line. Replacing a piece of
textwithaniconcanenhancetheinterfaceofanapplicationandmakeiteasierforthe
usertointeractwithit.Thesyntaxofw{.7tcre¢£ewz.7tdozu()doesnotauowyoutospecify
the handle of an icon or of a bitmap in any of its parameters. The obstacle can be
overcomebypassingtothenexttolastparametertheaddressofaBTNCDATAstructure.
This is a first example of a class specific data structure. When the window procedure
oftheclassWCLBUTT0NreceivesthemessageWM_CREATEinmp1,itwillfindexactlythe
same address you indicated when calling Wz.#C7'c¢fewz.77dozo(). Figure 7.5 illustrates
the whole process. .

&2:4 0S/2 2.1 Workplace shell progranming

Figure 7.5 Description of the mechanism used for passing information to a
predefined window class.

The BTNCDA;TA Structure
The structure BTNCDATA is specific to WC_BUTTON and allows the passing of class-

specificdataatthemomentofcreationofawindow,independentofthe8S_stylethat
might possibly be set.

#defi.ne INCL_WINBUTTONS

typedef struct _BTNCDATA

I // btncd
USHORT cb ;

USHORT fscheckstate ;
USHORT fsHi.li.testate :
ULONG hlmage ;

I BTNCDATA ;

Have a look at the syntax of BTNCDATA. It is a nightmare! Compared to the past, a
fourth member has been introduced, which is rightly of type U LONG like the system
word. hexplicably, for the first three members there has been no promotion from

The predef tned window classes 82:5

USHORTtouLONG.Sowearedealingwithahybridobject,withsomerelatednontrivial
problems.

The first member contains the size of the structure. The value returned by s i. zeof
is that of a 1 o n g; therefore, you need to apply a type casting correctly. The second and
third members indicate together the selection state of the button. If it was specified
during creation, you can avoid the subsequent issuing of the messages 8 M_S ETC H EC K
and BM_S ETH I LITE to set the desired state.

The last member contains the handle of the icon or bitmap that yoii want to display
in the button. Naturally, an assumption for the class WC_BUTT0 N to take into account
is the presence of the flag BC_I CON or the flag 8 S_B I TMAP. Here is how the result was
achievedin'Listing7.2:

®,,

case WM_CREATE:

I
HWND hwndButton :

HP0INTER hptr :

BTNCDATA btncdata ;

btncdata.cb = (USHORT)si.zeof(BTNCDATA) ;
btncdata.fscheckstate = TRUE ;
btncdata.fsHi.li.testate = TRUE ;
btncdata.hlmage = Wi.nLoadpoi.nter(HWND_DESKTOP,

NULLHANDLE, RS_ICON) ;

hwn'dButton = Wi.ncreatewi.ndow(hwnd, WC_BUTTON,
NULL,

WS_VISIBLE I BS_PUSHBUTTON I

BS_AUTOSIZE I BS_ICON,

5, 5, 0, 0,
hwnd, HWND_TOP,

CT_PUSHBUTTON,

&btncdata, NULL) ;

®,

ThestyleBS_AUTOSIZEisquitehandy.Thewindowwfllbesizedautomatically,and
you don't have to be concerned about it. Be careful, though! The style will work only
iftheextensionsonthetwoaxesareequalto0.Iftheyarenot,youwillobtainawindow
thesizeofwhichisequaltowhatyouhaveindicatedincxandcy,despitethepresence
of BS AUTOSIZE.

A limit to this solution is to be found in the lack of a three-dimensional effect on the
image.The3Dlookistheconsequenceofthepresenceoftwodifferenticonsthatdiffer
one from the other only in the shadow of the lower and the right borders. When the
button is pressed, the second icon is displayed in place of the first one, and the first
one is restored when the button is released. There is no specific BM_ message to
dynamically change the icon shown in a button. The only way to achieve this is by
means of WM_S ETW I N DOW PARAMS. This message is quite powerful and flexible, as seen
in Listing 7.2.

&2!6 0S/2 2.1 Wor:laplace shed programming

Another solution to create true 3D buttons requires you to declare them with the
style BS_USERBUTTON. The buttons equipped with BS_USERBUTTON will delegate to
their owner performing` the appropriate painting operations: that is, in this case,
handling a pair of related icons, which is quite easy, as you will see when we will
explore listboxes. 1 .

f

Interacting with a Button `
ButtonsoftheclassWC_BUTT0Ndisposeofsomespecificmessagesfortheirownneeds,
as summarized in Table 7.6. Among these, the most frequently used is 8 M_S ETC H EC K,
which will let you set/remove the selection state on a checkbox or a radiobutton.
Generany, the interaction that takes place with a traditional pushbutton will involve
the application's interce.pting the notification codes generated by the class's window
procedure and addressed to the owner window.

Table 7.6 Messages That Are Specific to the Class WC_BUTTON

Mes s age Vahae D es cription

BM CLICK 0x0120 Issued to simulate the pressing of the
button.

BM_QUERYCHECRINDEX 0x0121 This message will allow you to identify
the selected r#dz.ob##o7i within a group,
and will return its position with an index
that starts counting from zero.

BM_QUERYHILITE 0x0122 Asks a button to return its selection state:
returns TRUE if it is selected.

BM_SETHLITE 0x0123 Assigns/removes the selection state to/from
a button.

BM_QUERYCHECK 0x0124 Asks a button if it is displaying its selection
symbol: can be sent to buttons defined

?

with the styles BS_CHECKBOX, BS_-
AUTOCHECKBOX, BS_3STATE, BS_-
AUT03STATE,, BS_RADIOBUTTON, and
BS_AUTORADIOBUTTON: rettms 1 if
the button is selected, 2 if it is not selected,
and 0 if its state is undetermined.i

BM SETCHECK

BM SETDEFAULT

Ox0125 This message will letyou set the state of a
I button: pressed or not pressed.

Ox0126 Assigns/removes to/from a pt/sJzb#ffo7t or
`a tJserz7#££o7t the state of default button.

The predef tnedwindow aasses 82:7

Table 7.7 The Notification Codes of the Class WC_BUTTON

Notif tcation code Vahae Description

BN CLICKED 1

BN_DBLCLICKED 2

BN PAINT 3

Indicatesthatyouhavepressedthemousebuttonover
aL radiobutton or orver aL checkbox.
hdicates that you have double-clicked the mouse
button over aL radiobutton or over aL checkbox.
hstructs the application to perform the p¢€.7tfz.7tg of a
button created with the style BS_USERBUTTON.

Notoficadion Co des
The buttons of the class WC_BUTTON are Lmusual in that some of them communicate
withtheirparent/ownerwindowbysendingthemessageWM_CONTROL,whileothers
use the message WM_COMMAN D. The distinction between the two kinds is in the type of
button that was created, that is, in the particular a S_ style adopted. Pushbuttons will
issue the WM_COMMAN D message, while checkboxes and radiobuttons will use WM_C0 N -
TR0L.Thepushbuttons'useofWM_C0MMANDexplainstheconditionCMDSRC_PUSH8UT-
TONthatwesawinchapter6whenanalyzingthesourceofthewM_COMMANDmessages.
Pushbuttons use this means for communicating with their parent/owner window.
The notification codes issued by the window procedure of the class WC_BUTTON are
summarized in Table 7.7.

Since both radiobuttons and pushbuttons are tools used in groups, their use is
concentrated ahost exclusively in dialog windows. The interception of the message
WM_C0NTR0Lcontainingthenotificationcodestakesplaceatthedz.¢Zogproccd#relevel.
We will examine in great detail these two kinds of buttons in the next chapters, with
significant code samples.

Pushouttons as Input Elements
Apushbutton'sissuingthewM_COMMANDmessagetoitsparent/ownerwindow,justas
with menus and accelerators, suggests a simple consideration. Both menus and
accelerators are typical input tools that allow the user to interact easily with the
application. h some cases it is possible to use buttons in addition to or in place of
menus, thus giving the window a very appealing look- while remaining faithful to
the rules of CUA-by implementing a sound and ergonomic input tool. That is
precisely what we intend to do with the next fisting (Listing 7.3).

We have already faced the problem of changing the client window's color in many
places in this text. Now we want to propose a solution that is simple, practical, and
convenient, both for the software designer and the user. This solution is based on
pushbuttons.Itisnotunusualbutitwfllgiveyousomeideaastohowthepushbuttons
are not limited to use in dialog windows.

&2:8 0S/2 2.1 Workplace shell progranming

Figure 7.6 Placement of a button directly in the client area of a window where
it is used as an input tool.

1

h the client window of an application there will be a pushbutton with the label
Green that allows the user to indicate the color to be used for painting the window
(Figure 7.6).

The selection of the pushbutton with the mouse will switch the window to the next
available color (Blue). h the application's code, the message WM_COMMAND is inter-
cepted because the application has a menu bar. Before extracting, with the macro
COMMANDMSG, the ID of the window that generated the message, the same macro
COMMANDMSG is used to identify the source of the message:

®®,

case WM_COMMAND :

swi.tch(COMMANDMSG(&msg) -> source)

I
case CMDSRC_MENU:

swi.tch(COMMANDMSG(&msg) -> cnd)

(
defaul t :

break ;
)
break ;

The predef tned window classes 8Z9

case CMDSRC_PUSHBUTTON:

swi.tch(COMMANDMSG(&msg) -> cnd)

[
case CT_DEFPUSHBUTTON:

(ncnt = = 2) ? ncnt = 0 : + +ncnt ;

Wi.nsetwi.ndowText(hwndButton, szclr[ncnt]) ;
Wi.nlnvali.dateRect(hwnd, NULL, FALSE) ;

break ;

default:
break ;

)
break ;

i
break ;

1
®®®

The code fragment dealing with CT_DEFPUSHBUTTON is very simplerfirst the
counter ncnt is incremented or zeroed by using the conditional operator. Then the
texttobedisplayedinthepushbuttonismodifiedwithW1.77Se£Wz.7tdozoTex£(jandthe
textstringthatisretrievedfromthearrayofpointersszC1r[]correspondstothenext
color. To change the color in the client window immediately, the whole area is
invalidated and the sending of a WM_PA I NT is forced. Another valid solution would
havebeentousethestylecs_SYNCPAINTatthewindowclassregistrationlevel.Inthis
way-inListing7.3thisapproachtotheproblemispresented-itispossibletoavoid
caLELBwinupdatewindow().

A true PM application might accommodate several buttons in the client window,
with much more interesting designs. A sound approach consists of aligning the
various buttons at the bottom of the window in order to be able to perform all
operationsdirectlyandeasily.Forinstance,inacommunicationprogramorane-mail
serviceprogram,youmightincludebuttonslikeSend,Receive,andsoon.Acollection
ofadjacentbuttonsisfunctionallysimjlartotheS77t¢rflco7isbartypicalofLotus'sline
of products.

A nice touch would then be the addition of specific accelerators for these pushbut-
tons. h fact, a mouseless user wouldn't have a chance to select this kind of button, so
accelerators are an ideal solution. We have already seen in Listing 6.9 of the previous
chapter how to dynamically implement an accelerator table through combined calls
to W£.7iLo¢dAccezT¢Z7Zeo and W£.7tse£AccezT¢Z7Zeo. This task is left to you as an exercise
(you will find the solution in Chapter 8).

The Class WC_STATIC
In Chapter 5, when dealing with keyboard handling, we used the function Gp€.Cfe¢r-
Sfrz.7tgA£() to display a text string inside a window. This operation required you to
have at hand a handle and a presentation space, a typical tool for Gpz. functions, and

330 0S/2 2.1 Workplace shell progranming

for some W£.7t functions. An altemative solution, valid under certain circumstances, is
to create a window of class WC_STAT I C. Then, the output would be managed through
Wz.7tse£Wz.7tdozt)Tex£(), while text retrieval would be accomplished through We.7tQ#eny-
WindowText().

Actually, in all of the samples seen so far, the need to display text in the client
window has been rather limited. Resorting to a window of class WC_STAT I C is more
usual for dialog windows (Chapter 8), windows that feature a large number of
controls,andthatareindicatedforinteractingdirectlywiththeuser.Itisinthiscontext
that windows of this class get used most often. Let's examine the dialog window to
open a file in the system editor E.EXE (Figure 7.7). The labels Open, File Name, Files,
Directories, and Directory are actually windows ,of the class W C_STAT I C.

The SS_ Styles
There should exist a limited number of different styles to qualify the window of the
class wc_STAT I C, due to the reduced number of user interactions supported (this class
does not provide the user with any input capability). Presentation Manager takes
advantage of this class to perform other actions in additiorl to simply displaying text
statically. Therefore, there are as many as 12 different styles (Table 7.8) that charac-
terize the class WC_STAT I C.

Figure 7.7 The dialog window to open a file in the system editor.

The predef tned window classes 331

ByexaminingTable7.8,itisevidentthattheSS_stylesaremutuallyexclusive.This
means that it is not possible to create a static text window that, at the sane time, has
a light gray frame around it. A window of class WC_STAT I C can play only one role at
a time.

A text window surrounded by a frame, however, is quite often needed. To solve
thisproblem1noticedthataPMapplicationusedtoinstallsomeprinterdriversdrew
a rectangle around the text. There is a simpler solution, based on the services offered
bytheclasswc_ENTRYFIELD.

You rfught be wondering why you should resort to the services of the class
WC_STATIC to display an icon or a bitmap, when the operation was performed

Table 7.8 The Styles of the Class WC_STATIC

Style Valtle D es cription

SS_TEXT

SS_GROUPBOX

SS_ICON

SS_BITTh4AP

OxOoolL This style is typicallyusedto create windows for
displaying static text.

Ox0002L Creates a window surrounded by a light frame
and a text string in the upper left-hand comer:
this kind of window is used inside a dz.¢Zog
zo£.7tdozo to group together related co77frozs, like
radichutton.

Ox0003L Creates an icon by interpreting the text (given
as the window's title) as the ID of the resource
that is to be loaded from the resource file.

Ox0004L Creates a bitmap according to the same rules
followed for SS_ICON.

SS_FGNDRECT 0x0 0 05L

SS_IIALFTONERECT 0x0006L
SS_BKGNDRECT 0x0 0 0 7L

Ss_FGr`roFRAME oxo o o 8 L

SS_HALFTONEFRAME 0xOOO9L

SS_BKGNDFRAME 0xO o o aL

SS_SYSICON 0xO o obL

Creates a rectangle filled with the foreground
color.
Creates a rectangle filled with light gray.
Creates a rectangle filled with the background
color.
Creates a rectangle with a frame colored in the
foreground color.
Createsarectanglewithaframecoloredinlight
oray.
Creates a rectangle with a frame color in the
background color.
Creates a system icon by interpreting the text
given to the parameter pszName of Wz.7zC7ie¢fe-
W1.7tdozu() as the ID of the system icon.

SS_AUTOSIZE 0x0040L Automatically sizes the window so it can' contain the related object.

392. OS/2 2.1 Workplace shell progranming

Table 7.9 The Messages of the Class WC_STATIC

Mes s age Value D es cription

SM SETHANDLE 0xO100 Issued to set the handie of an icon or a bitmap
in a window of class WC STATIC.

SM_QUERYHANDLE 0xO101 Issued to retrieve the handle of an icon or a
bitmap in 'a window of class WC_STATIC.

successfully in more than one of the previous examples. Good question! The answer
is simple, and always the same: The class WC_STATI C becomes useful for displaying
aniconorabitmapinadz.¢Zogzoz.77dozu.Justalittlemorepatience,andyouwilldiscover
what this window is all about!

The SM_ Messages
The set of messages specific to the class WC_STAT I C is very small, and pertains ordy to
this class as a container of graphical objects,like bitmaps and icons (Table 7.9).

It is easy to infer that since there is no possibility for the user to interact with a
window of class wc_STAT I C, there are no special notification codes. .

The Class WC TITLEBAR
The titlebar of a generic PM application belongs to the class WC_TITLEBAR. Its main
purposeisthatofgivingtheplacefortheapplicationwindow'stitle.Otherdutiesthat
are also important are moving the window when the user is pressing the left mouse
buttonwhileslidingthemousepointeronthescreen,andchangingthewindow'ssize
when detecting a double-click.

Movingawindowinthespaceofitsparentissomethingsolvedthroughthetitlebar
bycallingthefunctionwz.7tTr#ckRec£(),whichwehavealreadyencounteredinchapter
5, when exploring the mechanisms used for moving a bitmap in a window's client
area.

Resizing (maximizing or restoring) a frame window is an operation activated
through a double-click on the titlebar. If the window is maximized, it will be restored
to its previous size and position within the space of its parent window; otherwise it
will be maximized. This will always be dealt with by intercepting the message
WM_B UTT0 NXD 8 LC LK in the class's window procedure.

Theassignmentofatextlabeltothetitlebarisperformeddirectlywhencreatingthe
windoworlaterthroughwz.7tse£Wz.77dozoTexf(),thoughwithoutspecifyingdirectlythe
handieofthiswindow;theframe'shandleismorethanadequate.Toretrievethetitle's
text you can call the function Wz.7tQ#e7t/Wz.77dozoTe%f().

The predef tned window classes 333

Table 7.10 Messages of the Class WC_TITLEBAR

Mess age Value D es cription

TBM SETHILITE 0xole3 Sets the state of the titlebar.
TBM_QUERYI[ILITE 0xole4 Retrieves the state of the titlebar.

Therearenospecialflagsforthisclass,duetothesimpleandlimitednatureofthe
operations. The messages, instead, are only two, as listed in Table 7.10.

The titlebar can show up in two different conditions: activated (fez.gfezt.gfefed) or
deactivated. By default, these two different conditions are represented respectively
with the colors green and gray. h general the color attribute of the titlebar varies
according to the presence or absence of the input focus over a window. By sending
TBM_SETHILITEwithmp1settoFALSEtotheactivewindow,youchangethetitlebar's
colorfromgreentograywithoutchangingtherelatioushipbetweenthewindowand
the keyboard.

The Class WC_SCROLLBAR
One of the principal advantages when adopting a graphical user interface is that of
easilyandeffectivelyimplementingoutputscrozzz.7tg,bothverticallyandhorizontally.
The class WC_SCRO LLBAR provides the software designer with an excellent tool for
making it easier for the user to perforth these operations. The windows of the class
WC_SCR0LLBARdonotactuallyperformthescrolling.Theyaresimplyagraphicaltool
used on the screen to control a scrolling operation. It is always the appfication's duty
to be clever enough to ``understand" how much scrolling is being requested by the
user and to perform proportionally the true scro]ling in the window with which the
scrollbar is associated.

The SBS_ Styles
The look of a scrollbar is standardized and cannot be changed by the software
designer. hetead, what needs to be decided is the direction of scrolling. Table 7.11
sumlnarizesallstylesoftheclassWC_SCR0LLBAR.

The SBM_ Messages
Positioningascrollbarinsideawindowisasimpleoperation.hadditiontotheclassic
approach of creating a window of this class by calling Wz.7tcre¢fewz.7tdozu(), you can
alsousetheframecontrolflagsFCF_H0RZSCR0LLandFCF_VERTSCR0LLthatperform
all operations automatically. A frame window is, in fact, ready for receiving two
controls of the class WC_SCROLLBAR, thanks to the existence of the predefined IDs
FID_VERTSCROLLandFID_HORZSCROLL.

334 0S/2 2.1 Workplace shed progranming

Table 7.11 The Styles of the Class WC_SCROLLBAR Allow You to Define a Tool
for Controlling Horizontal or Vertical Scrolling

Style Vahae D es cription

SBS_HORZ
SBS VIRT
SBS_THUMBSIZE

SBS_AUTOTRACK

SBS_AUTOSIZE

OxOOOOL Creates a horizontal scrozzz7¢7'.
OxOoolL Creates a vertical scrozzz7¢r.
Ox0002L Ihdicates the presence ofnumeric values in the

members cvisible and Ctotal of the class's
SBCDATA structure.

Ox0004L The position indicator moves in the scrollbar
when scrolling actually takes place.

Ox2000L The scroll indicator changes size according to
the amount of actual scrolling.

Whatever method is used for creating a scrollbar, you need to define the range of
scrol]ingbysettingalowerandanupperlimitforthepositionidentifier(sHder).Both
of these quantities have to be specified by the application before you can use the
scrollbar; this ensures that the programmer is always in control. It is the message
S BM_S ETS C RO L LBA R that performs this task (Table 7.12).

Table 7.12 The Messages of the Class WC_SCROLLBAR

Mes s age Value D escription

SBM SETSCROLLBAR 0xolao

SBM SETPOS Oxolal
SBM_QUERYPOS 0xo 1 a2
SBM_QUERYRANGE 0xo 1 a3
SBM SETTHUMBSIZE 0xola6

VVM HSCROLL

VVM VSCROLL

Defines the sZz.der's position and the range of
sorofling.
Defines the sZz.dcr's position in the scrozzb¢r.
Returns the sZz.der's position in the scrozzb¢7`.
Returns the scrozzz.7tg range.
Defines the size of the sZz.der by indicating the
total number of elements represented by the
scrozzz7¢r and how many of these are visible.
The sZz.der's size is computed on the basis of
these values: changing the size of the sZz.der
makes it easier to infer the size of the object
that is being examined.

Ox0032 Notifies the scroJzb¢r's owner about the type
and amount of horizontal movement that
needs to be applied to the sZz.der.

Ox0031 Notifies the scrozzb¢r's owner about the type
and amount of vertical movement that needs
to be applied to the sZz.der.

The predef tnedwindow classes 335

Ei

Figure 7.8 A horizontal scrollbar controls the color selection for the client
window through the movements of the slider.

Let'snowgetbacktotheexampleofcoloringtheclientareaofawindow;thistime,
though,wewiuallowtheusertoselectacolorthroughascrollbar.Figure7.8presents
the progran's output.

ThesourcecodeofSCROLLBARispresentedinListing7.4.Thescrollbariscreated
inthewindowprocedureoftheclientwindowinthecodefragmentdealingwiththe
message WM_CREATE. Its position, with respect to the parent window, is performed
partiallyinthecodeofwM_CREATEandpartiallyinwM_SIZE.Thesizeonthexaxiscan
vary according to possible changes in the main window's size.

Immediately after creating the scrollbar, SCROLLBAR sets the range and the
positionoftheslider.BotharedonesendingamessagedirectlytotheWC_SCR0LLBAR
class window. The]inits of 1 and 15 correspond to the C LR_ color IDs, as defined in
PMGPI.H.

®®,

Wi.nsendMsg(hwndhscroll , SBM_SETSCROLLBAR,

MPFROMSHORT(0),

MPFROM2SHORT(1,15)) ;

®®,

336 0S/2 2.1 Workplace shell progranming

An altemative solution would be that of passing this initialization data and other
data when the window is created, by taking advantage of the structure SBCDATA, as
we will see shortly.

Much more interesting is examining the code regarding the notification of the
actions performed by the user with the scrollbar. There are no proper notification
codesforthisclass;instead,theclassissuesthemessageswM_HSCROLLandwM_VSCROLL
inordertonotifytheownerofthebehavior,respectively,ofahorizontalscrollbarand
a vertical one.

The message WM_HSCR0 LL contains in mpl the ID of the control that is performing
the notification, while mp 2 packs the code that indicates the action performed and the
position of the slider. The following code fragment shows some possible values for a
horizontal scrollbar.

®,

case WM_HSCROLL:

swi.tch(SHORT2FROMMP(mp2))

I
case SB LINELEFT:

sPOs -- 1 ;
break :

case SB_LINERIGHT:
sPOs +- 1 ;
break ;

case SB_PAGELEFT:
sPOs --3 ;
break ;

case SB_PAGERIGHT:
sPOs +-3 ;
break ;

case SB_SLIDERPOSITI0N:
sPos = SHORTIFROMMP(mp2) ;
break ;

)
®®®

Each S 8_ case examines a possible user action. The first two regard the pressing of
the left mouse button over the left or right arrow that is positioned at the scrollbar's
extremities. In this case, the application has determined that the movement of the
slider should be one unit in both directions. The third and fourth cases correspond to
the pressing of the left mouse button directly over the scrollbar in the area between
one extremity and the slider. This second condition is implemented in the application
by moving three units, which correspond to selecting the three previous or following
colors. To update the position of the slider, send the message S BM_S ETPOS:

Wi.nsendMsg(hwndscroll , SBM_SETPOS,

MPFROMSHORT(sPos), OL) ;

®®,

The predef rued window classes 83;7

The logic just described for a horizontal scrollbar can be extended to a vertical one.
h this case, the values contained in SHORT2FROMMP (mp2) can take on the syntax of
SB_LI N EU P, SB_LI N EDOWN, SB_PAGEU P, and sB_PAGEDOWN.

h the example, the part played by the scrollbar is somewhat analogous to that of
an input tool. If, however, the goal is to scroll a piece of text or a bitmap, it is the
application's responsibility to can the function Wz.7iscrozzwz.7tdozu() to perform the
movement in the given direction.

The case SB_SLI DERPOSITI0N will restore the slider's position after the user has
draggeditbykeepingtheleftmousebuttondownovertheslider.Ifyouneedtotrack
the slider's position at every instant, then you must intercept the code SB_S LI DER-
T RAG K and update and display the information dynamically.

Some Considerations
AnappealingaspectofOS/2PM'sscrollbarsisautomatichandlingofthescrollrange
in both directions. When you reach one end of the scrollbar, the scrollbar itself will
disable any further scrolling in that direction, and thus the appfication does not need
to check the limits that might possibly have been reached by the user interaction.

Often, windows of the class WC_SCROLLBAR are inserted automatically in other
windows, like Zz.sfz7oxcs or 77tJes simply by setting a style flag. Their behavior is always
similar to that just described, with the difference that their owner is-this time+an-
other control.

The class WC_SC R0 LLBAR has a specific data structure in PMWIN.H which is used
to pass specific information when a window is created.

#defi.ne INCL_WINSCROLLBARS
typedef struct _SBCDATA .
(// sbcd

USHORT cb ;

USHORT sHi.li.te :

SHORT posFi.rst ;
SHORT posLast ;
SHORT posThumb ;

SHORT cvi.si.ble ;
SHORT cTotal ;

} SBCDATA ;

typedef SBCDATA *PSBCDATA ;

By filling in the members of this structure you will not have to later define the
slider's position (posThumb) and the scroll range (pos Fl. rst and pos Last). The ad-
dress of the SBCDATA structure is passed to the function W!.7tcre¢£ewz.7tdozo() as its
twelfth paralneter, as you can see in the following example:

®®,

SCBDATA sbcd ;

sbcd.cb = si.zeof sbcd ;
sbcd.sHi.li.te = 0 :

338 0S/2 2.1 Wor:laplace shell progranming

sbcd.posFi.rst = sbcd.posThumb
sbcd.posLast = sbcd.cTotal = 100
sbcd.cvi.si.ble = 10 :
sbcd.posFi.rst a 0 ;
sbcd.posLast = 100 ;

hwndscroll = Wi.ncreatewi.ndow(hwnd, WC_SCROLLBAR, NULL,

WS_VISIB`LE I SBS_HORZ,

10,10, `18, 120,

hwnd, HWND_TOP, CT_HSCROLL,

&sbcd, NUL'L) ;
®,

The Class WC_LISTBOX
I

This window class is probably one of the most appreciated by software designers,
thankstoitsflexibhity.ListboxesarefoundinaLnumberofdialogwindows,andeven
in notebook pages for setting some operating features of WPS objects. They display
textstringsinalimitedareaofthescreen,andtheyscrolltheiroutputvertically.This
description is not complete. For example, scro±ling is supported in both directions.
Also,theobjectscontainedinalistboxdon'thavetobetextstringsonly,butcanalso
be icons or bitmaps or any combination of these (Figure 7.9).

Figure 7.9 A typical dialog window for saving a file contains more than a
listbox.

The predef tned window aasses 3$9

Table 7.13 The Styles of the Class WC_LISTB0X

Style V ahae D escription

LS MULTIPLESEL 0xOOOOOoolL Defines a multiple selection zisfbo#.
LS_OWNERDRAW 0xOOO00002L Delegates to the application the task of

p¢£.7tf£.7ig each item present in the zz.sf box.
LS_NOADJUSTPOS 0xOOO00004L Auows the vertical dimension of the zz.sfz7ox

not to be an exact multiple of the height of
the current system font.

LS HORZSCROLL 0xOOOOOOO8L Adds a horizontal scrozzz74zr in addition to
the vertical one that is always present.

LS EXTENDEDSEL 0xOOOOOO10L Creates an extended selection zz.sfz7o%.

The Styles of the Class WC_LISTB0X
DespitethefactthatawindowofclasSWC_LIST80Xcandomanydifferentthings,the
styles available for it are limited in nulnber (Table 7.13).

Thus, quite often, to create a listbox you only need to specify the name of the class,
with no special style. However, it is probably better to use LS_NOADJ USTPOS so that
the fistbox can be extended vertically without depending on the height of the system
font being used. h fact, a listbox will generally change its own vertical size so that it
corresponds to an exact multiple of the system font.

It is good design to implement a horizontal scrollbar only if strictly necessary. h
general, scrolling is just a chore for the user, barely acceptable on the vertical axis,
almostuselesswhenittakesplacehorizontally,becausetheinformationisdifficultto
read. The selection of several items is enabled by setting the flag LS_MU LT I P L ES E L or
LS_EXTENDEDSEL.Theadvantageofthesecondsolutionisthatyoucanperformaszoz.pe
selectiondirectlywiththemouse.hstead,withLS_MULTIPLESEL,aselectionpertains
toonlyoneitematatime.ThestylesarecompletedbyLS_OWNERDRAW,whichletsyou
createlistboxestheoutputofwhichishandledbytheapplication,andnotbytheclass
WC_LISTB0X.

The LM_ Messages
To insert, add, select, or remove a text item in a listbox, you have available 15 different
messages, all characterized by the prefix LM_ (Table 7.14).

h practice, all the messages listed in Table 7.14 pertain to the management of the
text in a listbox. The insertion of graphical objects, like icons or bitmaps, requires a
greater control over the behavior of a listbox, and this can be achieved only by
delegating to the application the management of output in the window. In that case
it is necessary to set the style LS_OW N E RD RAW. The complex nature of a listbox requires
a thorough understanding of the terminology used for describing the messages in
Table 7.14. To this end,1et's examine Figure 7.10.

3qo OS/2 2.1 Wor:laplace shell programming

Table 7.14 The Messages of the Class WC_LISTB0X

Mess age Vahae D es cription

LM_QUERYITEMCOUNT

LM_INSERTITEM

LM_SETTOPINDEX

LM_DELETEITEM

LM_SELECTITEM

LM_QUERYSELECTION

LM_SETITEMTEXT

LM_QUERYITEMTEXTLENGTH
LM_QUERYITEMTEXT

LM_SETITEMRANDLE

LM_QUERYITEMHANDLE

LM_SEARCHSTRING

LM_SETITEMHEIGHT
LM_QUERYTOPINDEX

LM_DELETEALL

Ox0160 Retumsthe number of items present in a
tistbox.

Ox0161 hserts a new item into a Zz.s£Z7ox. The

Ox0162

operationcantakeplaceindifferentways:
appending the new item to the end of the
list, or ordering items in ascending or
descending ASCH order.
Performs vertical scrozzz.77g of the contents
oftheZz.s£Z7o#sothattheindicateditemwil1
appear in the first visible position.
Deletes a specific item from the Jz.sfbo# by
specifying its index.
Selects an item from the Zz.sfbo# by
specifying its index.

Ox0165 Returns the index of the selected item,
starting from the origin or from the item
previously selected if this is a multiple
selection Zz.sfbox.

Ox0166 Replaces the text of an item withwhatis
present in the buffer.

Ox0167 Returns the length of the text of anitem.
Ox0168 Returns and stores in a buffer the text of

an item.
Ox0169 Stores the value of an item in the reserved

memory area.
Ox016a Retrieves the value of an item stored in the

re'sefved memory area.
Ox016b Searches for atextstringinallitems of the

tistbox.
Ox016c Sets theheight of eachiteminthe zz.sfbor.
Ox016d Returns theindex, relative tothe origin, of

the topmost item in the Zz.s£Z7ox.
Ox016e Empties the zz.s£Z7ox of its contents.

As you have seen in the class WC_SCROLLBAR, the vertical scrollbar of a listbox
automaticallyhandlestheactivation/deactivationofthescrouiconsaccordingtothe
numberandpositionofitemspresentinthelistbox.Thefirstvisibleiteminthelistbox
is known as the fop-I.7zdex. The scrollbar has the listbox both as its parent and owner.

The predef roedwindow classes 34;1

Figure 7.10 The structural elements of a listbox.

EachitemischaracterizedbyanIDthatisautomaticallyassignedbytheHstboxon
the basis of the item's position within the list. The numbering scheme always starts
fromzeroforthefirstexistingmenuitem.Messagesaresenttothelistbox,andalmost
au of them require you to indicate the ID of the item affected by the action to be
performed.Tosimplifysomeoperations,thesystemprovidesspecificmacros,listed
inTable7.15.Eachofthesemacrosretumsadatatypeappropriateforthecorrespond-
ing and implied LM_ message.

Table 7.15 Macros Used to Interact with Listboxes

Macro D escription

LONG WinDeleteLboxltem(hwndLbox, index) ;
LONG WinhsertLboxltem(hwndLbox, index, psz) ;

LONG WinQueryLboxcount(hwndLbox) ;

LONG WinQueryLboxltemText(hwndLbox, index, psz, cchMax) ;
SHORT WinQueryLboxltemTextLength(hwndLbox, index) ;

BOOL WinsetLboxltemText(hwndLbox, index, psz) ;
LONG WinQueryLboxselectedltem(hwndLbox) ;

Deletes an item from the Zz.sfz7ox.

Inserts an item into the Zz.sfz7ox
and specifies how to insert it.
Returns the number of items
present in the Zisfz7ox.
Returns the text of an item.
Returns the length of the text of
an item.
Sets the text of an item.
Returns the index of the selected
item in the Zis£Z7or.

342 0S/2 2.1 Workplace shell programming

Here are some examples of how to use Wz.7tsc#dMsg() to send LM_ messages to a
listbox..

sPos = (SHORT)Wi.nsendMsg(hwndLi.st, LM_QUERYSELECTI0N,

MPFROMSHORT(LIT_FIRST), OL) ;

returns the index of the selected item in the listbox. The return value of LIT_NONE
indicatesthatthereisnoselectediten.ThedefineLIT_FIRSTdefinesthestartingpoint
for searching the first item contained in the listbox.

sTop = (SHORT)Wi.nsendMsg(hwndLi.st, LM_QUERYTOPINDEX, OL, OL) :

returns the index of the item in the first position of the Hstbox.

Wi.nsendMsg(hwndLi.st, LM_DELETALL, OL, OL) ;

deletes all items from the histbox.

Wi.nsendMsg(hwndLi.st,

LM_SELECTITEM,

MPFROMSHORT(sPos),

MPFROMSHORT(TRUE I FALSE)) ;

activates/deactivatestheitemindicatedbytheindexsPos.

sPos = (SHORT)Wi.nsendMsg(hwndLi.st, LM_SEARCHSTRING,

MPFROM2SHORT(LSS_xxx, LIT_FIRST) ,
MPFROMP(szstri.ng)) ;

searches all items of the listbox for the one with the text indicated with s zst ri. ng,
starting from the first one (LIT_FI RST) or from a specific position (s Pos) using the
comparison criteria of LSS_: LSS_CASESENSITIVE (case sensitive comparison),
LSS_PREFIX (prefix comparison only), or LSS_SUBSTRI NG (searches the text string
szStri.ngevenasasubstringinthetextofanitem).

The Reserved Memory Area
Eachiteminalistboxhasareservedmemoryareaoffourbytes.Itisnotthememory
areareseIvedforthewindow;insteadc¢cfeitempresentinthelistboxhassuchanarea.
h this area the software designer is free to store any kind of value, usually a handle,
but also a pointer or two shorts. With the pair of messages LM_SETITEMHANDLE and
LM_QUERYITEMHANDLE,theapplicationaccessesthereservedmemoryareabyindicat-
ing the index of the item and the piece of data to store or retrieve.

®

Wi.nsendMsg(hwndLi.st, LM_SETITEMHANDLE,

MPFROMSHORT(sPos),

MPFROMLONG((LONG)handle)) ;

®®

handle = (LHANDLE)Wi.nsendMsg(hwndLi.st, LM_QUERYITEMHANDLE,

MPFROMSHORT(sPos), OL) ;
®®,

The predef rued window classes 34;3

LlsTBOx rTEM
ADDrHONAL
STORAGE----- Ar

A5LLOCK.L§T -------------------------
AUTOEXEC.BAK
AUTOEXEC.BAT ¥
CONFIG.001
Con fig.Bak *

4bytes

Figure 7.11 Representation of the reserved memory area for each item of a
listbox.

Asthenamesofthetwomessagessuggest,eachitem'sreservedmemoryareaisan
idealplacetostoreahandleoranyotherkindofobject,takingatmostfourbytes.Let's
imagine that the contents of a listbox are a series of images @itmaps), for instance,
wild arinals. The selection of an item is to be followed by a video clip. Instead of
handlingdirectlyinthecodeatablethatholdstheassociationbetweenanimalsand
videoclips,itiseasiertostoreeverythinginthereservedmemoryarea(Figure7.11).
Thesefourbytesarealwayspresent,whateverstylesthewindowmighthaveornot
have.Therefore,itmakessensetotakeadvantageofthisareaeverytimeitispossible.

Multiple Selection Listboxes
ThestyleLS_MULTIPLESELtransformsasimple,singleselectionlistboxintoamultiple
selectionlistbox(Figure7.12).Thismeansthattheusercanselectseveralitemsatthe
same time. The selection rules are different from those of a standard listbox. h fact,
two consecutive clicks of the left mouse button will altematively select and deselect
an item.

TheuniquevalueofaLS_MULTIPLESELlistboxistobefoundintheLM_QUERYSE-
LECTI0Nmessage.Theretumvalueistheindexofthefirstselecteditemthatistobe
considered as the starting point from which you can recognize any possible further
selected items. The retrieval of all selected items from a LS_MU LT I P LES E L listbox, or
even from a LS_EXTENDEDSEL fistbox, requires you to cyclically issue the message
LM_OUERYSELECTI0N:

®,,

SHORT sstart = LIT_FIRST, sPos ;
®,®

whi.le(sPos = Wi.nsendMsg(hwndLi.st, LM_OUERYSELECTI0N,
MPFROMSHORT(sstart), OL)))

344 0S/2 2.1 Workplace shell progranming

I
®®®

sstart = sPos ;
I
®®®

The identifier s st a rt is initially equated to L I T_F I RST, in order to identify the first
physical item. The return value of the call to Wz.7tse7tdMsg() is stored in the identifier
s Pos, and corresponds to the selected item.

After performing the application-specific operations with that item, assign to
sstart the value of sPos and repeat the search, this time starting from the point
identified in the previous step. The wh i.1 e loop will end when the request for a new
selected item returns the value of L I T_N 0 N E.

In some situations a multiple selection listbox can behave oddly (as you will see
when writing the utility WHEREIS.EXE, in Chapter 8). The solution is to display the
first item as the window's top-index by sending the message LM_S ETT0 P I N D EX :

®®®

Wi.nsendMsg(hwndLi.st, LM_SETTOPINDEX, MPFROMSHORT(0), OL) ;

®,®

The first index of a listbox is always characterized by the value of 0.

Figure 7.12 A multiple selection listbox.

The predef tmed window classes 3q5

Table 7.16 The Notification Codes Sent from a Listbox to the Window Procedure
of the Owner Window

Notiftcdion code Vahe Description

LN_SELECT
LN_SETFOCUS
LN RILLFOCUS
LN SCROLL
LN ENTER

The user has selected an item from the Hst.
The I.7tp#£/occts has been transferred to the Zz.s£Z7o#.
TheinputfocushaLSLeftthalistbox.
The user has scrolled the contents of the Zz.sf box.
The user pressed the Enter key or performed a
double-cHck with the mouse over an item.

The Notification Codes
The actions notified by a listbox to its owner concern various kinds of interactions
between the user and the window: the selection of an item, selection and acceptance
of an item (double-click), and vertical scro]ling of the contents of the Hstbox. The
notification codes used by the class WC_LISTB0X are Hsted in Table 7.16 and are
reportedbyissuingthemessageWM_CONTROL.

WM_CO NTRO L 0x0030 Descri.pit.o#

mpl USHORT id ID of the co7tfroz.
USHORT usnotifycode Notification code.

mp2 ULONG ulcontrolspec Notification code specific and vari-
able information.

Return value ULONG flreply Reserved.

WithwM_CONTROLthepredefinedclassesnotifytheownerabouttheactionthattook
place over a window of that class. mp 1 will always contain the same packed informa-
tion, independent of the source that issued the message: the ID of the window that
issued the WM_C0 NTR0 L, and then the notification code.

The whole of mp2 will often contain a pointer to the data area used to convey yet
more information to the owner. At other times, mp 2 will simply contain the handle of
the control.

A typical scheme for intercepting the WM_CONTR0 L message in window procedure
ofthelistbox'sownerwindow(orinsomeotherpredefinedwindow),isthefollowing:

®®®

case WM_CONTROL:

swi.tch(SHORTIFROMMP(mpl))

I
case CT_LISTB0X:

swi.tch(SHORT2FROMMP(mpl))

(

346 0S/2 2.1 Workplace shell progranming

c,ase LN_ENTER:

®®,

break ;

case LN_SELECT:

®®

break ;

i
break ;

®®®

)
break ;

®®

In each case branch identifying a notification code, the programmer usually sends
one or more messages to the listbox in order to retrieve the information it needs. For
instance, if the code were LN_E NT E R, then you would be interested in knowing which
item was selected and getting the corresponding text. So you must first obtain the
index, and you can do this by issuing the message LM_OUERYSELECTI0N, and then
retrievingthetextwithLM_QUERYITEMTEXT:

®®,

case LN_ENTER:

I
SHORT sPos ;

CHAR szstri.ng[20] ;

sPos = (SHORT)Wi.nsendMsg(HWNDFROMMP(mp2), LM_QUERYSELECTI0N,

MPFROMSHORT(LIT_FIRST), OL) ;

Wi.nsendMsg(HWNDFROMMP(mp2) , LM_QUERYITEMTEXT,

MPFROM2SHORT(sPos, si.zeof szstri.ng),

MPFROMP(szstri.ng)) ;

®,

break ;
®®®

In the case of notification codes issued by a window of class WC_L I STB0X, you will
find the window's handle in mp2.

A Simple Listbox
We will make heavy use of listboxes in all of the following chapters. It's time to get

toknowhowthiswindowworksinpractice:Westartbycreatingasimpleapplication
that displays in a histbox positioned inside the client area of a top-level window all
Marriott hotels in which the author has stayed in recent years. The text strings reside

The predef tnedwindow classes 34!7

in the STRINGTABLE area of the resource file, and their IDs are ordered numerical
values. h addition to the listbox, the application also creates a window of class
WC_STATIC, and places it above the listbox. Both operations take place when the
messageWM_CREATEisinterceptedinthewindowprocedureofthemainwindow:

case WM_CREATE:

I
hwndstati.c = Wi.ncreatewi.ndow(hwnd, WC_STATIC,

NULL,

SS_TEXT I WS_VISIBLE, `

10,135,120,18,

hwnd, HWND_TOP,

CT_STAT I C ,

NULL, NULL) ;

hwndLi.stbox = Wi.ncreatewi.ndow(hwnd, WC_LISTB0X,
NULL,

LS_NOADJUSTPOS I WS_VISIBLE,

10, 10,120,120,

hwnd, HWND_TOP,

CT_L I STB0X ,

NULL, NULL) ;

®,,

)-

The loading of all strings is performed with W.7tLo¢dsfrz.7tg(), after assigning to the
short identifier i. the ID of the first text string:

I. = ST_MARRI0TT :

whi.le(Wi.nLoadstri.ng(HAB(hwnd), NULLHANDLE, i.+ +,

si.zeof szstri.ng,
s z S t r 1' n 9))

Wi.nsendMsg(hwndLi.stbox, LM_INSERTITEM,

MPFROMSHORT(LIT_SORTASCENDING) ,

MPFROMP(szstri.ng)) : '

break ;
®®®

The loop breaks automatically when there are no more text strings to be retrieved
from the ST R I N GTAB L E area-when the last sequential ID is reached. The insertion in
thefistboxisgovemedbysortingthetextstringsinascendingalphabeticalorder,thus
generating an output (Figure 7.13) that is completely different from the sequence
present in the resource file:

348 0S/2 2.1 Worlaplace shed progranming

Figure 7.13 A listbox with the style LS_NOADJUSTPOS is not restricted by
therulesthatsetavalueontheYaxisthatisanintegermultipleofthesystern
font's height.

®®

STRI NGTAB LE

I
®®

ST_MARRI0TT + 0, "Boston Copley Place, MA"

ST_MARRI0TT + 1, "Newport Beach, CA"

ST_MARRI0TT + 2, "Marqui.s New York, NY"

ST_MARRI0TT + 3, "New York, NY"

ST_MARRI0TT + 4, "San Franci.sco Marri.ott, CA"

ST_MARRI0TT + 5, "Los Angeles Ai.rport, CA"

ST_MARRI0TT + 6. "Portland Marri.ott, OR"

ST_MARRI0TT + 7, "Boca Raton, FL"

)
®®,

Theselectionofitemslistedinthelistboxwillcausetheowner'swindowprocedure
to receive the message WM_C 0 NT R0 L:

EI

The predef tmed window classes 34!9

T'

®®

case WM_CONTROL:

swi.tch(SHORTIFROMMP(mpl))

i
case ID_LISTB0X:

swi.tch(SHORT2FROMMP(mpl))

(
case LN_SELECT:

I
CHAR szstri.ng[60] ;
short sPos ; I

sPos = (SHORT)Wi.nsendMsg(hwndLi.stbox,
LM_OUERYSELECTI0N,

MP FROMSHORT (LIT_FIRST) ,

OL);

Wi.nsendMsg(hwndLi.stbox, LM_QUERYITEMTEXT,
MPFROM2SHORT(sPos, si.zeof szstri.ng),
MPFROMP((PSZ)szstri.ng)) ;

• Wi.nsetwi.ndowText(hwndstati.c, szstri.ng) ;

I
break ;

)
break ;

defaul t :
break ;

)
break ;

®®®

ItisbyinterceptingthenotificationcodeLN_SELECTthattheapplicationcanidentify
and retrieve the selected item, then display it in the WC_STAT I C class window above
the listbox. Naturally, the same logic extends to any other notification code. The
application's source code is listed in Listing 7.5.

Message Flow
ThewindowsoftheclassWC_LIST80Xareanidealtooltoprogressivelylisttextstrings
in their order of arrival. The flag LIT_END will in fact force the message LM_I NSER-
TITEMtoappendanynewtextstringtotheendofthelistalreadyinthelistbox.This
behaviorisveryusefulifyouneedtocaptureandsubsequentlydisplaythemessages
producedbyawindowwhenitiscreated.TheutilityprogramPMSPY.EXEfumished
withtheIBMToolkitallowsyoutomonitorthemessageflowofawindowonlyafter
selecting it with the mouse. It is much more interesting to discover the precise
sequenceofmessagesfiredbytheWz.7tcre¢fesfdwz.7idozu()tothewindowprocedureof
the class to which the window belongs. Without resorting to the debugger, you can
solve the problem, thanks to the services provided by the class WC_LISTB0X. The
program's structure is based on the following actions:

350 0S/2 2.1 Workplace shell progranming

•Createatop-levelwindowcontainingawindowofclassWC_LISTB0Xcorrespond-
ing to its client window and with the same size of the client window.

• Create a window of another class registered by the appfication after a menu
selection.

•Retrievefromtheapplication'sresourcefilethetextstringsthatcorrespondtothe
numericalvaluesofthemessagesreceivedbythewindowprocedure.

•Sendthetextstringsretrievedfromtheresourcefiletothelistboxcontainedinthe
application's main window.

The application registers two window classes. The application's main window has
a menu bar to provide some interaction for the user. The second class window
procedure has been designed to pass each message received to the main window
equipped with a listbox overlapping the client.

Creating a Listbox
Theclientareaofthemainwindow(Figure7.14)istotallycoveredbythewc_LISTB0X
class window created in the message WM_CREATE and sized through the message
WM_S I Z E.

Figure 7.14 A top-level window with a listbox totally overlapping,the app`1i-
cation's client window.

The predef tned window classes &51

Thus, the chient window simply plays the role of a pixel provider window for the
listbox, and will receive the message WM_COMMAND each time the user performs a
selection from the menu bar.

Two options are available in the File menu: Dialog and Window. Both of them are
activeimmediatelyafterloadingtheprogram,and,ifselected,willcausethecreation
of a window, respectively, through the function Wz.7tLo¢dDzg() and Wz.77C7ie¢fesfdwz.7t-
dozo(). These two alternatives allow you to further evaluate the two solutions already
discussed in the previous chapters for creating a window. In Figure 7.15 you can see
the program's output when the user selects the Dialog option when the window is
created with Wz.71LofldDzg().

Muchshorteristhesequenceofmessagesproducedbycreatingawindowwiththe
traditional W£.7tc7`e¢£esfdwz.7tdozt7() function, as you can see in Figure 7.16.

Both text windows share the same class, and thus rely on the same services of the
class window procedure. This function must know the handle of the listbox in order
to insert into the listbox all the text strings retrieved from the resource file. Since this
window is created in the window procedure of the main window, there is no way to
getitintothesecondwindowprocedure.Themostsimplesolutionisthatofdeclaring
an identifier corresponding to the handle of the listbox Z7e/ore the 77t¢z.7t() function, so
thatitgetssourcefilescope(inotherwords,itbecomesa``globalvariable'').Actually,

D
BEAE,ME

%grj
BEN L= =

RE
osre system

E EE@ i#
Volume Minimized Shredder
Control Windowrvlen/er

i,§§j:::.i:#~M#±E;F8:E¥o3:*AE:¥%fgE:fi:;¥;Ej,:ni.:::;~3-883:::::::##-=SLZ5*:i,.::;:i;'*3:-=:;.:::i;=.'i,--I:=~-:

#a

¥§-#j:-i:;F!LfFf=%¥I:T~|iBi£?FKiij?jj¥
S,8:#.:-::;;#]#.¥EEj§I,;::::::ii
'3933,:-=.#fi¥f:'3Lng:i£:5==;:¥:,:

RE ffi
OrrueA OS# Plograns

ffi;i:. & .a -.`` f=

ill if ffi
F{Ssourcewolkshop PF`ODINFOBMp Fexn"

ERE ERE
HP LaserJet llD CDPM E>€

Figure 7.15 Message flow produced by loading a window template with the
WinLo adDlg() function.

352 0S/2 2.1 Workplace shell pro'granming

-..I..Zg`£{;.-I:. `. ^`,. ffl

Figure 7.16 Message flow generated by creating a window with
Wincreatestdwindow().

in the source code a slightly different logic, which can turn out to be useful even in
other situations, is implemented.

The general rule is for the window procedure to be called indirectly only by the
Wz.7tDz.sp¢£cfeMsg()functioninthemessageloop,byWz.7tse#dMsg(),orbyseveralother
APIfunctionsasasideeffect(Chapter3).hthiscase,though,wewanttohaveaccess
to the window procedure to communicate and store in the stati. c storage class
identifierthevalueofthelistbox'shandle.Toachievethisresult,itisnecessarytohave
thenameofthewindowprocedure,apieceofinformationthatcaneasilyberetrieved
throughwinQueryclasslnfo()..

®,,

// query second class wi.ndow proc
Wi.nQueryclasslnfo(HAB(hwnd), szclassName2, &clsi.) ;

// pass the hwndLi.stbox handle

(*clsi..pfnwi.ndowproc)(NULL, WM_SETUP,. hwndLi.stbox, OL) ;

®,®

The transfer of execution to the window procedure of the second class takes place
byusingthenameofthefunction,whichintheCLanguagecorrespondstoapointer

The predef tned window classes 353

to the place in the code segment where the function's instructions start (it is pointer
to a functions). The parameters passed to this indirect call are set according to the
specific needs of the moment. There is no target window handle simply because we
havenotyetcreatedanywindowofthisclass,whilethemessageWM_SETUPisdefined
in the following way prior to the 777¢€.71() function:

#defi.ne WM_SETUP WM_USER

h mpl you pass the handle of the listbox, while mp2 is not used. The window
procedure of the second class has in its swl. tch block a case WM_SETUP branch to
intercept this application's enforced ``message."

®®,

case WM_SETUP:

hwndLi.stbox = HWNDFROMMP(mpl) ;

return (MRESULT)TRUE ;

default:
break ; `

I

// send messages to the li.stbox
Wi.nLoadstri.ng(HAB(hwnd), NULLHANDLE, msg, si.zeof(szMsg), szMsg) ;

Wi.nsendMsg(hwndListbox, LM_INSERTITEM,

MPFROMSHORT(LIT_END),

MPFROMP((PSZ)szMsg)) ;

return Wi.nDefwi.ndowproc(hwnd, msg, mpl, mp2) ;

El

®®®

The extraction of the values present in mpl is performed with the macro
HWNDFR0MMP,andthevaluesarethenstoredintheidentifierhwndLi.stboxwithstati.c
storageclass.Thismessagedoesnotrequiretheclassicprocessingterminationcondi-
tion, but win have a forced exit from the window procedure through the keyword
ret u rn in order to avoid executing the statements that are present before the default
processingtowhicheachmessageissubmitted.hfact,attheendoftheswitchblock,
youfihdthecautothefunctionWz.7tLo¢dsfrz.7tg()toretrievethetextstringcorrespond-
ing to the received message from the resource file, and then call Wz.7tse77dMsg() to
transfer the contents of the character array directly into the listbox.

It is this portion of code that is responsible for transferring the text strings, corre-
sponding to the received messages, to the listbox in the main window. Calling a
window procedure directly, as in this example (Listing 7.6), is a simple solution and,
fromourpointofview,betterthandeclaringanidentifierwithsourcefilescope,which
is an altemative that should be employed only when you want to write poor code.

354 0S/2 2.1 Wor:laplace shell progranming

Owner-Drawn L4stb oxes
A listbox is an ordinary PM window belonging to a predefined class and whose
window procedure resides intemally in PM It is not possible to know the structure
ofanyofthepredefinedclasses,butitisreasonabletothinkthatthereareintercepting
conditions for the messages WM_C REATE, WM_PA I NT, WM_i LOS E, and many others. The
rules that govern a listbox's output production must be found in the code fragment
dealing with WM_PA I NT, and essentially pertaining to the display of some text strings
extracted from among those that are present in the listbox's buffer.

The OS/2 2.1 API provides the flag LS_OWN E'RDRAW to let you implement a listbox
that delegates to its owner the task of handling au output details. This means that
whenthemomentcomestodisplayatextstring,thelistbox'swindowprocedurewill
interruptitsoperations,callingontheownerwindowtoperformallneededtasks.The
style LS_OW N E RD RAW indicates that it is the owner who will take the listbox's place in
performing all output operations. The interaction that takes place between an ozt77zer-
d7i#zt77z Zz.s£Z7ox and the owner window is revealed by two distinct messages: WM_M FAS -
U RE I TEM and WM_D RAW I TEM. Figure 7.17 shows a scheme of the message flow that is

generated by an owner-drawn Hstbox when it is processing the WM_PAI NT message
(the same considerations also pertain to any other predefined window that delegates
the drawing of their output).

The WM_MEASUREITEM Message
ThelistboxesofOS/22.1willalwaysshowupWithitemsallhavingthesameheight.
Thispieceofdataisgenerallycomputedbythelistboxbyevaluatingtheheightofthe
system font. In the case of an owner drawn listbox, even this becomes the owner's
duty. Consequently, the distance between two consecutive items can turn out to be
bigger, smaller, or equal to the standard value, according to the application's specific
needs. The window procedure of the owner window will catch the WM_M FAS U RE I T EM
message and return a specific value without executing the standard processing
provided by WinDe:f windowproc()..

®,®

case WM_MEASUREITEM:

return MRFROMLONG(cy) ;

®,,

The value of cy corresponds to the height of the items in the window, and has been
computedearlierintheprogram'scode.TheissuingofthemessageWM_MEASUREITEM
takes place only once for each listbox, just before the first item is displayed in the
window. '

The WM_DRAWITEM Message
1

The owner of an owner-drawn listbox will receive the message WM_D RAW I T EM when a
listbox item needs to be displayed. This Operation regards only the visible items,
always a small number compared to a\11 items present in the listbox.

The predef reed window classes &55

switch(msg)

(

case WM_MEASUPIEITEM:

''',

case WM_DPAWITEM:

PM

MRESUIT EXPENTRY Listboxwndproc(...)

(

switch(msg)

(

case WM_PAINT:

(
HPS hps;

// if 1 st time query item height

WinsendMsg(hwndowner,WM_MEASUPIEITEM,...):

// if owner-draw pass all output info to the owner

WinsendMsg(hwndowner,WM_DPIAWITEM,...);

Figure 7.17 Scheme of message flow for an owner-drawn listbox.

WM_DRAWITEM 0x0036 Descr{.pft.o#

=e3jL value E;H#mT±a:wEnM P°± ¥udc°±e:;Seo{f°f:¥¥ife:e¥d#:tro:Ce:=;n.
The first SH0 RT of mp 1 contains the ID of the control that has issued the message (a

menu or a listbox). h mp2 you find a pointer to a structure of type OWNERITEM,
containingauinformationneededfordelegatingtotheownerthedrawingoperations
of the listbox's output.

typedef struct _OWNERITEM

I // 01.
HWND hwnd ;

HPS hps ;

ULONG fssta.te :

ULONG fsAttri.bute :

ULONG fsstateold ;

ULONG fsAttri.buteold ;

356 0S/2 2.1 Worlcplace shell progranming

EI

RECTL rclltem ;

LONG i.dltem ;

ULONG hltem ;

} OWNERITEM ;

typedef OWNERITEM *POWNERITEM ;

Table 7.17 gives the meaning of each member in a OWNERITEM structure. The
members of a OWNERITEM structure allow the owner window to draw inside the
presentation space of a listbox. The actual control over output is delegated to another
window, and you can therefore design code so as to insert almost any kind of object
in a listbox, not being limited to text items only. h Figure 7.18 you can see the output
oftheprogramlistedinListing7.7.TheselectionoftheFz7c..Sfeozodoc#777e7zfsoptionwill
createeightchildwindowsinacascadinglayout.Thelower-1eftcomeraccommodates
a listbox, another child window of the application's client window, and thus a sz.Z7Zz.7tg
to the frame windows of the documents.

h each of the listbox's items you can see a small item that looks like a rolled-up
curtain and the name of a document as the reproduction of the text label present in
the corresponding titlebars.

By selecting a text item in the listbox you can change the active document window.
Moreinterestingistheselectionperformedwiththemousebyclickingoveroneofthe
icons. The corresponding document will not be selected; instead, the window disap-
pears (in Figure 7.19, for instance, you can no longer see window number 0). Further-
more, the rolled-up curtain icon is now replaced by an image of a window with a
pulled-down curtain.

Table 7.17 Description of the Members of the OWNERITEM Structure used by PM
for Displaying the Items in Owner-Drawn Listbox

Memb er D e s cription

hwnd
hps
fsstate
fsAttribute
fsstateold
fsAttributeold
rclltem

idltem

hltem

Handle Of the control that issued the message.
Handle of the control's presentation space.
hdicates the selection state (fez.g7zZz.g7zfz.7tg).

Contains the attribute flags.
hdicates the preceding selection state (fezg7zZ€.g7zfz.7tg).
Contains the preceding attribute flags.
A RECTL structure describing the rectangle of the Zz.sfz7ox that
needs to be draun.
Identifies the index (position) of the item to be redrawn inside the
Zz.sfz7ox, starting by counting from the origin.
Handle contained in the four bytes available for each item in a
tistbox.

The predef tnedwindow classes &57

Figure 7.18 The listbox in the lower left-hand corner of the client area
shows text and icons.

Figure 7.19 Selecting one of the listbox's items by clickingthe correspond-
ing icon (a rolled-up curtain) will hide the document from the user's view.

358 0S/2 2.1 Wor:laplace shell programming

Figure 7.20 The contents of an application-drawn listbox can be handled as
youplease,evenimplementingdesignsthatgobeyondtheCUAspecifications.

A subsequent click on the icon showing the pulled-down curtain will reveal the
hidden document (Figure 7.20). As this is an ordinary listbox, you may not select the
sameitemtwiceinarow,andthusyouarenotpermittedtohideandthenimmediately
reveal the same window. This behavior can be changed by setting the style LS_MU L-
TIPLESEL or LS_EXTENDEDSEL when the window is created; however, when you
activate any of these two styles, you win also allow the user to select more than one
item at the same time, which is not good in a small program. Let's now examine the
code of ODLIST.

Creating a Listbox
Allthewindowsoftheapplicationarechildrenoftheprogram'sclientwindow.Their
creation takes place in the parent's window procedure. Before the listbox is actually
created, the code will need to get the height of the system font by calling the function
Gpz.Q#e7tyFo77£Mcfrz.cs(), and then extract from a FONTMETRI CS structure the value
stored in the member 1 MaxBasel i. neExt. The size is then stored in a 1 ong variable
with statl. c storage class. This is the value that the application win return to the
listboxwheneveritreceivesthemessageWM_MEASUREITEM.

The predef tned window classes 359

To do this, it is necessary to have a handle to a presentation space returned by the
function W€.7tGe£PS(). It would have been better to get this information by acting
directlyonthepresentationspaceofthefistbox,ratherthanonthehandleofthechent
areaoftheparent'swindow.Thisisnotpossible,becausetheheight'ofthefontmust
beknownbeforetheWM_MEASUREITEMmessageisreceived,asthismessageisissued
by the W£.7tc7'e¢fewi.7tdozo() regarding the histbox immediately after its execution.
Furthermore,atthattimenopresentationspaceisyetavailableforthelistbox(maybe
this is a little bug in the API?).

Thehpshandleisalsousefulforloadingtheiconsthatwill1aterbedisplayedinthe
listbox: This is done by ca]Jing Gpz.Lo¢dBz.£777¢p(). The two bitmap handles are then
stored in a stati c storage class array so that they can be used later whenever the
messageWM_DRAWITEMisreceived.

L

®,,

case WM_CREATE:

I
HPS hps ; i

FONTMETRICS fin ;

PDATA pData ;

// allocate the chunk of memory
i.f(DosAllocMem((PPV0ID)&pData, si.zeof(DATA) * DOCNUMBER,

PAG_READ I PAG_WRITE I PAG_COMMIT))

Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

// store the poi.nter ,
Wi.nsetwi.ndowptr(hwnd, OWL_USER, pData) ;

hps = Wi.nGetps(t hwnd) ;

Gpi.OueryF-ontMetri.cs('hps, si.zeof(FONTMETRICS), &fm) ;

cy = fin.IMaxBaseli.neExt ;
hbm[1] = Gpi.LoadBi.tmap(

hbm[0] = Gpi.LoadBitmap(

Wi.nReleaseps(hps) ;

hwndLi.stbox = Wi.ncreatewi.ndow(hwnd, WC_LISTB0X,

NULL, I

LS_OWNERDRAW I WS_CLIPSIBLINGS,

10,10,180,120,
hwnd, HWND_TOP,

I D_LI STB0X ,

NULL, NULL) ;

break ;
®®®

The size of the histbox is computed so that it is an integer multiple of the system
font'sheight.ThesettingoftheWS_CLIPSI8LINGSstylehasbeenaddedtoavoidany
possibleproblemscausedbydocumentsoverlappingthefistbox.

360 0S/2 2.1 Workplace shell progranming

Handling Imf ormat4on
The logic governing the application presented in Listing 7.7 causes the selection of a
Hstbox item to activate the corresponding document. h order to implement this
behavior the application adopts a rather unusual design, which for our purposes is
interesting for discovering some of the peculiar quirks of listboxes. The windows
involved by the application are:

• The main window belonging to a class of its own
• The document windows belonging to a different class
• The listbox window

The program has to allocate a memory area to store the information appearing in
each document, as provided for by the header file ODLIST.H in the DATA structure:

®®®

// defi.ne new data types
typedef struct _DATA
I

B00L fstatus ;
COLOR clr ;

I DATA ; .

typedef DATA * PDATA ;
®®®

The Boolean fstatus is used to define the presentation state of each single docu-
ment. The color assigned to the window is encoded in cl r. The application also
allocates a memory block equal to the size of a DATA structure multipHed by the
number of documents (DOCNUMBER), and stores the pointer obtained from DosAZ-
JocMe77c() in the window words of the main window. Each single document also has
its own set of window words, where the window's position is stored with respect to
the.originoftheclientwindow.Theregistrationphasewiuconsiderallelementswhen
preparing the needed space:

®,,

i.f(!Wi.nRegi.sterclass(hab, szclassName,
C1i.entWndProc,
CS_SIZEREDRAW, si.zeof(PDATA)))

return FALSE ;

I.f(!Wi.nRegi.sterclass(hab, szchi.ldclass,
C h i. 1 d W n d P r o c ,

CS_SIZEREDRAW, si.zeof(LONG)))

return FALSE ;
®

The program then anocates one memory block that will always be accessible to the
main window's client by means of a pointer stored in the window words. Whenever
necessary, the pointer is retrieved and updated to point to the correct block of data.

The predef reed window classes 361

LISTBOX RESERVID
REMORYAREA

QWL_USEFl+

hwndDOC#1

hwndDOC#2

hwndDOC#3

hwndDOC#4

DORE:RE

ACTlvE DoCuREr`IT-LE

-̀) CURENT
SERVED
MORYREA

VVINDOW
WORDS

OFFSET
TO TIIE

APPLICATION'S
BLOCK OF
REMORY OF
DATA
STRUCTURES

Figure 7.21 Memory area used to store the information needed by the listbox
to implement the behavior that allows the active document to be highlighted.

Furthermore, the fistbox must always know the handle of the active document
window. This information is stored directly in the reserved data area of the window
belonging to the class WC_LI STB0X, by calling Wz.7tse£Wz.77dozoLELo7tg(), and setting

appropriately the QW L_U S E R flag. Each item in the listbox will take advantage of the
four bytes it has available to store a handle to the cHent of the window to which the
item is referring. Figure 7.21 summarizes this and delivers a schematic view of the
logic followed in writing this application.

Drawing an Item
When the option Sfeozu Doc#77ce7tfs is selected, it will display the documents on the
screen together with the listbox containing the text strings corresponding to the titles
shown in the titlebars. This is the first place in the program where you need to draw

362 0S/2 2.1 Workplace shed programming

the contents of the listbox. The application will receive the message WM_D RAW I T EM in
thewindowprocedureoftheowner,withmp2containingtheaddressofan0WNERITEM
structure. As we have already seen in Table 7.17, the OWNERITEM structure does not
contain the text that has to be displayed in the listbox. To get to that, you must issue
the message LM_QUERY ITEMTEXT and store the text string in an array of characters.
Some of the information contained in the RECTL member of OWNERITEM are used as
starting points for defining the item's area to be occupied by the icon previously
loaded, namely in the message WM_C REATE. The new rectangle is stored in a second
RECTL structure, used when you need to display the icon. Before doing this it is
necessary to evaluate if the current position of the mouse pointer corresponds to the
area designated for containing the icon. To discover the coordinates of the mouse, call
Wz.77Q#e7typoz.7tferpos() rather than Wz.77Q#e7tyMsgpos(), because this last function is
applicable ordy for posted messages, while the messages actuany being considered
here are all sent messages,

#defi.ne INCL_WINP0INTERS
B00L Wi.nQuerypoi.nterpos(HWND hwndDesktop, PP0INTL pptl) ;

P arameter D escription
hwndDesktop Handle to the desktop window
pptl Address of a POINTL structure
Retw:rn vahae D e s cription
BOOL Success or failure of the operation

The parameters to this function are the desktop's handle or the define HW N D_D ES K -
TOP and a pointer to a structure of type P0I NTL with the mouse's current position
expressed in screen coordinates. At this moment the mouse pointer is over the
drop-down File menu and can in no way affect the listbox's output. To see if the
mouse's coordinates correspond to the position of the listbox, it is not sufficient to
simply convert them via Wz.77M¢pWz.77dozopoz.7tfs(), because the converted point might
fall outside the area occupied by the Hstbox on the screen (which is precisely what
happens here). The subsequent comparison between the returned handle and the
listboxhandleresolvestheproblem.Cinlyifthereisamatchwiutheprogramproceed
in determining if the user clicked the left mouse button over the icon.

Other operations must be performed before actually executing the comparison.
Through the i. d I ten member of the OW N E R I T EM structure, the member that identifies
the position of the item to be displayed, the code issues the message LM_QU E RY I T EM -
HAND LE to the listbox in order to get a handie to the client area of the corresponding
document window. Once the handle is available, you can access the offset present in
the window words and add it to the base pointer.

®®

case WM_DRAWITEM:

I
RECTL rcl ;

OWNERITEM * pi.tern ;

LONG clrForeGround, clrBackGround ;

The predef tmed window classes 363

P0INTL ptl -I 0, 0) ;
CHAR szbuf [80] ;
BITMAPINFOHEADER bmp ;

FONTMETRICS fin ;
HWND hwndDoc, hwndcheck ;
PDATA pData ;
LONG loffset ;

// poi.nter to the OWNERITEM struct

pi.tern = (POWNERITEM)PV0IDFROMMP(mp2) ;

// determi.ne the text
Wi.nsendMsg(pi.tern -> hwnd, LM_QUERYITEMTEXT,

MPFROM2SH.ORT(pi.tern -> i.dltem, si.zeof szbuf),

(MPARAM)(PSZ)szbuf) ;

// i.con's rectangle
rc.xLeft = pi.tern -> rclltem.xLeft ;
rc.yBottom = pi.tern -> rclltem.yBottom ;

Gpi.OueryBi.tmapparameters(hbm[0], &bmp) ;
rc.xRi.ght = cx = rc.xLeft + bmp.cx ;
rc.yTop = rc.yBottom + cy ;

// check the poi.nter pos
Wi.nQuerypoi.nterpos(HWND_DESKTOP, &ptl) ;
hwndcheck = Wi.nwi.ndowFrompoi.nt(HWND_DESKTOP, &ptl , TRUE) ;

// get the doc hwnd
hwndDoc = (HWND)Wi.nsendMsg(hwndLi.stbox, LM_QUERYITEMHANDLE,

MPFROMSHORT(pi.ten -> I.dltem), OL) ;

// get the data poi.nter
pData = (PDATA)Wi.nQuerywi.ndowptr(hwnd, OWL_USER) ;
10ffset = (LONG)Wi.nQuerywi.ndowuLong(hwndDoc, OWL_USER) ;

pData += 10ffset ;
®®

I
®

Only if the handle of the window underlying the mouse's position corresponds to
the listbox will the code proceed by converting the point of the cursor's hot spot into
window coordinates, and then check if that is a location within the area occupied by
theicon.Ifitis,theapplicationmodifiesthevalueofthefstatusmemberofthedata
structurecreatedspecificallyfortheapplication(DATA)andthenchangesthevisibility
status of the window.

®,

// are you cli.cki.ng on the li.stbox?
i.f(hwndcheck == hwndLi.stbox)
i

Wi.nMapwi.ndowpoi.nts(HWND_DESKTOP, hwndLi.stbox, &ptl ,1L) ;

// i.s the mouse on the i.con?

364 0S/2 2.1 Workylace shed progranming

i.f(ptl .x > 0 && ptl.x <= (cx + OFFSET) && pi.tern -> fsstate)
I

Wi.nAlarm(HWND_DESKTOP, WA_NOTE) ;

pData -> fstatus = ! pData -> fstatus ;

// show/hi.de the doc window
Wi.nsetwi.ndowpos(PAPA(hwndDoc), HWND_TOP,

OL, OL' OL, OL,

(pData -> fstatus) ?
(SWP_SHOW I SWP_ACTIVATE) : SWP_HIDE) ;

)
1
®®®

The only thing left to be done is to display the appropriate icon with W I. n D r awB I. t -
map (), being careful to position it in the area previously identified, and finally to
display the corresponding text with Wz.7tDr¢zuTex£().

®®®

// no hi.ghli.ght on the selected i.ten
i.f(pi.tern -> fsstate == FALSE)
I

clrForeGround = CLR_BLACK ;
clrBackGround = CLR_WHITE ;

]
else
I

clrForeGround = CLR_WHITE ;
clrBackGround = CLR_BLACK ;

)

// draw the i.con
Wi.nDrawBi.tmap(pi.ten -> hps,

(pData -> fstatus) ? hbm[0] : hbm[1],
NULL,

(PP0I NTL) &rc ,
CLR_BLACK, CLR_WHITE,

DBM_STRETCH) ;

// determi.ni.ng the text rectangle
rcl .xLeft = pi.tern -> rclltem.xLeft + bmp.cx + OFFSET ;
rcl .xRi.ght = pi.tern -> rclltem.xRi.ght ;
rcl.yTop = pi.ten -> rclltem.yTop ;
rcl .yBottom = pi.tern -> rclltem.yBottom ;

// wrl'tl'ng text
Wi.nDrawText(pi.tern -> hps,

-1'

szbuf,
&rcl ,
clrForeGround, clrBackGround,
DT_LEFT I DT_VCENTER I DT_ERASERECT) ;

®®®

The predef ined window classes 365

The final phase of processing the WM_DRAWITEM message deals with toggling the
members fsstate and fsstateold of the OWNERITEM structure, for the ensuing
painting operations.

Some Considerations
TheexampleillustratedinListing7.7showshowitispossibletopositionanykindof
object in the presentation space of a listbox, and thereby implement new kinds of
behavior of this window. This is a simple but efficient example of going beyond the
CUA specifications of OS /2 Presentation Manager.

The Class WC_ENTRYFIELD
Oneofthemostcommonoperationsinagenericapplicationisrequestinginformation
directlyfromtheuserwithoutgoingthroughcontrolledinputstructureslikemenus.
The user's name when installing a program, and the date of an invoice, are typical
examples. To make it easier to perform this kind of operation, the PM API provides
thedesignerwiththeclassWC_ENTRYFIELD,whichspecializesinhandlingkeyboard
inputofnunericoralphanumericdata.AlmostalldialogwindowsthatappearinPM
applicationsresorttoWC_ENTRYFIELDclasswindows,andrelievethedesignerofthe
task of handJing WM_C HA R messages and controlling the cursor movements.

The ES_ Styles
Table 7.18 lists all ES_ styles th`at affect the look and behavior of the windows
belonging to this class.

Thecombinationo£ES_MARGINandES_READONLYstyleswillproduceawindowthat
can display any text preset by the application; however it will not anow the user to
change that text or type any new text. This solution is often used to offset the lack of
aframearoundwindowsbelongingtotheclassSS_STATIC.Anevensimplersolution
istosetthestyleWS_DISABLEDinadditiontothosetypicalofaWC_ENTRYFIELDclass
window.hsuchacaseyoudisableanyinputactivity,andtransformane7tf7t(f.ezdinto
a s£¢fz.c from the user perspective.

Table 7.18 The ES_ Styles of the Class WC_ENTRYFIELD

Style Vahae D es cription

ES LEFT 0xOOOOOOOOL The text is left-aligned in thewindow.
ES_CENTER 0xOOOOOoolL The text is centered in the window.
ES_RIGHT OxOOO00002L The text is right-aligned in the window.

(coutirmed)

366 0S/2 2.1 Workplace shed progranming

Table 7.18 (Co#f£.#cfed)

Style Vahae D esoription

ES AUTOSCROLL 0xOOO00004L The window performs horizontal scrolling
automatically whenever the user types a
number of characters that is greater than those
that can be displayed in the window.

ES_MARGIN 0xOOOOOOO8L The perimeter of the window is surrounded by
a thin border.

ES AUTOTAB 0xOOOOOO10L Automatically transfers focus to the next co7tfroz
in the TAB chain whenever the window
contains a number of characters equal to the
maximunL allowed number.

ES READONLY 0xOO000020L You are not anowed to perform any kind of
input in the window; it will only display
information.

ES_COMMAND 0xOO000040L This value is useful only for an e7tf7%¢.ezd in a
Help panel.

ES_UNREADABLE 0xOOOOOO80L Displays any character typed at the keyboard as
an asterisks.

ES AUTOSIZE 0xO0000200L Assigns to the windows an appropriate size for
containing the text indicated during the win-
dow's creation.

ES ANY 0xOOOOOOOOL The text inserted into the e7tf7%¢.ezd can be any
combination of characters of one or two bytes.

ES_SBCS 0xooloooooL The window accepts only single byte characters.
ES DBCS 0x00200000L The window accepts only double byte characters.
ES MIXED 0x00300000L Like ES_ANY, but allows the conversion of

DBCSASCHcharactersintoequivalentEBCDIC
characterswithoutcausingoz7erflozt7errorsinthe
application.

The EM_ Messages
Thebestwaytoinserttextintoanentryfieldistospecifyitwhenthewindowiscreated.
Later, this task can be performed with W1.7zse£Wz.7tdozoTex£() by specifying the appro-
priate handle. The retrieval of the contents of an entryfield becomes accessible to the
application by calling Wz.7tQ#enywz.7tdozt7Texf(). Table 7.191ists all EM_ that are specific
to the windows belonging to the class WC_ENTRY F I E LD.

The actions performed by the EM_ messages essentially pertain to the handling of
the window's output. The designer can change the first character displayed in the

The predef tned window classes SOFT

Table 7.19 The EM_ Messages of the Class WC_ENTRYFIELD

Message Vahae Description

EM_QUERYCHANGED Ox0140 Issued to determine whether or not the contents
ofthee#£7%f.cJdhavebeenchangedwithrespectto
aneahierquerywithEM_QUERYCIIANGEDor
WM_QUERYWINDOWPARAMS.

EM_QUERYSEL

EM SETSEL

EM_SETTEXTLINIT

EM_CUT

EM_COPY
EM_CLEAR
EM` PASTE

Ox0141 Returns the number of characters from the first
selected character.

Ox0142 Set the selection of text by specifying the frst
and the last characters to be selected.

Ox0143 Defines the maxilnum number of characters
that can be typed into an e7z£7%f.ezd.

Ox0144 Cuts out the selected text and transfers it into a
buffer.

Ox0145 Copies the selected text into a buffer.
Ox0146 Deletes the selected text.
Ox0147 Pastes the previously copied or deleted text

from the buffer to the current cursor position.
EM_QUERYFIRSTCIIAR 0x0148 Returns the position of the first visible character

in the eutryf ield.
EM_SETFIRSTCHAR 0x0149 Sets the first visible character in the e#f7t{¢.ezd.
EM_QUERYREADONLY 0x014a Returns the status of the read-only attribute.
EM_SETREADONLY 0x014b Activates/Deactivates the read only flag.
EM_SETINSERTMODE Ox014c Activates/Deactivates the insert/overwrite

mode.

window(thetextmightscrollhorizontallybysettingtheES_AUTOSCROLLflag),define
the set of selected characters, and set the read-only attribute. More interesting is the
interaction with the Clipboard through messages for copying, clearing, and pasting
the text.

Notof ication Co des
A window of the class wc_E NT RY F I E LD will notify its owner of the actions performed
by the user by including the notification codes listed in Table 7.20 as part of the
WM_CO NTRO L message.

To know when the contents Of an entryfield change, you have to intercept
E N_CHANG E. This notification code will also appear if the user presses the backspace
key to correct previously written characters.

368 0S/2 2.1 Workplace shell progranming

Table 7.20 The Notification Codes of the Class WC ENTRYFIELD

Notification codes Value Description

EN SETFOCUS

EN RILLFOCUS

EN_CHANGE

EN SCROLL

EN MEMEREOR

EN_OVIRFLOW

OxOool Focus has been transferred to an e77£7tzfi.ezd
window.

Ox0002 Focus has been transferred from an e7tfr%j.ezd
window.

Ox0004 There has been a change in the e7tf7tz¢.ezd
window.

OxOOO8 The number of characters typed in has
caused a horizontal scrozzz71g of the text.

OxOO10 Informs that the e7tfr%¢.ezd was not able to
allocate a memory area large enough to
contain the number of characters requested
by the message EM_SETTEXTLIMIT.

Ox0020 Sent to notify that the maximum limit of
characters has been reached in the e7tfr#¢.ezd.

EN_INSERTMODETOGGLE 0x0040 hput handling has changed by toggling
from insert mode to overwrite mode, or vice
Versa.

The ENTRTFDA;TA Structure
The class WC_ENTRY F I E LD has a data structure called ENTRY FDATA which, provided it
isfiuedwithappropriatevalues,allowsyoutocustomizethebehaviorofanentryfield
from the very moment it is created. h version 2.1 of OS/2, the ENTRY FDATA contains
four U S H 0 RT members:

El

#defi.ne INCL_WINENTRYFIELDS
typedef struct _ENTRYFDATA
I // efd

USHORT cb ;

USHORT cchEdi.tLi.mi.t ;
USHORT 1.chMi.nsel ;

USHORT i.chMaxsel ;

} ENTRYFDATA ;

typedef ENTRYFDATA *PENTRYFDATA ;

The member cch Edl. t Ll. ml. t carries out the same action as the message S ETTEX -
TLIMIT and sets the maximum number of characters that can be typed into the
window. The third and fourth members, i c h M 1. n S e 1 and i. c h M a x S e 1 , define the lower
and the upper limit of the selected text. h future versions of PM, this structure will
allow the establishment of an input format by defining the number, the type, and the
layout of data items that the user can input through the keyboard. Listing 7.8 shows
a window of class WC ENTRY FI ELD at work.

The predef ined window classes 369

The Class WC_COMBOBOX
The representatives of this class constitute a kind of compromise between a listbox
window and an entryfield. The very name suggests a combination of simpler ele-
ments, just]jke the classes WC_LI STB0X and WC_ENTRY FI ELD. The principal purpose
ofthisclassistoprovidethedesignerwithatoolthathasthesamedegreeofflexibility
as a listbox, and th.e size of a simple entryfield. h fact, a combobox shows up on the
screenlikeanordinaryentryfield,withtheadditionofanadownwardpointingarrow
icon to its right side. Clicking the left mouse button on the icon will cause a listbox to
be displayed beneath the entryfield. The item selected from the listbox is displayed
automaticallyintheentryfieldpartofthecombobox,causingthelistboxtodisappear.

The CBS_ Styles
Theamountofaestheticandfunctionalcustomizationofacomboboxisratherlimited.
The altematives are shown in Table 7.21.

ThesolutionC8S_DR0PD0WNLISTisaveryflexibleandusefulinputtool.Theuseris
given the choice of selecting an item from the listbox part without modifying the
entryfield part. Such a combobox can be used when you want to give the user the
possibilityofchoosingamongseveralpredefinedvalues,oramongvaluesthatmight
possibly grow in number through a mechanism that does not depend on the user
input.Also,C8S_DR0PD0WNisusedquiteoften,whileC8S_SIMPLEisseldomneeded.

Table 7.21 The Styles of the Class WC_COMB0B0X

Style Value D e s cription

CBS SINILE

CBS_DROPDOWN

OxOoolL Creates a combination of an e7zfngj.ezd and a
Zz.s£Z7ox and displays them on the screen
simultaneously: The user can both select an
itemfromtheZz.s£Z7oxasweuastypesometext
directly in the e7tf7tz¢ieJd.

Ox0002L Only the c77f7#ezd will be displayed on the
screen, together with a downward pointing
arrowicontoitsright,whichwilldisplaythe
Zz.s£Z7ox when selected: The user can both
select an item from the Zz.sf box as well as type
some text directly in the, e7tf7Of.ezd.

CBS DROPDOWNLIST 0x0004L Only the e7t£7#czd will be displayed on the
screen, together with a downward pointing
arrowicontoitsright,whichwilldisplaythe
Zz.s£Z7ox when selected: The user is only
allowedtoselectanitemfromtheZz.sfbo#,and
carmot type any text in the e7tf7tz¢.czd.

gpo 0S/2 2.1 Workytlace shed programming

Table 7.22 The Messages of the Class WC_COMB0B0X

Mes s age Vahae D esci.iption

CBM SHOWLIST 0x0170L Forces the zz.sf box to be displayed or removes
it from the screen: It is equivalent to clicking
the left mouse button on the arrow icon.

CBM HILITE 0x0171L Forces the status of fez.g%gfefz.7tg over the
combobox's button.

CBM_ISLISTSHOWING Ox0172L Returns the status of the zisfbox: displayed or
hidden.

The CBM_ Messages
The designers of PM have confined to the bare minimum the number of messages,
styles, and notification codes that are specific to comboboxes, and allowed that
equivalent elements of listboxes and entryfields could be used just as effectively to
perform specific operations. Thus, they avoided a redundancy in the API, which does
not happen in MS Windows. There are only three messages of the class WC_COM-
BOBOX (Table 7.22).

All messages of the class WC_LISTB0X work correctly in the listbox portion of a
combobox. For instance, to insert a text item in this window, you can use the message
LM_I NSERTITEM and specify the appropriate handle: The same rules extend to any
other specific operation. hstead, to insert text in or retrieve text from the entryfield
portion, you Can use the functions Wz.7tse£Wz.7zdozoTex£() and Wc.7tQ#e7rywz.7idozt7Tex£().

The Notification Codes
A combobox notifies its owner window about the operations performed in response
totheuser'sactionsbysendingthenotificationcodesHstedinTable7.23asanintegral
part of the message WM_C0 NTR0 L.

As you can see/ it is a kind of combination of the notification codes of the classes
WC LISTB0Xandwc ENTRYFIELD.

Using a Combobox
To demontrate the characteristics of a combobox, 1et's implement a simple applica-
tion that allows you to change the background color of the client window according
to the user's selection inside the listbox portion (Listing 7.9). The logic is based on
the interception of the window's notification codes and on the consequent painting
activity.ThecodealsointerceptsthemessagewM_WINDOWPOSCHANGEDtodetermineif
the resizing of the appHcation's main window will interfere with the combobox's
output (Figure 7.22).

The prede;f ined window classes &71

Table 7.23 The Notification Codes of the Class WC_COMB0BOX

Notification code Vahae Description

CBN_EFCHANGE
CBN EFSCROLL
CBN REMEREOR

CBN LBSELECT
CBN LBSCROLL
CBN SHOVIIST
CBN ENTER

The text in the e77£r%¢.ezd has been changed.
Horizontal scrozzjng took place in the e77f7tz¢.ezd.

Thecomboboxwasnotabletoallocateanarealarge
enoughtocatertotheneedsofthee77f7#ezdand/or
the listbox.
A Zz.s£Z7ox item was selected.

Vertical scrozzz.7tg took place in the Z{.sfbox.
tThe zz.sfbo% was displayed/hidden. I

Signalsadouble-clickwiththeleftmousebuttonor
the user's pressing the Enter key.

Figure 7.22 The combobox lists the names of the colors that can be selected
for the client window.

972. OS/2 2.1 Workplace shed programming

WhenthecBN_LBSELECTnotificationcodeisintercepted,thewholeoftheclientarea
is invalidated with Wz.7tr7tz)¢Zz.d¢feRec£(). However, updating is not enforced because it
would produce undesired side effects in the listbox portion. Furthermore, when the
mainwindowiscreated,itisnecessarytosettheflagWS_CL.IPCHILDREN-otherwise,
the pixels of the listbox would not be controlled by the application's chient window,
and thus the image of the listbox would persist on the screen.

The Class WC MLE
Theclasswc_MLE(77c#Zfz.pzezz.7tee77£7b!¢.ezd)wasaddedtopM'sAplwiththeintroduction
of version 1.2. There is also a special header file, PMMLE.H, that contains all the
defines specific for this class. An 77cze is, in practice, an entryfield that spans several
lines-an ideal tool for creating a word processor and thus relieving the designer of a
great deal of trouble.

The Styles of the Class WC_MI:E
Table 7.24 describes the specific styles of the WC_M LE class. Customization is possible
when creating the window, including the addition of scrollbars ®oth vertical and
horizontal),thepresenceofathinborderaroundthefoursides,theread-ordyattribute,
and the abihity to word wrap words longer than the remaining space available on a
line.

Table 7.24 The Styles of the Class WC_MLE

Style Value D es cription

MLS WORDWRAP OxOOOOOoolL Wraps words longer than the remaining
space available on a line to the next line.

MLS BORDER 0xOOO00002L Draws a thin border around the perime-
ter of the 77cze window.

MLS VSCROLL 0xOOO00004L Adds a vertical scrozJb¢r to the right of the
77tze window.

MLS HSCROLL OxOOOOOOO8L Adds a horizontal scrozJZ7¢r to the lower
side of the 77zze window:

MLS READONLY 0xOOOOOO10L Disallows typing any text into the 77gJe
window; the user is allowed to only view
the information.

MLS_IGNORETAB 0xOO000020L Does not consider the TAB key as a true
tab character.

MLS DISABLEUNDO 0xOO000040L The window will not support any kind of
undo actions.

The predef tned window classes Cy73

To define the number of rows that characterize an 77tze you have only to specify the
vertical size of the window in parent units. The number of text lines is computed
automatically by the 77zze itself, on the basis of the font being used. Therefore, it is
possible that the height of an 773Ze may not be an integer multiple of the system font,
though this should not be a problem.

Bothscrollbarswillobtaintheirpixelsdirectlyfromthe77tze,thatthusistheirowner.
The scrolling of text, and the related movements of the slider, are controlled and
handiedautomaticallybythe77czeincooperationwiththescrollbars,anddonotrequire
any kind of provision on part of the programmer. The style M LS_W0 RDW RA P should be
avoided because it slows down all text input operations in the 777Ze.

The MLM_ Messages
The set of messages specific to the WC_M LE class is large, although it does not include
all the functionality that you might expect (Table 7.25), as we will see later.

ThefistofmessagesoftheclassWC_MLEisquiteextensive,andallowsyoutoperform
a number of operations on the windows of this class. The only deficiency is that of
somemessagethatwouldallowyoutoactdirectlyupontheverticalscrollbarinorder
to reach a precise position in the text; something along the lines of ``go to line xxx."

Table 7.25 The Messages of the Class WC_MLE

Message Value Description

MLM_SETTEXTLIMT

MLM_QUERYTEXTLIMIT

MLM_SETFORMATRECT

Oxolbo Defines the maximum size in terms of
number of characters that can be
inserted in an 77zJe. The amount of text
that can be handled by an 77eze is
theoreticallyunlimited,butpractically
restricted by the amount of memory
available. By indicating the value of -1
you instruct the 77czc to continue
accepting new text indefinitely, until
system resources are exceeded.

Oxolbl Returns the size of the text that is
a]lowedtobeinsertedinan77tJe:Aretum
value of -1 indicates an unlimited
number of characters.

Oxolb2 Sets the size of the edz.£z.7eg area inside the
777Ze by defining horizontal and vertical
limits that are different from the actual
size of the window on the screen.

(coritinued)

Table 7.25 (Corlft.fflcfed)

Message Vahae Description

MLM_QUERYFORMATRECT 0xolb3 Returns the size of the ed£.f2.71g area
inside the 77tze on the basis of an earlier

MLM_SETWRAP

MLM_QUERYWRE

MLM SETTABSTOP

MLM_QUERYTABSTOP

MLM SETREADONLY
MLM_QtJERYREADONLY

MLM_QUERYCHANGED

MLM_SETCHANGED

MLM_QUERyLINECour\IT

MLM CHARFROMLINE

MLM_LINEFROMCFIAR

definition through the sending of the
mess age MLM_SETFORMATRECT.

Oxolb4 Toggles omoord zur¢ppz.7tg of text inside
the editing area.

Oxolb5 Returns the status of the zuord-zurappz.7tg
toggle.

Oxolb6 Defines the width of the tab character
insidethe77£Ze;theamountisexpressed
in number of pixels.

Oxolb7 Returns the width of the tab character
insidethe77tze;theamountisexpressed
in number of pixels.

Oxolb8 Sets the read-only attribute in the 777Ze.
Oxolb9 Returns the status of the read-only

attribute Of the 77tze.
Oxolba Returns a, flag indicating whether the

text contained in the 777Ze has been
charged since the last request for the
same information.

Oxolbb Sets a flag that informs the application
that the text contained in the 77tze has
been changed.

Oxolbc Returns the number of text lines
present in the 777Ze.

Oxolbd Returns the number of characters that
separate the first symbol on the line
specified in the message from the start
of the text in the 77tze.

Oxolbe Returns thenumber of the line inthe
77tzc that contains the specified
character.

MLM_QUERYLINELENGTH 0xolbf Returns the length of a line of text in
the 77tze, starting the count from the
indicated character or from the current
cursor position.

MLM_QUERYTEXTLENGTH 0xolco Returns the overall number of charac-
ters present in the 7#Ze window.

(coritinued)

374

TaLble 7.25 (Continued)

Message Vahae Description

MLM_FORMAT

MLM SETIITORTEXPORT

NIM IITORT

MLM EXPORT

NIM DELETE

Oxolcl Defines the export/import format of
text to/from the buffer area indicated
by MLM_SETIMPORTEXPORT. The
available options are : MLFIE_CFTEXT
to indicate the text format supported
by the Clipboard; MLFIE_NOTRANS
to indicate the usage of Zz.77e/Bed
characters as line terminators; and
MLFIE_WINFMT to distinguish bet-
ween a sofi and a fe¢rd line break.

Oxolc2 Provides the 777Je window with the
address of a buffer that can be used
subsequently for text z.77tpor£/export
operations to and from the 777Ze.

Oxolc3 hports into the 77tze, in the position
specified by mpl, the text present in
the buffer area previously identified
through the message MLM_SET-
IMPORTEXPORT.

Oxolc4 Exports the text specified by the values
in mpl and mp2 to the buffer area
previously identified through the
message MIM_SETIMPORTEXPORT.

Oxolc6 Deletes the text from the 777Ze by
specifying the starting and the ending
positions, even if this text was not
previously selected on the screen.

MLM_QUERYFORMATLINELENGTII 0xolc7 Returns the length of a text line,
counting even the symbols used to
terminate a line, according to the
formatting attribute currently em-
ployed:MLFIE_CFTEXT,MLFIE_NO-
TRANS, and MLFIE_WINFMT.

MLM_QUERYFORMATTEXTLENGTH 0xolc8 Returns the length of the text, counting
even the symbols used to terminate a
line, according to the formatting
attribute currently employed: MLFIE-
_CFTEXT, MLFIE_NOTRANS, and
MLFIE_VVINFMT.

NIM INSERT Oxolc9 hserts at the cunent cursor posifron in
the777Jethetextofthearrayofcharinmpl.

(continued)

375

Table 7.25 (Corlfi.r£#ed)

Message Value Description

MLM SETSEL

MLM_QUERYSEL

MLM_QUERYSELTEXT

MLM_QUERYtINDO

MLM UNIO

MLM_RESETr-o

MLM_QUERYFONT

MLM_SETFONT

MLM_SETTEXTCOLOR
MLM_QUERYTEXTCOLOR

MLM_SETBACKCOLOR

MLM_QUERYBACKCOLOR

Oxolca Defines the area of selected text in a
77tze by setting an initial and final
position. If the initial position is
greater than the final position, then
the cursor will be positioned to the
left of the selected text; otherwise,
the cursor will always be at the right
of the selected text.

Oxolcb Returns the position, in terms of
characters from the start of text, of the
first character of the selected text.

Oxolcc Copies the selected text directly to a
buffer specified in the message.

Oxolcd Determines if it is possible to perform
a specific undo operation in a 774Ze: The
fez.gfe zuord of the return value contains
a number corresponding to the MLM_
messages that can be undone, while
the Zozu zoord contains TRUE if undo is
allowed or FALSE if the message has
just been undone.

Oxolce Performs the undo operation on the
contents of the 77tze.

Oxolcf Resets the undo flag in a 77tze; the flag
is set automatically whenever an un-
doableoperationhasbeenperformed.

Oxoldo Returns in a FATTRS structure infor-
nation regarding the font used in the
mle.

Oxoldl Defines the font to be used in the 77tze
by specifying information directly in a
FATTRS structure.

Oxold2 Defines the text color.
Oxold3 Returns a numeric code representing

the text color.
Oxold4 Defines the background color of a 777Ze

window.
Oxold5 Returns a numeric code representing

the background color of an mle
window.

(continued)

376

The predef tned window classes 3;77

TaLble 7.25 (Continued)

Message Value Description

MLM_QUERVIIRSTCIIAR

MLM_SETFIRSTCHAR

MLM_CUT

MLM_COPY

MLM_PASTE

NIM CLEAR
MLM_ENABLEREFRESH
MLM_DISABLEREFRESH

NIM SEARCH

Oxold6 Returns the distance in characters of
the first visible character from the start
of text in the 777Ze.

Oxold7 Defines which should be the first
visible character in an 77cZc window,
notwithstanding the current position
in the text.

Oxold8 Cuts out from an 777Ze the selected text
and transfers it to the buffer area so it is
available for future p¢sfz.7tg operafrons.

Oxold9 Copies the selected text in the 77zze to
the buffer area, so it is available for
future pasting operations.

Oxolda Pastes the text curently inthebuffer area
totheculfentcursorposifroninthe777Ze.

Oxoldb Deletes the selected text from the 77tze.
Oxoldc Enables refesfe of output in the 77eze.
Oxoldd Disables re¢csfe of output in the 77tze,

also preventing any kind of input
operation @y mouse or keyboard).

Oxolde Searches for and replaces a piece of
text in the r#Ze.

MLM_QUERYIMPORTEXPORT Oxoldf Returns the address and the size of the
buffer area used for z.77tpor£/export op-
erations to /from the 77tze.

The MLN_ Notif tcation Codes
The number of notification codes of the class WC_MLE is considerable (Table 7.26), as
you might have inferred from the number of M LM_ messages. All notification codes
will reach the owner's window procedure by means of the message WM_C0 NTR0 L.

Data Structures of the Class WC_MLE
Thecomplexnatureofthewindowsoftheclasswc_MLEimplythepresenceofseveraldata
structuresinordertoimplementcomplexoperations,1ikesearchingandreplacingpieces
of text.haddition,totheMLEMARGSTRUCTstructure,whichretumsdataaboutthemouse's
posifron when it reaches any of the window's margivs, there are also the following
structures:MLESEARCDATA,MLECTLDATA,MLEFORMATRECT,andMLEOVERFLOW.

Table 7.26 The MLN Notification Codes of the Class WC_MLE

Notiftca[tion code Vahae Description

MLN_OVERFLOW OxOool Returned to the owner window when the user
tries to insert more character than those that can
fit in the 77tze window.

MLN_PIXHORZOVERFLOW 0x0002 The maximuln number of characters that can fit
in a previously formatted 77tze window has been
exceeded.

MLN_PIXVERTOVERFLOW 0x0003 The maximum number of characters that can fit
in a previously formatted 77cze window has been
exceeded.

MLN TEXTOVERELOW 0x0004 Operations pertaining to text handling have
exceeded some preset limit.

NIN VSCROLL

MLN_HSCROLL

MLN CHANGE

MLN SETFOCUS
MLN KILLFOCUS
NAN h4ARGIN

Ox0005 Vertical scrozz€.7tg took place; also indicates the
number of the first visible line.

Ox0006 hiorms the owner window that horizontal
scrozzz.7tg occurred; also indicates how many
pixels have become invisible on the X axis.

Ox0007 The contents of the 773Ze window have changed
due to insertion or deletion of text.

OxOOO8 The 77tze has acquired/oc#s.
OxOOO9 The 77tze has lost/oc#s.

OxOooa hiorms the owner of the 77£Ze that the mouse has
been moved over one of the margins of the
window: The data returned in the structure
MLEMARGSTRUCT estabHshes on which of the
four sides the cursor is, the message associated
with the mouse movement, and the character
that is closest to the mouse's position.

MLN SEARCHPAUSE 0xOoob Issued periodicallyby the 777Ze when it is engaged
intheexecutionoftheMLM_SEARCHmessage;
thisallowstheapplicationtointerruptthesearch
operation.

MLN_MEREREOR OxOOOc Issued when a direct action upon the 777Ze causes
the text limit or the formatting rectangle to be
exceeded.

MLN_UNDOOVERFLOW 0xOood Issued to notify that it was impossible to perform
a text editing action (undo) because it would
cause the text limit to be exceeded.

MLN_CLPBDFAIL 0xOoof Issued to inform that the clipboard was not able
toacco]rm.odatethetextthatwassenttoitbythe
77tze.

378

The predef tnedwindow classes €79

The MLECTLDA;TA Stracture
The MLECTLDATA structure contains data about the formatting of an 77tJe, the
position of the cursor, and the definition of the selected text.

typedef struct _MLECTLDATA
I ,,mlectl `

USHORT cbctlData ;
USHORT aflEFormat ;
ULONG cchText ;
IPT i.ptAnchor :
IPT i.ptcursor ;
LONG cxFormat ;
LONG cyFormat ;
ULONG afFormatFlags ;

} MLECTLDATA ;

typedef MLECTLDATA *PMLECTLDATA ;

Table 7.27 describes each member in the M LECT LDATA structure.
When an 77zJe is created, the programmer can define some of its behavioral and

structural traits without having to resort to sending specific messages at later times.

Table 7.27 Members of the MLECTLDATA Structure

Memb er D escription

cbctlData
aflEFormat

cchText
iptAnchor

iptcursor
cxFormat
cyFormat
afFormatFlags

Size of the structure.
Format of execution of I.77tpor£/cxporf operations. The possible
options are:

MLFIE CFTEXT
MLFIE NOTRANS
MLFIE_WINIMT
MLFIE RTF

Maximum text size, expressed in bytes.
Defines the position, expressed in bytes, of the first character of
the selected text.
hdicates the cursor's position.
Width, expressed in pixels, of the format rectangle.
Height, expressed in pixels, of the format rectangle.
Defines how the format rectangle should be handied. The
possible options are:

MLFFMTRECT_LIMITHORZ
MLFFMTRECT_LINITVERT
MLFFMTRECT MATCHl/VINDOW
MLFFMTRECT_FORMATRECT

380 0S/2 2.1 Workplace shed progranming

EI Listing 7.9 is an example of how to use the services of the class WC_M LE to create a
simple,butfunctional,wordprocessorforPM.Thegoveminglogicoftheapplication
allows you to position an 777Ze window directly over the client of the application, and
to handle all possible cut and paste operations through appropriate messages, and
vary accordingly the status of the menu items in the Edit menu.

The Class WC NOTEBOOK
Let's now get into the novelties of OS/2 2.1 and examine the last five predefined
classes. As you will have noticed, the classes have been of growing complexity and
flexibility in terms of the actions they support. WC_NOTEBOOK is similar to a three-
dimensional, spiral-bound notebook with tabs. The distinctive characteristic of a
notebook is the notebook pages. As you will discover soon, the designer can use
andinteractonlymarginallywiththeWC_N0TE800Kclass.Theonlypossibleopera-
tionswithanotebookareestablishingthenumberofpagesneeded,andassociating
one or more windows with each page. The examination of the notebook is helped
by scroll arrows at the bottom of every page, or by acting directly on the tabs along
the side (Figure 7.23).

ir¥ffife•1`
A #m aptff iap# fa Jdss%fr m#•..-...

{grREfr r u Su £ . t 9qu

i4?\;?t!i

gr:#ft¥€§§#BiEL±ar
trffiffiffRE#:grffi#is

ifeffu#alisia©
ii•ENt8n4gn-3 ey #gr* ifeth#¥sihfqLfty # ife fa

`.

ex`, ¥^, ``fe4#i*#prrfu dr unprffi

I-:.-..-...-.--.-

.

S i? JS F3€a

i') ! ,||b'rrtr.-i-6.LIy~. ng !RE -£hinae FaRng„:¥

e < i 1 'if te {afi

?
I.....v*ftI:REiseFT65:res+¢=r9SS¢9i¢i€i:|il`:P7¢3s9!==-vF.-.3:.I , -T\ r ` - T` ,

Figure 7.23 Object settings in WPS are always controlled through a window
of the class WC NOTEBOOK.

The predef tned window classes 381

The use of notebooks in WPS has some advantages. All users, even newcomers, are
falniHar with this kind of control, and expecf to find it in applications. Before proceed-
ing any further, try using the SNOOPER utility to explore the Sef£€.77gs windows of a
WPS object. You will be surprised to discover that the WC_NOTEBOOK class window
takes up only a limited space compared to the overall dimensions of the object. The
visible page is always a window belonging to one of the predefined classes (almost
invariably WC_FRAME) or some class registered in the application. Let's see, step by
step, how such a window is created with Wz.7tc7'eefesfdwz.7zdozo() :

®,,

hwndFrame = Wi.ncreatestdwi.ndow(HWND_DESKTOP,
WS_V I S I B LE ,

&ul FCFl ags ,

WC_NOTEBOOK,

s z W i. n d o w T i. t 1 e ,

a KS_xxx ,
NU LLHAND LE ,

RS_A L L ,

&hwndNotebook) ;

®,

Are you still there? Don't be afraid, there's nothing magic going on here. The effect
producedbytheabovecodefragmentisgeneratingaframewindow,withaucontrols
impHedbytheFCF_combinations(notdescribedhere),andwithawindowbelonging
totheclassWC_NOTEBOOK.Aconcreteresultofgeneratingawindowinthiswayisthat
you don't have to register a window class and that you don't need a window
procedure.hpractice,theapplicationislimitedtothesole777¢£.77()function.Wewon't
list the sample code here, but you can try to create it, as this is an excellent exercise in
using the predefined classes.

The presence of a menu bar will certainly cause you some problems! The WM_COM -
MAND messages will Teach the window procedure of the WC_NOTEBOOK class without
passing through any portion of the source code. There are two possible solutions:

•hterposebetweentheframewindowandthenotebookaclientbelongingtosome
class registered in the code

• Subclassing the frame

The first way is the one most commonly adopted, although it does have the
disadvantage of increasing the amount of code and inducing too many windows.
Therefore, although we have not yet seen what s#Z7cZ¢ssz.7tg really is, we will use this
secondmethod.ThecodepresentedinListing7.10andinsubsequentlistingsperforms
a subclassing of the frame immediately after the creation of the main window.

®®

pfnwp = Wi.nsubclasswi.ndow(hwndFrame, Framewndproc) ;
Wi.nsendMsg(hwndFrame, WM_PASSPROC, MPFROMP(pfnwp), OL) ;

®,®

3&2 0S/2 2.1 Worlaplace shell progranming

In the listing you can now see the F7#777ew7tdproc(), the window procedure of the
application's frame window. This takes care of intercepting the notification codes
issued by the notebook to its owner, and also the WM_COMMAN D possibly generated by
the menu bar. If you have read the previous sentence carefully, and remember the
considerations drawn in Chapter 4 about ownership, you should now be able to see a
problem. What? The client produced by Wz.7tc7'e¢fesfdwz.7tdozu() does not use the frame
as its owner. It is therefore necessary to enforce this condition. The preceding code
fragment must thus be improved with a call to Wz.77Se£Ozt77ter():

®®®

Wi.nsetowner(hwndNotebook, hwndFrame) ;

®®®

Atthispointallthepiecesareinplace.ThewindowofclassWC_N0TE800Khasasits
ID the value of F I D_C L I E NT, and it is handled by the frame as far as basic operations
are concerned (resizing, painting, and so on). However, subclassing is not limited to
theframealone;itcanalsopertaintothenotebookitselfbyfollowingexactlythesame
scheme, and changing only the involved handles.

Now, 1et's get back to the detailed syntax needed for creating a notebook. Ih the
styleparameteroftheclientyoucanincludethedefinesintroducedbytheBKS_prefix:
These are all the styles that are specific to the class WC_NOTEBOOK (Table 7.28).

Table 7.28 The BKS_ Styles of the Class WC_NOTEBOOK

3D Ef f eat styles Vahae D escription

BKS BACKPAGESBR
BKS BACKPAGESBL
BKS_BACKPAGESTR
BKS BACKPAGESTL

OxOOOOOOO1

0xOOO00002

0xOOO00004

0xOOOOOOO8

Lower pages are visible to the right
Lower pages are visible to the left
Higher pages are visible to the right
Lower pages are visible to the left

Tab posidon styles Value Description

BKS_MAJORTABRIGHT 0xOOOOOO10 To the right

BKS_MAJORTABLEFT 0xOO000020 To the left
BKS_MAJORTABTOP 0xOO000040 Top border
BKS_MAJORTABBOTTOM 0xOOOOOO80 Bottom border

Tch Type styles Vahae Description

BKS_SQUARETABS
BKS ROUNDEDTABS
BKS POLYGONTABS

OxOOOOOOOO

0xOOOOO100

0xO0000200

Tab with sharp angles
Tab with rounded angles
Tab with polygonal angles

(continued)

The predef tned window classes 383

Table 7.28 (Co#ft.7It/ed)

Binding Typ e styles Vahae D escription

BKS SOLIDBIND 0xOOOOOOOO Solid

BKS SPIRALBIND 0xO0000400 Spiral

Inf ormation Line styles Vahae Description

BKS STATUSTEXTLEFT OxOOOOOOOO Left aligned text

BKS_STATUSTEXTRIGHT 0xOOOO1000 RIght aligned text
BKS STATUSTEXTCENTER 0x00002000 Centered text

Tab Teat styles Value Description

BKS TABTEXTLEFT 0xOOOOOOOO Left aligned text

BKS TABTEXTRIGHT 0x00004000 Right aligned text
BKS TABTEXTCENTER 0xOOOO8000 Centered text

By means of these styles, the programmer can define the perspective of the note-
book, the position of tabs, their shape, the kind of text alignment, the binding mode,
andthetextaligrmentintheinformationline.Thislastitemistheareausedtodisplay
a text string that summarizes for the user the purpose of the operations supported by
thenotebook.TheSe#£.7tgsobjectsofWPSdonotuseaninformationline;thatexplains
why it is no`t in Figure 7.23.

Filling a Notebook
Styleswillprovideonlypartoftheaesthetic,functional,andstructuralcharacteristics
ofanotebook,atleastcomparedtowhatyouareusedtoinwpsobjects.Whatremains
yet undefined is the insertion of text into the page tabs, the definition of the number
of pages,andmostimportant,fillinginthepageswithinformation.Let'sproceedwith
order. When a WC_N 0T E 8 0 0 K class window is created, the programmer can define the
position of the page tabs and their shape. Their size, contents, and tasks performed
willbespecifiedbysendingthemessagesBKM_SETDIMENSI0NsandBKM_SETTABTEXT

(Table 7.29).
A notebook has two kinds of page tabs: primary and secondary, pertaining to

primary and secondary arguments, respectively. The message B KM_S ETD I M ENS I 0NS
is used to set the size of both kinds of page tabs, and of the paging arrows.

Table 7.29 The Messages of the Class WC_NOTEBOOK

Mess age Vahe D esoription

BKh4 CALCPAGERECT

BKM DELETEPAGE

BKh4 INSERTPAGE

BKM_INVALIDATETABS

BKM_QUERYPAGECOUNT

BKM TURNTOPAGE

BKM_QUERYPAGEID
BKM_QUERYPAGEDATA

BKM_QUERYPAGEWINDOWHWND

BKM_QUERYTABBITMAP

BKM_QUERYTABTEXT
BKM SETDIMENSIONS

BKM_SETPAGEDATA

BKh4 SETPAGEVVIND ol/VHl/\IN.D

BKM SETSTATUSLINETEXT

BKM SETTABBITMAP
BKM SETTABTEXT
BKh4 SETNOTEBOOKCOLORS

BKM_QUERYPAGESTYLE

BKM_QUERYSTATUSLINETEXT

Ox0353 Computes the size of a note-
book page.

Ox0354 Removes one or more pages
from the notebook.

Ox0355 Inserts a page into the note-
book.

Ox0356 Enforces the repainting of the
contents of a notebook.

Ox0358 Retumsthenumberofpagesin
the notebook.

Ox0357 Brings to foreground the page
indicated by p¢geJD.

Ox0359 Returns thep¢geJD.
Ox035a Returns information inserted in

the 4 reserved bytes of each
Page.

Ox035b Returns the handle of the win-
dow associated with a page.

Ox035c Returns the bitmap of a page
tab.

Ox035d Retumsthetextof apage tab.
Ox035e Sets the size of page tabs and

paging arrows.
Ox035f hserts information defined by

the appfication in the 4 reserved
bytes available to each page.

Ox0360 Associates awindowto apage
in the notebook.

Ox0361 hserts text in the information
line.

Ox0362 hserts abitmap inapagetab.
Ox0363 hsertstextinapagetab.
Ox0364 Sets the colors of the various

pieces of a notebook.
Ox0365 Returns the attributes of the

page indicated with the mes-
sage BKM_INSERTPAGE.

Ox0366 Returns the text written in the
information line.

384

BKM_SETDIMENSI0NS

mpl

mp2

Ox035e

USHORT uswidth
USHORT usHeight
USHORT usType

Return value BOOL fsuccess

The predef inedwindow classes 385

Description
Width of the object
Height of the object
One of the following values:

BRA_MAJORTAB
BRA_ENORTAB
BRA_PAGEBUTTON

Result of the operation

Thesizesthatneedtobepackedintomp1arealwaysexpressedinpixels.Thesizing
ofapagetabcantakeplaceimmediatelyafterthecreationofawindowbelongingto
the WC_NOTEBOOK class; the addition of text requires that you first define the page
handlingstrategy.hfact,atleastasfarastheprimarypagetabsareconcemed,there
is a strong correlation with the page strategy.

Inserting a Page
Despitethethree-dimensionallookofanotebook,itstrue``depth"comesfromthe
nunberofpagesitactuallycontains,notbythenunberofpagesdrawnonthescreen.
heertingapagerequire§,inthefirstplace,thatyouidentifythecorrectpositionTd
assignitanappropriateID.Themessage8KM_INSERTPAGEperformsauthefouowing
operations:

BKM_INSERTPAGE 0x0355

mp 1 ULONG ulfagelD
mp2 USHORT uspagestyle

Description
ID of the page to be inserted
Oneormoreofthefouowingvalues:

BKA_AUTOPAGESIZE
BRA_STATUSTEXTON
BRA_MAJOR
BRA_MINOR

USHORT uspageorder OnBe#_¥erif:=owing values:

BRA_LAST
BRA_NEXT
BRA_PREV

Retrrm value ULONG ulpagelD ID of the inserted page or NUEL in
case of failure

ThepagesinanotebookareidentifiedbyanID,justliketheitemsinalistbox.This
valueiseitherassignedbytheprogrammerthroughmp1oritisretlmedinresponse
to a BKM_INSERTPAGE message. This second solution is more convenient, since it
delegates this task to the notebook itself. h general, mpl is set to NU LL. h the first
USHORT of mp2 you have to specify one or more attributes for defining the c+arac-
teristicsofthepages.Itisatthispointthattheprogrammercandecideonaprmary

386 0S/2 2.1 Wor:laplaceshed programming

page tab (a KA_MAJ 0 R) or a secondary page tab (a KA_M I N0 R) and the information line
(BKA_STATUSTEXTON). The flag BKA_AUTOPAGESIZE is almost always set because it
makes it a lot easier to handle the page's output as it ensures that the notebook itself
willredrawthepageasaresultofresizingthewindow.Ifisisnotset,theapplication
insteadreceivesthenotificationcode8KN_NEWPAGESIZEandtellstheownerthatitwill
take care of redrawing the page.

h the second USH0 RT of mp2 there is a flag used to indicate the position of the new
page. The two defines BKA_FI RST and BKA_LAST are most often used, because they
will always insert a new page as the first or last one in the stack of pages. Resorting
toBKA_PREvandBKA_NEXTispossibleifyouhaveindicatedap¢geJDinmpl.hgeneral,
especially during initialization of a notebook, a common strategy is inserting a page
at a time, starting with the first one, and then using BKA_LAST. For any following
dynamic insertions, once the p¢geJDs are already known, you may have to force an
insertion at a specific point on the Z axis.

Notethattheactionperformedby8KM_INSERTPAGEislimitedtoinsertingapage,
thenretumingtotheapplicationwithanessentialitem,thatis,thez7ngeJD.Cinceyou
havethep¢gezD,itispossibletodefinethetextinthepagetabs(primaryorsecondary)
previously defined (B KM_S ETTABTEXT), or insert some text in the information line if
present (BKM_SETSTATUS LI NETEXT), and finany associate the notebook page with a
window(BKM_sETPAGEwlNDOwHWND).

BKM_SETTABTEXT 0X0363 Descr£.pf£.offi t

mpl ULONG ulpagelD ID of the page fitted with a page tab
mp2 PSZ pszstring Text to insert into the page tab
Return value BOOL fsuccess Success or failure of the operation

As an altemative to text strings, a page tab can become even more intuitive if you
resorttoanimageandinsertitwith8KM_SETTA88ITMAPasshowninlisting7.10.Now,
there is not much left to do, other than filling the page with windows that will allow
theusertoperformthedesignatedoperations.Almostalways,thesewindowswillbe
a collection of controls, as you might have inferred by looking into any Seffz.7tgs
notebook of WPS objects. As you will see in the next chapter, an ideal solution is
implementing a dialog window and associating it with a notebook page. Basically, a
dialog is a container of controls. It is sufficient to specify the handle of the dialog in
mp2 in the message BKM_SETPAGEWINDOWHWND in order to get the results you want,
while in mp 1 you must always indicate the p¢geJD.

BKM_SETPAGEWINDOWHWND 0x0360

mp 1 ULONG ulpagelD

mp2

Return Value

-hwnd
BOOL fsuccess

Description
ID of a page equipped with a
page tab
Han.dle of the window to be
associated with the page
Success or failure of the opera-
tion

Table 7.30 The Notification Codes

Notif tcadion Co de

BEN_PAGESELECTED
BEN_NEWPAGESIZE
BEN_HELP
BEN_PAGEDELETED

The predef tned window classes 38;7

of the Class WC_NOTEBOOK

Vahae D es cription

130
131
132
133

Apagehasbeenselected.
Thepagehasbeenresized.
Helphasbeenrequestedinanotebook.
Apagehasbeendeleted.

Anykindofwindowwiuworkcorrectlyinanotebookpage,includingwindows
belongingtopredefinedclasses,andwindowsregisteredbytheapplication.insome
cases, in place of a dialog, you win have the handle of a window that has been
registeredbythecodetogetherwithseveralchildwindows.hfact,albeittheSeffz.7tgs
ofWPSestabhshavalidreferencemodelfornotebooks,youarenotobligedtostick
tousingthisclassofwindowsinthesystemshell.Foriustance,thecombinationofa
notebook bound along the upper edge with a z7¢Z%esef is an excellent couple for
designing calendars or planners.

ALssoctating Imf oriiliiidon with a P age
Thesimilaritiesbetweenpagesinnotebooksanditemsinlistboxesalsoextendtothe
4extrabytesperpageavailabletothedesigner.Toaccessthisareayouneedtoissue
the messages BKM_SETPAGEDATA and BKM_QUERYPAGEDATA. Almost invariably, the
contentswiubethehandleofsomewindowtowhichthenotebookpagerefers.

Notif tcation Co des
ThesyntaxoftheWC_NOTEBOOKiscompletedwiththenotificationcodeslistedin
Table 7.30.

A First Try

i] h ListingIll LJJLu+J\-\O . `-`, I _ ---__ _

atusingnotebooks.Thewindowisweuequipped(Figure7.24),althoughithasno
contentsinanypages(inChapter13youwillfindthefu]1example).

inNOTEBOOKthecodeperformss%bcz¢ss£.ng,notoftheframe,butofthenotebook
jfsez/,becauseatthecurrentstagethereisasmaupugintheAPI.hfact,closingthe
window by a double-click on the titlebar menu Icon, will not cause the complete
destruction of the frame, as it win leave au the application windows on the screen.
ThereforeitisnecessarytointercepttheWM_CLOSEmessageandhandleitappropri-
ately to bypass this problem.

7.10youcanseethesourcecodeoftheNOTEBOOKapplication,afirsttry-,_- --JI\ 1,1_ ___J_ Ill .--- ^

388 0S/2 2.1 Worlaplace shed progranming

Figure 7.24 The NOTEBOOK application is equipped with all structural
elements available to this kind of window, but it is missing any kind of
window associated with its pages.

The Class WC_CONTAINER
One of the most interesting aspects of the interface of OS/2 2.1 is folders. These
top-level windows belong to the class WC_FRAME and have as client area a repre-
sentative of the class WC_CONTAINER (this information was gathered through
SNOOPER). Hereafter, the terms container and folders are used interchangeably
andbothidentifyawindowoftheclasswc_CONTAINER.Knowingwhatwpsfolders
cando,itisevidentthatthisclassmustbeinterestingandpowerful.Surprisingly,
this complexity does not cause any particular difficulty in creating and using a
container. The only inconvenience is in the sheer volume of data that needs to be
handledbeforeaWC_C0NTAINERclasswindowbecomesoperative.Examiningthe
API of this class you will see that it is a new breed of window; only a few styles, a
limited number of messages, great significance of notification codes, and, above
all, lots of data structures.

The Styles of the Class WC_CONTAINER
The first three styles of the class WC_C0 NTA I N E R (Table 7.31) define the selection rules
withinawindowofthisclass.ThebestsolutionistosettheCCS_EXTENDSELstyle,in

The predef tned window classes 3&9

Table 7.31 The Styles of the Class WC_CONTAINER

Style Value D escrip!:I:::

CCS_EXTENDSEL 0X0°°°°°°LL £:|o:eYizi°:nte°o:;:ec:taya±t£±:.e mouse

CCS_MULTIPLESEL 0xOOO00002L AIlows you to select more than one object
at a the.

CCS_SINGLESEL 0xOOO00004L

CC S_AUTOPOSITION 0xO 0 0 0 0 0 0 8L

CCS_VERIFYPOINTERS 0xOOOOOO10L

CCS_READONLY 0xOO000020L

CCS_MINIRECORDCORE 0xOO000040L

Allows you to select only one object at
a time.
Contained objects are positioned auto-
matically in icon view.
Verifies that the pointers used in
handling a container actually belong to
the linked list maintained by the
system.
Prevents the user from changing any
piece of text in the container.
Data regarding the container record are
alwaysofthetypeMINRECORDCORE.

ordertoenableselectionofmultipleobjectsatthesametime,simplybydraggingthe
mouse over them (if they are adjacent), or interacting with the keyboard (if they are
distributed in diverse positions). Almost always it will be convenient to set the
CCS_AUTOPOSITI0N style, so as to delegate to the container the placement of its
contents.

ThestyleCCS_READ0NLYwiupreventtheuserfromchangingthetextstrings,butit
willnotaffectanyotherfunctionalityofthewindow.Thelasttwostyles,CCS_VERI-
FYP0INTERsandccs_MINIRECORDCORE,concemmostlytheintemalhandlingofthe
objects present in the container.

The Logic of the WC_CONTAIN.ER Class
IfyoutakealookatFigure7.25youcanseethatOS/2Sysfe7#appearsinthreedistinct
modes:€.co7tz)z.ego,f7`eez7z.ezt7,anddef¢z.ZzJz.eztiThesearethreeofthefiveoperatingmodes
of a W C_C0 NTA I N E R class window.

WPS win support only these three out of five display modes of the contents of a
container. Table 7.32 presents the complete list.

WPSsupportsallfivedisplaymodeslistedinTable7.32.Thetwothatdonotappear
in the second level menu introduced by Open (N¢77te z7£.e" and Te#£ z7z.ezt7) are easy to
implement by eliminating the icons or selecting the radiobutton FZozued in each
notebook Settings.

Asitsnamesuggests,thepurposeofacontaineristhatofcontainingobjects.These
can be text strings, icons with text labels, and/or bitmaps. Due to its complexity, all

390 0S/2 2.1 Workplace shdl progranming

Figure 7.25 The three display modes of a container, according to WPS.

informationcarmotbeinserteddirectlyinacontaineratcreationtime,aswasthecase,
forinstance,oftextstringsinalistbox.Thesheervolumeofdataismuchgreater,and
the data itself is much more complex. Therefore, an important consideration for this
class is that you will need to prepare data in the application before passing it to a
container. Furthermore, due to the high degree of versatility of the WC_CONTAI N ER,
mostfeaturesarenotexpressedundertheformofstyles,aswehaveseeninTable7.32,
but almost invariably use specific data structures and messages (Table 7.33).

Table 7.32 The Five Output Modes of a Container

Mo de D esoription

Icon view Displays icons and/or bitmaps with a text label underneath.
Name view Displays icons and/or bitmaps with a text label to their right.
Text view Displays text strings only.
Tree view Presents a tree view of the contents of a container. Three variations

are allowed: tree text, tree name, and tree icon.
Details view For each item contained, several pieces of information will be

displayed in different columns headed by a text label or an image.

Table 7.33 The Messages of the Class WC_CONTAINER

Mes s age Vahae D es cription

CM_ALLOCDETAILFIELDINFO

CM_ALLOCRECORD

CM_ARRANGE

CM_ERASERECORD

CM_FILTER

CM_FREEDETAILFIELDINFO

CM_FREERECORD

Ox0330 Allocates memory for one or more
FIELDINFO structures.

Ox0331 Allocates memory for one or more
RECORDCORE structures.

Ox0332 Rearranges the objects in a container
when in icon view.

Ox0333 Erases a record due to a 77toz7e opera-
tion.

Ox0334 Filters the contents of a container so as
todisplayonlyaspecificportionofit.

Ox0335 Frees the memory associated with
one or more FIELDINFO structures.

Ox0336 Frees the memory associated with
one or more RECORDCORE or
MINIRECORDCORE structures.

CM_HORZSCROLLSPLITWINDOW 0X0337 :::i:r±nmesr ainh°E:°BteatL£Cr:ijfg °i:

furnished with a spZ£.i zt73.7tdozo.

CM_INSERTDETAILFIELDINFO 0X0338 Ftrs:::re°sni tire c::::in==LDINF°

CM_INSERTRECORD 0X0339 #:::roe:ein°:h:::en£Fince:RDC°RE

CM_INVALIDATEDETAILFIELDINFO 0x033a Forces the container to perform a
refresh of its contents.

CM_INVALIDATERECORD

CM_PAINTBACKGROUND
CM_QUERYCNRREO

CM_QUERYDETAILFIELDINFO

CM_QUERYDRAGIMAGE

CM_QUERYRECORD

CM_QUERYRECORDEMPHASIS

CM_QUERYRECORDFROMRECT

CM_QUERYRECORDRECT

CM_QUERYVIEWPORTRECT

Ox033b Forces the container to perform a
refresh of its contents.

Ox033c Colors the container's background.
Ox033d Returns a pointer to a CNRINFO

structure.
Ox033e Returns a pointer to the required

FHLDINFO structure.
`Ox033f Returns ahandletotheiconortothe

bitmap of the object being dragged.
Ox0340 Returns a pointer to the required

RECORDCORE structure.
Ox0341 Returns the record that presents a

specific emphasis attribute.
Ox0342 Returns the record that is enclosed

by the indicated rectangle.
Ox0343 Returns the rectangle of the indi-

cated record.
Ox0344 Returns the rectangle containing the

container's output area.
(confirmed)

391

992. OS/2 2.1 Wor:1aplace shed programming

Table 7.33 (Co7ifi.##ed)

Mess age V ahae D es cription

CM_REMOVEDETAILFIELDINFO

CM_REMOVERECORD

CM_SCROLLWINDOW

CM_SEARCHSTRING

cM_sETCNFuno

CM_SETRECORDEMPRASIS
CM_SORTRECORD
CM_OPENEDIT

CM_CLOSEEDIT

CM_COLLAPSETREE
CM_EXPANDTREE
CM_QUERYRECORDINFO

Ox0345 Removes one or more FIELDINFO
structures from the container.

Ox0346 Removes one or more RECORD-
CORE structures from the container.

Ox0347 Performs a scrolling of the whole
container window.

Ox0348 Returns a pointer to the RECORD-
CORE structure containing the indi-
cated search string.

Ox0349 Changes or sets the container infor-
mation.

Ox034a Setsthe emphasis attributes ofarecord.
Ox034b Sorts the contents of a container.
Ox034c Opens the 77tJe used for editing the

title of an object in the container.
Ox034d Closes the 77cJe used for editing the

title of an object in the container.
Ox034e Collapses the tree structure.
Ox034f Expands the tree structure.
Ox0350 Usedtoupdatetherecords of objects

contained in several containers of the
same process.

Creathg a Container
The expression cre¢fz.77g ¢ cp7tf¢z.77er does not only mean calling Wz.7tc7`e¢£ewz.77dozo(); it
also includes all the initiafization operations that are necessary. You can proceed in
the following way for a container in z.co7t z7z.ego:

•A11ocatethememoryareanecessaryfordescribingallitemstobeinsertedintothe
containerbysendingthemessagecM_ALLOCRECORD.

• Fill in a number of RECORDCORE structures equal to the number of items to be
inserted into the container.

• Fill in a REC0 RD I NS E RT structure.

•PassallinformationpertainingtotheREC0RDC0REstructurestotheREC0RDINSERT

structuresbysendingthemessageCM_INSERTREC0RD.
• Customize the look of the container by acting appropriately on the members of

theCNRINF0structure,andthensendthemessageCM_SETCNRINFO.

The predef tned window classes 993

The fist of operations just described is not valid in absolute terms, and should not
beinterpretedstrictly.Forinstance,ifthecontainerwascreatedwiththeCCS_MINIRE-
CORDCORE flag, you nright want to use a MINIRECORDCORE structure in place of a
RECORDCOREstructure.ThebesttechniqueistofillinallpiecesofdataLinaRECORDCORE
structure, then those of the REC0 RD I NS E RT structure, and lastly, sending the CM_I N -
SERTRECORDmessage.However,nothingpreventsyoufromcombihingaRECORDCORE
andaREC0RDINSERTandthenusingtheCM_INSERTREC0RD.Ifthecontaineroperates
in dcfflz7s zJz.ezt7, then the structures that have to be used are F I E LD I N F0 and F I E LD I N -
F0INSERT.Naturally,wewillnotdescribeaupossiblevariationshere.Whatisimpor-
tanttounderstandisthebasicsequenceofoperationsthatneedtobeperformed.The
descriptions in the next few paragraphs refer to a container in z.co7t I)z.ego mode.

The Objects of a Coutatner
Apart from their look (icon, bitmap, text, or any combination), each item is inserted
in a container like a record. As these are composite data structures, each record
corresponds to a memory area handled by the container itself, although initially it
mustbesetupbytheapplication.SendingthemessageCM_ALL0CREC0RDwfllanocate
a memory area large enough to describe all objects (records) that need to be catered
for initially.

CM_A L LOG RECO RD 0x0331 Descrt.pft.o#

mpl ULONG cbRecordData ::ctrhas£¥i:Sretc°orbde an°Cated for

mp2 USHORT nRecord #unrferc°o£REcCo°H;:tr°u¥tur(e°sr

Return value PRECORDCORE prec Address of an array of RECORD-
CORE (or MINIRECORDCORE)
structures

h mp2 you must indicate the number of items that you want to insert into the
container. This is ordy the initial quantity, which you can later change while you are
using the window. The RECORDCORE structure is 56 bytes large. The class WC_CON-
TA I N ER will allocate a memory area large enough to contain the overall sum of the
required RECORDCORE structures, and will then sub-allocate fixed-sized blocks. h
additiontothese56bytes,memoryallocationwillalsoaccountforthebytesrequested
by the programmer in mpl. Figure 7.26 depicts the memory area allocated by the
WC_CONTAINERclassinresponsetothemessagecM_ALLOCRECORD.

The value in mp 1 corresponds to the additional memory area for each single item.
Its position comes in memory immediately after the last member of the REC0 RDC0 RE
structure. The RECORDCORE blocks, though, are not adjacent to one another, with or
withouttheadditionalbytes.hfact,aREC0RDC0REstructurecontainsaPREC0RDC0RE
type member pointing to the address of the next REC0 RDC0 RE structure in the list. So,
what we actually have here is a single-linked list originally handled by the WC_C0 N -
TA I N E R class.

994 0S/2 2.1 Workplace shell progranming

Figure 7.26 Scheme of memory allocation for handling the RECORDCORE
stmctures.

Itisvitaltoanocateextraspaceforeachitem.AssoonasyoubecomefamiHarwith
this class, you will appreciate this advice. Managing the contents of a container is
distributed partially to the window itself and the application. This is why it is
worthwhile to define a customized data structure that contains as its first member a
RECORDCORE,, followed by application specific values. h Listing 7.11 we define a
structure called APPREC; any other name would do as weu. The only caution to be
aware of is that of placing the RECORDCORE structure as the first member of the
customized structure :

typedef struct APPREC
I

RECORDCORE rec ;

PRECORDCORE precparent ;

LONG IType ;

HWND hpopup ;

) APPREC ;

typedef APPREC * PAPPREC ;

The predef tned window classes 995

hthisspecificcase,theadditionalinformationconsistsoftheaddressofaREC0RD-
CO RE structure, a L0 NG encoding the type of object contained, and a window handle.
TheWPSinterfacehasaccustomedustoconsiderthecontentsofcontainersasobjects,
applications, data ffles, or even physical devices. in many cases an icon represents
someelementofthefilesystem.However,nothingpreventsacontainerfromholding
abstractobjects,representingapplicationspecificinformation.So,youmightthinkof
icons representing various methods for per'forming statistical analysis, file conver-
sions, or just about anything else. Notwithstanding their specific nature they are
RECORDCORE data from the WC_CONTAI N ER perspective. Furthermore, an application
mustbeabletomanageandsupportalloperationsperformedbytheuser.Associating
standard record information with application-specific data tied directly to the object
is the best way of writing this kind of code.

Often it is useful to declare a pointer to the customized structure (PAPP REC), and
another to the standard structure (PRECORDCORE): this will usually make the code
simpler to write and understand:

PRECORDCORE prec ;

PAPPREC papprec ;

®®

prec = Wi.nsendMsg(hwndcnr, CM_ALLOCRECORD,

MPFROMLONG(si.zeof(APPREC) -si.zeof(RECORDCORE)),

MPFROMSHORT(NUM0BJECTS)) ;

papprec = (PAPPREC) prec ;
®®®

Once you have the starting address of the block, you only need to fill in the
appropriate members of the RECO RDCO RE structure, as described in Table 7.34:

typedef struct _RECORDCORE

L I/ r.ecc
ULONG cb ;

ULONG flRecordAttr ;

P0INTL ptllcon ;
struct _RECORDCORE *preccNextRecord ;
PSZ pszlcon ;
HP0INTER hptrlcon ;

HP0INTER hptrMi.ni.Icon ;

HBITMAP hbmBi.tmap ;

HBITMAP hbmMi.ni.Bi.tmap ;

PTREEITEMDESC pTreeltemDesc ;

PSZ pszText
PSZ pszName

PSZ pszTree

} RECORDCORE ;

typedef RECOR`DCORE *PRECORDCORE

396 0S/2 2.1 Workplace shell programming

Table 7.34 Data Members of the Structure RECORDCORE

Memb er D e s cription

cb
flRecordAttr

ptllcon

preccNextRecord
pszlcon
hptrlcon
hptrMinilcon

hbmBitmap

hbinMiniBitmap

pTreeltemDesc

pszText
pszName
pszTree

Size of the structure.
Container attributes; the possible options are:

CRA SELECTED
CRA TARGET
CRA CURSORED
CRA_INUSE
CRA FILTERED
CRA DROPONABLE
CRA_RECORDREADONLY
CRA EXPANIED
CRA COLLAPSED
CRA_SOURCE

OxOOOOOoolL

OxOOO00002L

0xOOO00004L

0xOOOOOOO8L

0xOOOOOO10L

0xOO000020L
0xOO000040L
OxOOOOOO80L

0xOOOOO100L

0x00004000L
Position of the icon representing a record in a container in z.co7t
zJz.ego mode.

Address of the next RECORDCORE structure.
Text in the z.co7t I)z.ego mode.
Handle of the icon to be displayed in the container.
Handle of a reduced-sized icon to be displayed in de£¢z7s z7z.ezu
mode or with shrunk icons.
Handle of the bitmap to be displayed for representing an object
(an altemative to the handle of the icon).
Handle of a reduced-sized bitmap to be displayed in de£¢z7s I)z.ego
mode or with shrunk objects.
Address of a TREEITEMDESC structure contairing the bitmaps
to be displayed to represent the tree structure in free z7z.czo mode.
Text for the fexf z7z.ezu (CV_TEXT) mode.
Text for the 7t¢77te zJz.czo (CV_NAME) mode.
Text for the free z7z.ego (CV_TREE) mode.

Of all members in the RECORDC0 RE structure, two are truly important for the !.co7t
t7z.ego mode: the handle to the icon (hptr I con) and the text string (psz I con). For all
other members it is possible not to specify any value, because the memory area is
initialized to zero due to an intemal call to DosAZZocMe77c().

YoumustbeparticularlycarefulwithtextstringsintheREC0RDC0REstructure.The
classwc_CONTAINERdoesnotprovideanywaytostorestringspermanentlyandsafely.
Thistaskisdelegatedtotheappfication.hfact,allmembersofaRECORDCOREstructure
that in some way deal with a string simply require the address of some memory
location.Theprogrammerisresponsibleforallocatingamemoryareathatisaccessible

The predof ined window classes 997

to the class and that always contains text strings appropriate for each single item. h
the case of the FOLDER example, this problem has been solved simply by resorting
to the resource ffle and to string constantly stored at the same position. A better
approach would be to take advantage of the extra space allocated through CM_AL-
LOCRECORD, and store there all strings of each object. h Chapter 13 you will find an
example that implements such a solution.

Tostoreapplication-specificinformation,youusethePAPPRECpointer.Thefil]ing
of the REC0 RDC0 RE structure is repeated for each item to be inserted by updating the
pointer in this way:

prec = prec -> preccNextRecord ;

Before the actual insertion of the object in the container, you must prepare a
RECORDINSERTstructure(describedinTable7.35).

typedef struct _RECORDINSERT

I // recl.ns
ULONG cb ;

PRECORDCORE pRecordorder ;

PRECORDCORE pRecordparent ;

ULONG flnvali.dateRecord ;
ULONG zorder ;

ULONG cRecordslnsert ;

} RECORDINSERT ;

typedef RECORDINSERT *PRECORDINSERT ;

Table 7.35 Members of the RECORDINSERT Stmcture

Memb er D escription

cb Size of the structure.
pRecordorder :eeTde; Fraes:;I:o:h:r::=toafinn:rT#:o::ifthc#_efiso±h:s:

CMA_END will position them, respectively, at the start or at the
endoftheexistinglist.TheaddressofaRECORDCOREstructure
is used as the precise indication of where the insertion is to take
place in the list.

PRecordparent]i#:::ydi¥ai:sei°::%ednetrr±:csoertdt:fcth#e-=:=ecr#-END'
flnvalidateRecord hdicates if the new records are to be displayed immediately (TRUE)

orlaterwhentherewi]lbeaspecificrequestforrepainting.
zorder hdicates the position of new records according to the Z-order.

CMA_TOPandCMA_BOITOMaretheonlytwooptiousavaflable.
cRecordhsert Number of RECORDCORE (or NINIRECORDCORE) structures

to be inserted.

398 0S/2 2.1Workylace shed programming

You have to be especially careful with the members pRecordorder and pRe-
cordpa rent. At the present stage we are only describing the insertion phase of
some objects in a container. The assumption is that the container is empty, because
it has just been created. There is much interaction between the user and a window
of the WC_CONTAI N ER class. Therefore it is reasonable to assume that the number
of records contained in a container can vary. Imagine the addition of a new object
as a.result of a drag a drop operation. In this case you need to repeat each of the
operationsdescribedabove(memoryallocation,andfillingintheRECORDCOREand
REC0RDINSERTstructures).Ifthenewobjectisinserteddirectlyintothecontainer,
there is a good chance that it will become aL ``first-level" entity, that is unbound
from all others. The members pRecordorder and pRecordparent are thus as-
signed the following values:

®®

reci.ns.pRecordorder = (PRECORDCORE)CMA_FIRST ;

reci.ns.pRecordparent = NULL ;

®,®

If, instead, the addition of an object happens together with the rele`ase of another
object (provided the two objects are compatible), then insertion has to follow another
scheme. h order to respect the hierarchical structure (the structure that is shown in
the free zJz.czu mode), it is necessary that pRecordparent contain the address of the
parent (the object under the mouse when the insertion is the result of a dng a drop),
andpRecord0rdercontainsthedefineCMA_END:

®®,

reci.ns.pRecordorder = (PRECORDCORE)CMA_END ;

reci.ns.pRecordparent = precparent ;

®®®

Once all these operations are completed, there is nothing else to do other than
physically inserting the new records into the container. Chapter 12 will describe this
technique in great detail. This task is delegated to CM_I N S E RT REC0 RD.

CM_INSERTRECORD 0x0339

mp 1 PRECORD CORE
pRecord

mp 2 PRE C ORDINSERT
pRecordhsert

Return value ULONG CRecords

Description
Address of a RECORDCORE (or
NINIRECORDCORE) structure

Address of a RECORDINSERT struc-
ture
Number of structures present in the
container or 0 in case of error

Table 7.36 lists the attributes of the message CM_INSERTRECORD.

The predef rued window classes &99

Table 7.36 The Attributes of the Message CM_INSERTRECORD

CM_INSERTRECORD AItribute Vahae

CMA_TOP
CIA_BOTTOM
CIA_LEFT
CMA_RIGHT
CMA_FIRST
CIA_LAST
CMA_END
CMA_PREV
CMA_NEXT
CMA_HORIZONTAL
CIA_VIRTICAL
CMA_ICON
CIA_TEXT
CMA_PARTIAL
CMA_COMPLETE

This is not the whole picture, though! The last step in inserting new data is using
the C N RI N F0 to define some operative and functional aspects of the container.

typedef struct _CNRINFO
I // ccl.nfo

ULONG cb ;

PV0ID psortRecord ;
PFIELDINF0 pFi.eldlnfoLast ;
PFIELDINF0 pFi.eldlnfoobject ;
PSZ pszcnrTi.tle ;
ULONG flwi.ndowAttr ;
P0INTL ptlori.gi.n ;
ULONG cDelta ;
ULONG cRecords ;
SIZEL slBi.tmaporlcon :
SIZEL slTreeBi.tmaporlcon ;
HBITMAP hbmExpanded ;
HBITMAP hbmcollapsed ;
HP0INTER liptrExpanded ;
HP0INTER hptrcollapsed ;
LONG cyLi.nespaci.ng ;
LONG cxTreelndent ;
LONG cxTreeLi.ne ;
ULONG cFi.elds ;
LONG xvertsplitbar ;

) CNRINFO ;

typedef CNRINFO *PCNRINFO ;

goo OS/2 2.1 Wor:laplace shell progranming

The 19 members of the CNRI NF0 structure fulfill various needs pertaining to the
numerous operating modes of WC_CONTAI NER class windows. Most of the tine you
will specify only some of the values, and ignore the rest. This isJ what happens, for
instance,attheendofthepreparatoryphaseofthedatatobeinsertedintoacontainer.
hthesamplelistedinListing7.llonlyatitleisprovidedforthewindow.Themember
ps zcn rTi. tl e contains the text string to be displayed as the window's title (actually
the presence of a title implies the creation of a window belonging to the nondocu-
mented class #5 2).

A member of CN R I N F0 that plays a fundamental role is f l Wi. n dowAtt r: It contains
the attributes of a container. These are one or more values introduced by the prefix
CA_ (Table 7.37). Returning to the example of the title, it will be necessary to set the
attribute CA_CONTAINERTITLE together with CA_TITLELEFT, CA_TITLECENTER, or
CA_TI T LERI GHT to define the alignment. Customization of a container's title is com-
pletedbytheattributeCA_TITLESEPARAT0Rthatwilldrawahorizontalseparatorline
between the title area and the actual window area.

®®,

cci.nfo.cb = si.zeof(CNRINFO) ;
cci.nfo.pszcnrTi.tle = "Contai.ner ti.tle"
ccinfo.flwi.ndowAttr = CA_CONTAINERTITLE

CA_TITLESEPARATOR
®®®

CA_TITLECENTER

Table 7.37 The Attributes of the Class WC_CONTAINER

Attribute Value D e s cription

CA_CONTAINERTITLE
CA_TITLESEPARATOR

CA TITLELEFT
CA_TITLERIGHT
CA_TITLECENTER
CA_OWNERDRAW
CA_DETAILSVIEWTITLES
CA_ORDEREDTARGETEMPH
CA_DRAWBITMAP
CA_DRAVICON
CA_TITLEREADONLY

CA_OWNERPAINTBACKGROUND

CA_MIXEDTARGETEMPH
CA TREELRE

OxO0000200L
0xO0000400L

0xOOOOO800L

0xOOOO1000L
Ox00002000L
0x00004000L
0xOOOO8000L

0xOOO10000L
Ox00020000L
0x00040000L
0D(00080000L

0xOO100000L

0x00200000L
0x00400000L

A title is added to the container.
A horizontal separator line will
be drawn beneath the titlebar.
The title is left-aligned.
The title is right-aligned.
The title is centered.
The container is owner-drawn.

The container displays bitmaps.
The container displays icons.
Prevents the user from changing
the cont-ainer's title.
Lettheapplicationpaintthecon-
tainer background.

Draws a line between records in
tree view.

The predef tned window classes 401

Table 7.38 The Display Modes of a Container

Mo de Value D escription

CV_TEXT
CV_NJRE
CV_ICON
CV_DETAI
CV_FLOW
CV_MINI
CV_TREE

OxOOOOOoolL

0xOOO00002L
0xOOO00004L
0xOOOOOOO8L

0xOOOOOO10L

0xOO000020L
0xOO000040L

Text view
Name view
Icon view
Details view
Flow view
rm-icon view
Tree view

h this way the container class will examine only the member pszcnrTi. tl e, as
indicatedbythesetofattributeinflWindowAttrsummarizedinTable7.37.

There is yet one more aspect to consider, regarding the display mode of the
container.Authepreparatoryoperationsperformeduptothispointassumedthatwe
dealt with £.co# z7{.ego mode, even if this was never stated explicitly. The member
flWi.ndowAttrwiudefinethisaspect.hadditiontotheattributesintroducedbythe
prefixCA.therearealsoothersintroducedbytheprefixCV.1istedinTable7.38.

The selection is rich and full of details, and does not correspond one-to-one with
what is offered by WPS in the second level menu introduced by Open. We can now
add the define CV_I C0 N to the previous code fragment:

;;info.flwi.ndowAttr = CV_ICON I CA_CONTAINERTITLE I
CA_TITLECENTER I CA_TITLESEPARATOR ;

®

and then proceed with passing all information by issuing the message
CM_SETCNRINFO,containinginmp1theaddressoftheCNRINF0structure,andinmp2a,
setofCMA_flagsindicatingwhichmemberso£CNRINF0aretobeconsidered.

CM_SETCNRINF0 0x0349 Descri.pfi.o7S

:e3:in value H!#ulco:ep:1##1o i:ic::;:S#f:i:u?:¥h: ::elrca:.i
In our example, the whole becomes:

®,®

Wi.nsendMsg(hwndcnr, CM_SETCNRINFO,
MPFROMP(&cci.nfo),
MPFROMLONG(CMA_CNRTITLE I CMA_FLWINDOWATTR)) ;

®,®

Table 7.391ists all attributes of the message CM_S ETC N RI N FO.
Only at this point can we actually start seeing something inside a container, as

shown in Figure 7.27.

q02 0S/2 2.1 Worlcplace shell progranming

Table 7.39 The Attributes of the CM_SETCNRINF0 Message

CM_SETCNRINFO AItrtbutes Vahae Description

CIA_CNRTITLE
CIA DELTA
CMA_FLWINDOWATTR
CMA_LINESPACING

CMA_PFIELDINFOLAST

CMA_PSORTRECORD

CIA_PTLORIGIN

CMA_SLBITMAPORICON

CMA_XVERTSPLITBAR

CMA_PFIELDINFOOBTECT

CIA_TREEICON

CIA_TREEBITRAP

CMA_CXTREEINDENT

CMA_CXTREELINE

OxOool Container's title.
Ox0002 Defines space between adjacent records.
Ox0004 Attributes of the container window.
OxOOO8 Vertical line spacing, expressed in pixels, bet-

ween two adjacent records.
OxOO10 Indicates the presence of the address to the

window's left-most column in def¢z7s z7z.ew with
split windows.

Ox0020 hdicates the presence of a function for sorting
the contents of the container.

Ox0040 Origin of the lower left-hand comer in the
output space (zoorksp¢ce) of a container in z.co7t
z7z.ear mode.

OxOO80 Size in pixels of the icon or bitmap displayed
in the container.

OxO100 hitial position of the spzz.I bar with respect to
the left border.

Ox0200 hdicate the presence of the address to the
colunnthatidentifiestheob].ectindcf#z7sz)z.ez"

Ox0400 Icons displayed to represent an expanded or
collapsed node in the tree structure.

OxO800 Bitmap displayed to represent an expanded or
collapsed node in the tree structure.

Oxl000 Measurement in pixels of the indentation of
branches in the tree structure.

Ox2000 Widthinpixels of the line that links contiguous
branches in the tree structure.

CMA_SLTREEBITMAPORICON 0x4000 Size in pixels of the icon or bitmap displayed
in the container to represent the tree structure.

Figure 7.27 The look of the FOLDER application immediately after being
loaded.

The predef reed window classes q03

Figure 7.28 The FOLDER application has a window context menu that pro-
vides an Open menu item.

Diversions with Coutalners
Theabovetitlemightnotbethebestwaytodescribethepreliminaryandprepara-
tory operations for a container. The look Of the FOLDER application depicted in
Figure7.28isratherpoor,especiallyconsideringtheamountofworkdone.Inside
the container there appears only one object, despite the insertion of four objects:
one at root level and three as its children. These last items are invisible because of
the£.co7tzJ£.ezumodethatlimitsthepresentationonlytothoseobjectsthatarelacking
a p¢7'e7tf in the RECORDINSERT structure only (root-level objects). It would be
instructive to switch to the f7`ee uz.ezu mode to discover the flexibility and power of
containers. Just press the right mouse button over any empty position in the
container and the zo{.7tdozo co7tfexf 77?e7t" will appear (Figure 7.28).

Select Tree view, and the contents will quickly change its display (Figure 7.29).
Now you can see all objects: the parent RGB and the three color icons red, green,
and blue.

Switching to the new mode simply requires the issuing of the message
CM_S ETC N RI N F0 provided you have filled in appropriately some members of the
C N R I N F0 structure.

404 0S/2 2.1 Workplace shell progranming

Figure 7.29 The FOLDER application in the Tree view mode.

®®®

// query the contai.ner
Wi.nsendMsg(hwnd, CM_QUERYCNRINFO,

MPFROMP(&cnri.nfo),

MPFROMSHORT(si.zeof(CNRINFO))) ;

// set the Tree vi.ew
cnri.nfo.flwi.ndowAttr = CV_TREE I CV_ICON I CA_TREELINE I

CA_TITLESEPARATOR I CA_CONTAINERTITLE ;

Wi.nsendMsg(hwnd, CM_SETCNRINFO,

MPFROMP(&cnri.nfo),

MPFROMLONG(CMA_FLWINDOWATTR I CMA_CNRTITLE)) ;

®®®

The presence of the attributes CV_TREE and CV_ICON is justified by the possible
variations of the tree view mode. The retrieval of information through
CM_QU E RY C N R I N F0 makes the preparatory phase of the C N R I N F0 structure somewhat
simpler. Therefore, neither the zoz.77dozo co7tfcx£ 777e7t# nor the other display modes can
be activated automatically. It must always be the application's code that takes care of
the change.

The Window Context Menu
The zoz.77dozo co7tfex£ 77tc7t# of the container window was created according to the rules
describedinthepreviouschapter,inListing6.11.hthecaseofacontainer,thescenario
is slightly more compHcated because, in general, even the single items inside the
container win have menus of their own. This has been provided for even in the
FOLDER application, as you can see in Figure 7.30.

Pressing the right mouse button over an empty position in the window will cause
the application's zoz.77dozo co7tfexf 777e77# to be displayed. When the same action is
performed over an object in the container, the application has to display a different
menu. The ``activation" area of the objects varies according to the current display
mode. For instance, in tree view, the area will even cover the portion of the window

The predef tned window classes q05

Figure 7.30 Each object in FOLDER has a window contextmenu of its own.

that contains the lines linking objects, and is definitely larger than the icon itself
(CV-ICON).

Thepresenceofamenuforeachobjectiscompatiblewiththesameoperatingmodel
oftheequivalentmenuforthecontaineritself,evenifagooddealofitsimerworking
is based on information defined by the application and associated with objects by
means of the AP PREC structure. The most complicated component to implement is
sensing the mouse's cursor in the window. The notification code CN_CONTEXTMENU
contains in mp2 the address of a RECORDCORE structure whenever the right button
mouseclickhappensinsidetheareaoccupiedbyanobject.OtherwiseitcontainsNULL
if the event is over an empty portion of the container. It is this piece of information
that will let the code discriminate between the two possible altematives.

Relatedtothisproblemisanotherone:thatofemphasizingandthendisplayingthe
associated popup menu. The programmer can get to know about the rectangle
occupiedbyanobjectbysendingthemessageCM_QUERYREC0RDRECT,whichretums
information in a RECT L structure containing values expressed in the container's units.

Particularly interesting in this context is the logic followed for emphasizing. h
additiontothementionedCM_QUERYREC0RDRECTmessagethatallowsyoutoevaluate
the size of an object, the application will also resort to CM_QUERYVI EWPORTRECT to
evaluate the size of the container window. Different from what would happen with
Wz.7tQ#enyw.7zdozoRec£(),thiswfllautomaticallyexcludetheareatakenupbythetitle.
The rounded rectangle to emphasize the object possessing the popup menu is dis-
played by a call to Gpz.Box(), a call that is prepared by some other GPI operation that
will optimize the ensuing drawing and clearing phase.

®®®

hps = Wi.nGetps(CLIENT(hwnd)) ;

Gpi.SetMi.x(hps, FM_INVERT) ;

Gpi.Setcolor(hps, CLR_PALEGRAY) :

Gpi.Setcurrentposi.ti.on(hps, (PP0INTL)&rcEmph + 1) ;

hRound = vRound = 30L ;

Gpi.Box(hps, DRO_OUTLINE, (PP0INTL)&rcEmph, hRound, vRound) ;

®,®

406 0S/2 2.1 Workplace shell programming

The display of a menu will cause the window to lose focus completely. Apart from
anyactionthattheusermightperformwiththemouseorthekeyboard,thecontainer
willreceivethenotificationcodecN_SETFOCUS:Thisisthebestplaceinthecodewhere
you can clear the emphasis previously applied.

Protof eration of Obj ects
Selecting the option Crc¢fe ¢7ioffeer will cause the generation of another object of the
same type. This behavior is applicable to colored icons spawned at the end of a
``branch." The same action applied to a RGB object will instead produce a new item
atthe``root"level,followedbythethreeiconsatthelowerlevel.Proliferationofobjects
is an interesting thing to examine because it involves two important aspects for
managing containers:

• Dynamic memory allocation for the new records
• Handling of focus and emphasis

Here we will not implement the addition of new objects by means of dr¢g 8 drop,
because that subject will be covered in Chapter 13. The presence of new objects is
generatedintemallyaftertheselectionoftheCre¢£e¢77offeeroption.Thisactiontriggers
a sequence of operations similar to those described for the container's preparatory
phase. Each item will be inserted in a well-defined position in the chain of objects as
aconsequenceofthelinksbetweensingleRECORDCOREstructures.Thesestructuresare
tied together in a single-linked list by means of the preccnextRecord member. To
make the insertion between APPREC structures easier, the address of the parent
REC0 RDC0 RE structure of each branch is included (Figure 7.31).

Hence, the proliferation of objects is the direct consequence of a simple manual
action,andtheuseofthesamecodethatiusertsarecord.Itisimportanttodesignthis
portion of the program so as to minimize the impact due of possible user manipula-
tion,whichaffectsthedesign.Tothisend,thenotificationcodesoftheWC_CONTAINER
class play a vital role (Table 7.40).

Often, mp2 contains the address of a RECORDCORE (or MINI RECORDCORE) structure
corresponding to the record on which an action is being performed. For other notifi-
cation codes, mp2 is the address of a special data structure that will have among its
membersaRECORDCORE.Thisisthecase,forinstance,ofcN_ENTER;thestructurebeing

pointed at by mp2 is NOTI FYRECORDENTER:

typedef struct _NOTIFYRECORDENTER

{ // notrecen
HWND hwndcnr ;

ULONG fKey ;

PRECORDCORE pRecord ;

} NOTIFYRECORDENTER ;

typedef NOTIFYRECORDENTER *PNOTIFYRECORDENTER ;

The predef reed window classes qor

Figure7.31PopulationofFOLDERwithnewobjectsofthetypeRed,Green,
Blue, and RGB.

hthiscase,theaccessibledataare:thecontainer'shandle(whichism6stusefulfor
sendingyetothermessages),anindicatoroftheinputtoolused(keyboardormouse),
and the address of the RECORDCORE structure affected by the action. A double-click
with the mouse or depressing the Enter key is detected by the container's owner's
windowprocedureasthenotificationcodeCN_ENTER.Otherdatastructurescomplete
thesyntaxoftheWC_C0NTAINERclass,aslistedinTable7.41.

hTable7.42thereisasummaryoftheuseoftheCMA_attributes;heretheattributes
are grouped according to the messages to which they refer.

Other Actions on Coutalners

El

OneofthekeyfeaturesofWPSisthepossibilityofdirectmanipulationofobjects,and
here containers play a crucial part. As you can gather from the table of notification
codes,acontainerwillpasstoitsownerinformationpertainingtotheinteractionsthat
take place between the user and the objects it contains. We will better deal with this
aspect of using containers in Chapter 12, after learning about the general rules
governing drag & drop. The sample code of FOLDER appears in Listing 7.11.

Table 7.40 The Notification Codes of the Class WC_CONTAINER

Notification code Vahe Description

CN_DRAGAFTER

CN_DRAGLEAVE

CN_DRAGOVER

CN_DROP
CN_DROPRELP

CN_ENTER

CN_INITDRAG

CN_EMPHASIS

CN_KILLFOCUS
CN_SCROLL
CN_QUERYDELTA

CN SETFOCUS
CN_REALLOCPSZ

CN_BEGINEDIT

CN_ENDEDIT

CN_COLLAPSETREE

CN_EXPANDTREE

CN HELP
CN_CONTEXTMENU

101 Sent to the owner after the receipt of a
DM_DRAGOVER in the container with CA -
OREREDTARGETEMPHASIS or CA MIXED-
TARGETEMPIIASIS,andwithadisplaymodeof
Name, Text, or Detail.
Sent to the. owner after the receipt of a DM_-
DRAGLEAVE.
Sent to the towner after the receipt of a DM_DRA-
OVER, and when the container does not have the
attribute CA_ORDEREDTARGETEMRIIASIS, and
itisinthedisplaymodeTreeorlcon.

104 Sent to the owner after the receipt of a DM_DROP.
105 Sent to the owner after the receipt of a DM_-

DROPHELP.
106 Sent to the owner after the pressing of the Enter

key, or after a double-click with the selection
button.

107 Sent to the owner when a dr¢ggz.7zg operation is
initiated.

108 Sent to the owner when a record attribute changes
in the container.

109 Sent to the owner when the container loses focus.
110 Sent when scrolling takes place.
111 Sent to get additional information when scrolling

is being executed.
112 Sent to the owner when the container acquires focus.
113 Sent to the owner before the editing phase of one of

the container's items terminates (CN_ENDEDIT).
114 Sent when a text string is being changed in the

container.
115 Sent to the owner when the editing phase of one

of the container's items terminates.
116 Sent after a tree structure is collapsed in the tree

view display mode.
117 Sent after a tree structure is expanded in the tree

view display mode.
118 Sent to the owner after the receipt of a wM_IHLP.
119 Sent to the owner when the container receives the

mes.sage WM_COREXTMENU.

408

Table 7.41 Other Data Structures Related to the Usage of Containers

Structwe Ev eut

CNRDRAGINFO
NOTIFYRECORDEMPRASIS
NOTIFYRECORDENTER
NOTIFYDELTA
NOTIFYSCROLL
CNREDITDATA

Drag & drop actions.
Selection and emphasis of an object.
Double-click or pressing of the Enter key over an object.
Request of the position of an object in the container.
Scrolling actions.
Editing actions.

Table 7.42 The CMA_ Attributes and the Messages to Which They Refer

CM_QUERYRECORE
AItribute Value D es cription

CMA_PARENT

CIA FIRSTCELLD

CIA_LASTCHILD

CMA_FIRST

CIA_LAST

CIA PREV

CIA_NEXT

OxOool Returns the address of the RECORDCORE structure
of the parent record.

Ox0002 Returns the address of the RECORDCORE structure
of the first child record.

Ox0004 Returns the address of the RECORDCORE structure
of the last child record.

OxOO10 Returns the address of the RECORDCORE structure
of the first record in the container.

Ox0020 Returns the address of the RECORDCORE structure
of the last record in the container.

OxOO80 Returns the address of the RECORDCORE structure
of the previous record in the container.

OxO100 Returns the address of the RECORDCORE structure
of the next record in the container.

CM_QUERrmcoRE-
FROMRECT AItri:bate Value Description

CMA ITEMORDER 0xOool Records are listed in numerical order.
CMA_COMPLETE 0x4000 Returns information on records that are completely

inside the indicated rectangle.
CMA_PARTIAL 0x2000 Returns information on records that are even

partially inside the indicated rectangle.
CMA ZORDER 0xOOO8 Records are hsted according to their position.

CM_AItribute Value D e s cription

CMA_DELTATOP
CMA_DELTABOT
CMA_DELTAHOME
CMA_DELTAEro

OxOool Deltaattopofrecord.
Ox0002
0x0004
0xOOO8

Delta at bottom of record.
Delta at top of list.
Delta at bottom of list.

409
(coritirmed)

4ro OS/2 2.1 Workplace shell programming

Table 7.42 (Co#f£.##ed)

CM_ AItribute Vahae D e scription

CMA_NOREPOSITION 0xOool Do not reposition record.
CMA_REPOSITION 0x0002 Reposition record.

:#=:EX=:HANGED :x:::g R::::: LeaxstbTeaesnc:rTs::i.

CM_REMOVIRECORD
AItribute Vahae D esoription

CMA FREE 0xOool Record Memoryhasbeen erased.
CMA_II\IVALIDATE 0x0002 Container content is invalidated after a record has

been removed.

A last operation is the disposal of auocated memory. The destruction of a record
happenseitherwhentheuserdeletesanobjectq]utthisoperationisnotimplemented
in FOLDER, although it is easy to implement by adding a suitable 77te7t#z.fe77t) or when
the program terminates. The message CM_REMOVERECORD allows you to destroy a
recordselectively,ortodestroyanrecordspresentinacontainer.Thefonowingcode
fragment deals with the complete removal of the contents of a container during the
termination phase of an application.

®®®

prec = (PRECORDCORE)Wi.nsendMsg(hwnd, CM_OUERYRECORD,
NULL,

MPFROM2SHORT(CMA_FIRST,

CMA_ITEMORDER)) ;
i.f(Wi.nsendMsg(hwnd, CM_REMOVERECORD,

MPFROMP(prec),
MPFROM2SHORT(0, CMA_FREE)) = = 0)

Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

®®,

Maintainingcorrectmemorymanagementisanabsolutepriorityforthefunctioning
ofacontainerwindow.hChapter13wewillfurtherexplorethisclasswhenwestudy
the example SNOOPWPS.

The Class WC SLIDER
TheclassWC_SLIDERcompriseswindowsthatarespecializedintherepresentationof
scalar values. The look of a scalar is similar to the volume control of many turntables
thathaveanarmrunningalongashaft.TheKeybo¢rdobjectofthesysfe777Sef#pofwps
presents a number of sliders to establish how the keyboard is to respond when keys
are pressed (Figure 7.32).

The predof ined window classes 4;L1

Figure 7.32 Some sliders in the Keyboard object of WPS.

Sliders can be used in a nun.ber of ways in applications: defining the amount of
primary (RGB) colors when setting a new hue, setting the volume in multimedia
applications, fixing the zoom factor in the display of an image, and in many other
situations. The number of S LS_ styles is remarkable, as you can see in Table 7.43.

Table 7.43 The Styles of the Class WC_SLIDER

Style Vahae D e scription

SLS_HOREONTAL
SLS_VI.RTICAL
SLS_CENTER

SLS_BOTTOM
SLS_TOP
SLS_LEFT

SLS_RIGHT

00000000L
00000001L
00000000L

00000002L
00000004L
00000002L

00000004L

Defines a horizontal slider (default).
Defines a vertical slider.
Theshaftiscentral,immediatelyunder-
neath the slider.
The shaft is below the slider.
The shaft is above the slider.
The shaft is vertical and to the left of the
slider (requires SLS_VERTICAL).
The shaft is vertical and to the right of
the slider (requires SLS_VERTICAL).

(continued)

Table 7.43 (Co#f£.##ed)

Style Vahae D es cription

SLS_SNAPTOINCREMENT 00000008L

SLS_BUTTONSBOTTOM 0 0 0 0 0 010L

SLS_BUTTONSTOP

SLS_BUTTONSLEFT

SLS_BUTTONSRIGHT

SLS_OWNERDRAW
SLS_READONLY

SLS_RIBBONSTRE

SLS_HOMEBOTTOM

SLS_HOMETOP

SLS_HOMELEFT

SLS_HOMERIGHT

SLS_P"ARYSCALE1

SLS_PRIMARYSCALE2

00000020L

00000010L

00000020L

OO000040L

00000080L

00000100L

00000000L

00000200L

00000000L

00000200L

00000000L

00000400L

The position indicator snaps to the
nearest tick mark, and is redrawn when
itisoverapositionthatisnotaninteger
multiple of the scale.
Places two buttons under the shaft for
controlling the movement of the slider.
Places two buttons over the shaft for
controlling the movement of the slider.
Placestwobuttonstotheleftoftheshaft
for controlling the movement of the
slider (only for vertical ones).
Places two buttons to the right of the
shaft for controlling the movement of
the slider (only for vertical ones).
ThesHderisredrawnbytheappHcafron.
The user is not allowed to interact with
the slider (only the application will).
The space for the indicator and the
starting position is filled with a color
different from the ordinary one so as to
emphasize any change in a colorful
Way.
ThestartingpositionofthesHderisatthe
lower end (default for vertical sliders).
The starting position of the slider is at
the upper end.
The starting position of the slider is at
the left end (default for horizontal
sliders).
The starting position of the slider is at
the right end.
The value increments of the slider are
determined by the values of the pri-
mary scale above the shaft (for a
horizontalslider)ortotherightofit(for
a vertical slider).
The value increments of the slider are
determined by the values of the secon-
dary scale below the shaft (for a hori-
zontal slider) or to the left of it (for a
vertical slider).

412

The predef tned window classes 413

The structural elements that constitute a slider are many. The window win always
occupy a rectangle containing the shaft, which is by default much smaller than the
wholewindow(tobeprecise,itisthinnerifitisahorizontalsliderandnarrowerifit
is a vertical one). Some styles can be selected according to the layout thorizontal or
vertical),whichthusmustbethefirstaspecttoconsiderwhendesigningawindowof
this class.

Alongtheshaftyouwillhaveaproportionallysizedarm.Thedesignercandecide
the placement of the shaft within the window through the styles SLS_TOP and
SLS_BOTTOM,whileSLS_CENTERisthedefault.Tomovethearm,theuserhasacouple
ofbuttonsthatcanbeplacedatbothendsoftheshaft(aboveorbelow,totherightor
totheleft,respectivelywithsLS_BUTTONSTOporsLS_BUTTONSB0TTOM,andsLS_BUT-
TONSRIGHT or SLS_BUTTONSLEFT). Furthermore, the programmer can indicate the
directionofmovementofthearm(withthestyleSLS_H0MExxx).Thefistiscompleted
withthestylesthataffectthestructuralelementsofaslider:SLS_PRIMARYSCALE1and
SLS_PRIMARYSCALE2.Theeffectofthesetwostylesistodefinehowthearmcanmove
along the shaft. When the arm departs from its starting position, the shaft is divided
into two portions. Assuming the arm is moving from left to right, the left part of the
armiscontrolledbythestyleSLS_RI880NSTRIP,whiletherightpartisidentifiedby
the shaft itself, with no corresponding style (Figure 7.33).

Figure 7.33 The structural elements of a slider.

414 0S/2 2.1 Workplace shell progranming

WithSLS_RI880NSTRIPthepartoftheshaftbetweentheoriginandthearmwillbe
coloreddarkgray.Uhfortunately,itisnotpossibletodefinethecolorasyoulike;you
can only accept CLR_DARKGRAY instead of CLR_PALEGRAV which is used to color the
remaining part of a slider. Furthermore, there happens to be an erroneous repaint
action of a slider equipped with this flag when the window is resized.

Theselectionofavalueisnotonlytheconsequenceoftheuser'sactiononthearrows
ofthesHder.Aswithscrollbars,inthiscaseitispossibletoactdirectlyuponthearm.
If the flag S LS_SNAPT0 I NC REMENT is set for the slider, then the movement along the
shaft will occur only by fixed amounts, corresponding to each tick mark along the
shaft.

The flag SLS_READON LY will prevent the user from interacting directly with the
slider. A practical consequence of this is the disappearance of the arm as well as the
movement arrows. This is the only way to achieve this despite the presence of
S LM_S ETS L I D E RI N F0 dedicated, among other things, to setting its size. The last flag
of the class WC_SLIDER is SLS_OWNERDRAW, which will implement an object whose
output is controlled by its owner.

Creating a Suder
As usual, the class WC_SLIDER has a special data structure for creating a window
instance:

typedef struct _SLDCDATA
(// sldcd

ULONG cbsi.ze ;

USHORT usscalellncrements ;
USHORT usscalelspaci.ng ;
USHORT usscale2Increments :
USHORT usscale2Spaci.ng ;

} SLDCDATA ;

typedef SLDCDATA *PSLDCDATA ;

In addition to indicating the overall size of the structure, the programmer will
usually indicate the number of tick marks requested for the primary and secondary
scales. The space between two consecutive tick marks is computed automatically by
the class by indicating the value of 0 for the two members usscal elspaci. ng and
usSca1e2Spaci.ng.

Messages of the Class WC_SLIDER
Theappearanceoftickmarkstoindicatethepossiblepositionsthattheslidercantake,
and the appearance of any text associated with each position, is a consequence of the
use of the class's messages (Table 7.44). The simplest way to display tick marks is to
send the message SLM_SETTICKSIZE, and specify the attribute SMA_SETALLTICKS
(Table 7.46).

The predef rued window classes 4L5

Table 7.44 The Messages of the Class WC_SLIDER

Message Vahae Description_

SLM_ADDDETENT 0x0369 Adds indications to the shaft.
SLM_QUERYDETENTPOS 0x036a Returns the position of the currentindicator.
SLM_QUERYSCALETEXT 0X036b :ceaTe=:kthmea:ekit associated with a primary

SLM_QUERYSLIDERINFO 0X036C :oe=p:ie:tseofpa°:iT;°enr: and Sizes °f the

SLM_QUERYTICKPOS

SLM_QUERYTICKSIZE

SLM_REMOVEDETENT
SLM_SETSCALETEXT
SLM_SETSLIDERREO
SLM_SETTICKSIZE

Ox036d Returns the current position of a detent
along the primary scale.

Ox036e Returns the size of a detent along the
prinary scale.

Ox036f Removes a detent.
Ox0370 Displays text over a detent.
Ox0371 Defines the slider information.
Ox0372 Definesthesizeof adetentalongtheprimary

scale.

SLM_SETTICKSIZE

mpl

mp2
Return Value

Ox037 2 Description
USHORT usTickNurn Tick(s) to be activated
USHORT usTicksize Size of the tick mark
ULONG reserved Reserved
BOOL fResult Success or failure

®®,

Wi.nsendMsg(hwndsli.der, SLM_SETTICKSIZE,
MPFROM2SHORT(SMA_SETALLTICKS,10), OL) ;

I
®,®

The second SHORT in mpl corresponds to the height in pixels of the tick marks on the
screen. The descriptive text of each tick mark whl always appear inside the overau
parametersoftheWC_SLIDERclasswindow,thankstotheSLM_SETSCALETEXTmessage.

S LM_S ETSCALETEXT 0x037 0 Descr{.pf{.ori

=e3jLvaLue ¥:Z=;sR#=::::tL:Cx¥un ::C=k:t:S;s::erb€e;:::C[¥:tded
ThelistofmessagesalsoincludesSLM_ADDDETENT,whichwillidentifyalongthe

shaft all unnecessary positions that overlap a tick. Imagine, for instance, that you
need to represent the number of rounds per minute of an engine by means of a

416 0S/2 2.1 Wor:laplace shell progranming

Table 7.45 The Notification Codes of the Class WC_SLIDER

Notif tcatlon co de Vahae D escription

SLN_CHANGE
SLN_SLIDERTRACK
SLN_SETFOCUS
SLN_ELLFOCUS

Movement of the position indicator.
Dragging of the position indicator.
Acquisition of focus.
Loss of focus.

verticalsliderwithanupperlimitof7,000.Notwithstandingthemaximumvalueof
the slider, 5,000 rpms are to be considered an alarming position: It is the ideal
placementforindicatingadefc77f.

The information returned to the owner of a WC_S L I D E R class window is rather
limited (Table 7.45). The notification codes are always forwarded through
WM_CONTROL.

Above all, it is only S LN_CHANGE that informs the application of the movement of
thearmalongtheshaft,andindicatesthenewpositioninpixels.Thisoftenmeansthat
you have to perform conversions in terms of tick marks, which is an unpleasant
operationbecauseitrequiresyoutoknowtheoverall1engthofthesliderandtheexact
numberoftickmarksitcontains.ItiseasiertosendthemessageSLM_QUERYSLIDER-
INFO,andspecifythepairofattributessMA_SLIDERARMPOSITI0NandsMA_INCREMEN-
TVALUEtogetthisinformation(Table7.46).Furthermore,itwouldbedesirabletohave
some means for inferring the direction of movement without having to keep the
previous location stored.

Table 7.46 The Attributes of the Messages of the Class WC_SLIDER

AItribute Value Description

SMA_SCALEI
SRA_SCALE2

SMA_SHAITDIMENSIONS
SMA_SHAFTPOSITION

SMA_SLIDERARMD"ENSIONS
SMA_SLIDERARMPOSITION
SMA_RANGEVALUE

SMA_INCREMENTVALUE

SRA_SETALLTICKS

OxOool hdicator's position on primary scale.
Ox0002 Indicator's position on secondary

scale.
OxOOOO Size of the shaft.
OxOool Position of the lower right-hand

comer of the shaft.
Ox0002 Size of the slider's arm.
Ox0003 Position of the slider's arm.
OxOOOO Pixels from the starting position to

the current position of the arm.
OxOool hcrement value on the primary

scale.
OxFFFF Sets all the tick marks to the size

specified.

The predef rued window classes 4:r7

Figure 7.34 The SLIDER application contains a standard slider and a owner-
draw slider.

AL Sample Slider

E] Figure 7.34 depicts the SLIDER application (listing 7.12) that uses two sHders inside
theclientwindow.Byactinguponthearrowsofthelowerslideryoucanchangethe
client'scolor.chymovementwillcauseacorrespondingmovementevenintheupper
slider, which is a read-only sHder and cannot be acted on by the user. This action is
govemedintemauybytheprogrammerbysendingthemessagesLM_SETSLIDERINFO.
Theuppersliderisoftheozo77er-d71#zotypeandisalsoprovidedwithacoloredshaft.

A ozo7ter-dr¢zo sZz.der receives the message WM_DRAWITEM when it is necessary to

generatesomeoutput.TheaddressofthestructureOWNERITEMisalwayscontainedin
mpl. Many members of this structure cannot be used because they are reserved. The
application'smustintegratethefewpiecesofinformationpassedbytheWC_SLIDER
withvaluescomputedinthecode.Theportionofthewindowthatneedsrepai.nti.ng
is indicated by the defines Hsted in Table 7.47.

The Class WC_SPINBUTTON
Aspinbuttonisakindofcrossbetweenanentryfieldandaminiatureverticalscrollbar.
The result is an ideal window for controlled input of a numeric value, or even text
strings.ThestyleoftheclassisintroducedbytheprefixSP8S_(Table7.48).

418 0S/2 2.1 Wor:laplace shell programming

Table 7.47 The Values of the idltem Member of the OWNERDRAW Structure of a
Slider Created with the SLS_OWNERDRAW Style

AItribute Vahae D es cription

SDA_RIBBONSTRIP 0xOool Redraw the area occupied by the shaft.
SDA_SLIDERSHAFT 0x0002 Redraw only the shaft rail.
SDA_BACKGROUND 0x0003 Redraw the positionindicator of the slider.
SDA_SLIDERARM 0x0004 Redraw the background of the slider.

The outfit of styles of this class will affect mostly the display mode of the contents
of the spinbutton. A very interesting flag is SPBS_PADWITHZER0 which win pad a
number with leading zeros in order to make it a predetermined length. Setting
SPBS_MASTER will entail the presence of a pair of vertical arrows used to scrou the
contents of the spihbutton (this kind of window is very common in the Se££z.7cgs of
WPS).TheadoptionofSPBS_READ0NLYdisablesanyinputfunctionalityintheentry-
field portion, and offers the designer a useful tool when the options presented to the
user need to be completely controlled by the application. The messages of the class
(Table 7.49) mostly affect input of data into the window.

Table 7.48 The Styles of the Class WC_SPINBUTTON

Style Value D escription

SPBS_ALLCHARACTERS
SPBS_NUMERICONLY
SPBS_READONLY

SPBS VASTER

SPBS_SERVANT

SPBSITSTDEFAULT
SPBS+USTLEFT
SPBSJUSTRIGHT
SPBS]USTCENTER
SPBS_NOBORDER
SPBS_FASTSPIN

SPBS_PADVITHZEROS

OxOOOOOOOOL

0xOOOOOoolL

0xOOO00002L

0xOOOOOO10L

0xOOOOOOOOL

0xOOOOOOOOL

0xOOOOOOO8L

0xOOO00004L

0xOOOOOOOCL

0xOO000020L

0xOOOOO100L

0xOOOOOO80L

Accepts any character (default).
Accepts only numbers.
The entryfield window is for output
Only.
The spinbutton is equipped with a
nhiature scrollbar.
The spinbutton is not equipped with a
nhiature scrollbar.
Default justification (left).
Left aligrment.
RIght aligrment.
Centered.
Window without border.
Fast spinning of numbers that don't
have to appear in sequential order.
The number is padded with zeros.

The predef tmed window classes 4;19

Table 7.49 The Messages of the Class WC_SPINBUTTON

Message Value Description

SPBM_OVEREIDESETLIMITS 0x200 Changes the limits of scrolling without
affecting the current value.

SPBM_QUERYLMTS

SPBM SETTEXTLIMIT

SPBM_SPINE
SPBM SPINDOVVN
SPBM_QUERrvALUE
SPBM SETARRAY

SPBM SETLMTS

Ox201 Returns the limits set via SPBM_SET-
L"ITS.

Ox202 Defines the maximum number of
characters that are allowed in the
entryfield.

Ox203 Selects the next available value.
Ox204 Selects the previous available value.
Ox205 Returns the currentvalue.
Ox206 Changes the displayed data to be dis-

played by specifying noncontiguous
values.

Ox207 Defines the upper and lower limits of
scrolling.

SPBM_SETCUREENTVALUE 0x208 Sets the current value.
SPBM_SETMASTER 0x209 Defines the owner of the spinbutton.

AspinbuttonwiJldisplayasequenceofnumbersoraseriesofvaluesortextstrings
previously defined. In the case of scrolling numbers, it is sufficient to indicate the
upper and lower limits through SPBM_SETLIMITS by indicating in mpl and mp2,
respectively, the upper and the lower limits.

'.

S PBM_S ETLI MITS 0x0207 Descr£.pft.ori

mpl LONG IUpLimit Upper numeric limit
mp2 LONG ILowLimit Lower numeric limit
Return value BOOL fResult Success or failure

h addition to indicating the extreme values, with SPBM_SETCURRENTVALUE the
application can also set the current value displayed in the spinbutton.

SPBM SETCURRENTVALUE 0x0208 Descrz.pf£.o#

mpl LONG Ivalue Value to be displayed
mp2 ULONG reserved Reserved
Return value BOOL fResult Success or failure

To insert nonsequential numeric values or alphanumeric strings, it is necessary to
fo11ow` a different path. The insertion is delegated to the message S PBM_S ETARRAY,
although S PBM_S ETCU RRENTVALU E win always be used to indicate the current value
in the window. t

4ac OS/2 2.1 Workplace shell programming

SPBM SETARRAY 0x0206 DescrI.pf€.o#

mpl PSZ pszstrl Address of an array of pointer
mp2 USHORT usltems Number of elements in the array
Return value BOOL fResult Success or failure

Inmp1youmustspecifythenameofanarrayofpointerstochar,i.e.,acontiguous
sequence of memory addresses that refers to the text string that will be displayed in
the spinbutton. For instance, imagine you need to display the three RGB colors (Red,
Green, and Blue). This becomes:

®,

CHAR *szstri.ng[] = { "Red", "Green", "Blue"} ;
®,

Wi.nsendMsg(hwndspi.n, SPBM_SETARRAY,

MPFROMP(szstri.ng), MPFROMSHORT(3)) ;

®,,

The definition of the current value is always executed through S P BM_S ETCU RRE N -
TVA LU E, though in mp 1 you will not indicate the value to be displayed, but the index
into the array to the pointer that needs to be dereferenced (in the example, this win
result in the string Green).

®®®

Wi.nsendMsg(hwndspi.n, SPBM_SETCURRENTVALUE, MPFROMLONG(1L), OL) ;

®®

hListing7.13youcanseetheprogramSPIN(Figure7.35)thatillustratestheuseof
this class of windows.

IfyousearchforaWC_SPIN8UTT0NclasswindowwithSNOOPERyouwmhavea
tough time. h fact, a spihbutton is the sum of an entryfield and a window belonging
tothenondocumentedclass#57.ThewindowoftheclassWC_SPIN8UTT0Nisactually
behind these two windows, invisible to the user. The entryfield portion will always
have the same ID as the spinbutton, so it is a simple matter to get to its handle:

®,®

ullD = (ULONG)Wi.nQuerywi.ndowushort(hwndspi.n, OWS_ID) ;

hwndEntry = Wi.nwi.ndowFromlD(hwndspi.n, ullD) ;

®

Thesameapproachisusedforthetwoverticalscrollingarrows,consideringthatin
this case the ID is always equal to 0 L:

®®®

hwndArrows = Wi.nwi.ndowFromlD(hwndspi.n, OL) ;

®,

It is unlikely that you will ever need these two handles, but this is nonetheless an
efficient approach, at least at the present stage (it would be good if IBM's designers
assigned a constant ID to the two portions of a spinbutton).

The predef tned window classes 421

Figure 7.35 When the SPIN program is executing it shows a numeric master
spinbutton in the lower part, and a servant spinbutton in the upper part
containing the names of all states visited by the author during 1992.

Master or Servant?
By default, each spinbutton is always of the servant type; that means it will not have
the two scroll arrows. Their appearance is induced by setting the style S 8 PS_MAST E R.
Apart from this, to perform the scrolling of the values available in a spinbutton you
need only transfer focus onto the window (a simple mouse click), and then press the
up or down arrow cursor key. Naturally, the presence of the two scroll arrows will
greatlysimplifytheinteractionwithaspihbutton,especiallyifyouareusingamouse.
The API of this class presents the message SPBM_SETMASTER to allow scrolling a
spinbuttonwithoutscrollarrowsbyactingonthearrowsofanotherspinbuttonofthe
master type. The outcome is simplicity itself:

®,®

Wi.nsendMsg(hwndspi.nservant, SBPM_SETMASTER,
MPFROMHWND(hwndspi.nMaster), NULL) ;

®,,

Justactonthearrowsofthemasterandyouwillachievescrollingofthisspinbutton.
The documentation in the Toolkit is most misleading here. h fact, it seems that you
need to get the handle of the servant's entryfield portion, and then pass the handle to

422. OS/2 2.1 Workplace shell progranming

the master. Not true! And the designer will be at a loss. In this case, the problem is not
in the API, but in the interface itself. h order to halve the master do the scrolling for
the servant, it is necessary that the focus be on the servant. Only if the focus is on the
servantwillitbepossibleforittointeractwiththemaster.hListing7.13thenumeric
spihbuttons are linked one to the other by a master-server relationship.

The Notofication Codes
The notification codes of the class WC_S P I N BUTTON are easy to understand and don't
require any special explanation (Table 7.50). The code SPBN_CHANGE, as its name
suggests, refers to any possible changes that take place in the entryfield portion of the
window.

A Sanple Spinbutton
Listing 7.13 (the application SPIN) also shows how to retrieve the current value of a
spinbutton by means of the S P BM_QU E RY VA LU E message. The syntax of S P BM_QU E RY -
VA LU E is dependent on the contents of the spinbutton (number or text string):

SPBM_QUERYVALUE 0x205 Descri.pfi.o#

mpl PVOID storage Address of a LONG to hold the
number or of a memory area to con-
tain the text string

mp2 USHORTusBufsize Size of thebuffer or o if mpl is the
address of a LONG

USHORT usvalue one of the flags listed in Table 7.51
Return value BOOL fResult Success or failure

In general, it is convenient to specify in u s v a 1 u e the define s p B Q_U P DAT E I FVA L I D,
especially for those spinbuttons that allow the user to input. This flag does not allow
the display of a value inconsistent with what is established in the scrol]ing range.

Table 7.50 The Notification Codes of the Class WC_SPINBUTTON

Notif tcation co de Value D escription

SPBN UPARROW
SPBN_DOWNARROW
SPBN ENDSPIN
SPBN CHANGE

SPBN SETFOCUS
SPBN KILLFOCUS

Ox20A Press of the up arrowkey.
Ox20B Press of the down arrow key.
Ox20C Termination of spinning.
Ox20D The contents of the entryfield portion have

been changed.
Ox20E Acquisition of focus.
Ox20F Loss of focus.

The predef tned window classes 423

Table 7.51 The Query Flags of the Class WC_SPINBUTTON

Query Flag Vahae Description

SPBQLUPDATEIFVALID
SPBQLALWAYSUPDATE
SPBQLDONOTUPDATE

Updates only if the value is vahd
Always up dates
Never updates

It is interesting to assess in SPIN the logic followed to fill in the spihbutton
containingthetextstring.Theresourcefilelistsallstatesvisitedbytheauthorin1992.
Theirloadingisperformed,asusual,byWz.77Lo¢dsfrz.7cg().Beforeproceedingwiththis
repeated operation, however, the code allocates a memory page. This amount is
greater than the overall length of all names, but represents the minimum amount of
memory that can be allocated in OS/2 2.1. Of the 4096 bytes available, only the first
52areactuallyusedtostoretheaddressesofthel3textstringspresentinsTRINGTABLE
(13 x 4 = 52). The names of the states are allocated one after the other, starting with
the 52nd byte, as illustrated in Figure 7.36.

When S P BM_S ETA RRAY is issued, in mp 1 we indicate the address of the block, and in
mp2 the number of states:

Wi.nsendMsg(hwndspi.n, SPBM_SETARRAY,

MPFROMP(pchstart), MPFROMSHORT(STATES)) ;

®,,

This scheme is probably the best solution whenever the information to insert in a
spinbutton becomes available only during the application's execution.

PAGE OF MEMORY DYNAICALljYALLOCATED ` .

I+rJlrJITLr+I+TLrJITLTLTLTL-L memory

I
locationsinsidethePage

FLORIDA\ONEWYORK\0...

` i;**A,I..?g*#±i,vut* ife

Figure 7.36 Scheme adopted for inserting text strings in alphanumeric spin-
button.

4;2:4 0S/2 2.1 Workplace shed progranming

Table 7.52 The Styles of the Class WC_VALUESET

Style Value D esoription

VS BITRAP
VS_ICON
VS TEXT
VS_RGB
VS_COLOENDEX
VS_BORDER
VS_ITEMBORDER
VS_SCALEBITMAPS
VS_RIGHTTOLEFT
VS_OWNIRDRAW

Oxoool Contains bitmaps
Ox0002 Contains icons
Ox0004 Contains text
OxOOO8 Contains color data

OxOO10 Contains color indexes
Ox0020 Adds a border
Ox0040 Adds an outline border around each item
OxOO80 Scales bitmaps within ceus
OxO100 Orders from right to left
Ox0200 Owner drawn window

The Class WC VALUESET

El

Theclasswc_VALUESETisaverysimpletool,andveryusefulbecauseofitshighdegree
offlexibility.Itisakindofrectangularcontainerinsidewhichcanappeartextstrings,
icons, bitmaps, defines, or colored indexes. A valueset is a kind of control panel with
a number of lines and colurnns defined by the programmer. The objects CoJor P¢Ze££e
and Fo7tf P¢Ze££e are very similar to a valueset.

The styles V S_ (Table 7.52) define the overau features of each item in a valueset. The
first five identify the contents of the window. As we will see here, and in the sample
VALUESETapplicationofListing7.14,theprogrammercancreateawindowcontain-
ing objects that belong to the five kinds supported by the window. Some cells can
contain text, others bitmaps, and yet others a color!

With VS_BORDER the valueset will have a border, while VS_ITEMB0RDER will
surround each single item with a thin outline (the two flags can be combined). By
default, the insertion of information into the single cells of a valueset will take place
from left to right, but this can be changed with VS_RI GHTT0 LE FT. Like most of the
more mature classes, even a WC_VALU ES ET allows you to generate ozo7ter-dr#zo win-
dows (VS_OWN ERDRAW), and is able to automatically scale bitmaps to make them fit
within a cell.

Creating a Valueset
Before calling Wz.7tcrc¢fewz.7tdozo() it is necessary to declare an identifier of the type
VSCDATA, a specific data structure of this class.

The predef tned window classes 42:5

typedef struct _VSCDATA
I // vscd

ULONG cbsi.ze ;

USHORT usRowCount ;

USHORT uscolumncount ;

} VSCDATA ;

typedef VSCDATA *PVSCDATA ;

h addition to the size of the data structure, the programmer only has to indicate the
number of columns and rows that will appear in the valueset. There is no other way to
definethesefundamentalaspectsthatallowthewindowtosizeeachcellalongbothaxes.

Almostinvariably,whencreatingaLvaluesetyouwillsetthevs_stylethatidentifies
the kinds of objects contained in it. According to this approach, the programmer will
be linrited to inserting information in the cells one at a time. An altemative solution
is that of avoiding, during creation, defining the contents of the valueset, and defer
the whole process to when values will actually be inserted. The message
VM_SETITEMATTRwillletyouspecifythecontentsofeachcell,oneatatime.Thisisan
approach that can be employed to create a valueset with ``mixed contents."

VM_S ET I TEMATTR 0x037 b Descr{.pfi.o#

mp 1 USHORT usRow Row
USHORT uscolumn Column

mp2 E§=8R#sS::endttr #±abt:tieb::e¥: £:ig set (TRUE) or

removed (FALSE)
Ret-Value BOOL fsuccess Success or failure

The attributes of the defines introduced by the V I A_ prefix are listed in Table 7.53.

Table 7.53 The Attributes of the Messages VM_SETITEMATTR and
VM_QUERYITEMATTR

AItribute Value Description

VIA_BITMAP
VIA_ICON
VIA TEXT
VIA RGB
VA_coLORneEx
VIA Ol/\IN.ERDRAW
VIA_DISABLED
VIA_DRAGGABLE
VIA_DROPONABLE

OxOool The cell contains abitmap.
Ox0002 The cell contains an icon.
Ox0004 The cell contains text.
OxOOO8 The cell contains the nulneric description of a color.
OxOO10 The ceu contains the numeric code (CLR_) of a color.
Ox0020 The cell's output is delegated to the owner.
Ox0040 The cell is disabled.
OxOO80 The contents of the cell canbe dragged.
OxO100 The cell can accept an object dragged and dropped

into it with the mouse.

426 0S/2 2.1 Workplace shed progranming

Table 7.54 The Messages of the Class WC_VALUESET

Message Value Description

VM_QUERYITEM

VM_QUERYITEMATTR

VM_QUERYMETRICS

VM_QUERYSELECTEDITEM

VI SELECTITEM
VM SETITEM
VM SETITEMATTR
VM SETRETRICS

Ox0375 Returns the contents of the item indicated
by the row-colurm pair.

Ox0376 Returns the attributes of the item indicated
by the row-colurm pair.

Ox0377 Returns the size ofeachsingle itemor of the
space between contiguo-us items.

Ox0378 Returns the coordinates of the currently
selected item.

Ox0379 Selects anitem.
Ox037a Defines the kind of contents of an item.
Ox037b Set the attributes of an item.
Ox037c Sets the size of an item and the space

between adjacent items, or both values.

The attributes VIA_DROPONABLE and VIA_DRAGGABLE concern drag & drop opera-
tionsthatwillbedescribedinChapter12.ItisinterestingtoobservethatVIA_OWNER-
D RAW assigns the owner-draw feature selectively to one or more cells of a valueset. By
taking advantage of this functionality and of the drag & drop conventions, you could
easily implement very powerful windows with high-level user interaction.

The V M_ messages will then allow you to get to the single item (V M_QU E RY S E L ECT -
EDITEM), know its contents (VM_QUERY ITEM) and attributes(VM_QUERY ITEMATTR), as
listed in Table 7.54.

Table 7.55 The Notification Codes of the Class WC VALUESET

Notification code Value Description

IN SELECT
IN_ENTER
VN DRAGLEAVI
EN_DRAGOVER
VN DROP
VN_DROPHELP
IN_unTDRAG
VN_SETFOCUS
EN_KILLFOCUS
VN_HELP

120 Selects an item.
121 Selects and confirms an item
122 Receipt of the message DM_DRAGLEAVE.
123 Receipt of the message DM_DRAGOVER.
124 Receipt of the message DM_DROP.
125 Receipt of the messaLge DM_DROPHELP.
126 Start of a drag operation.
127 Acquirement of focus.
128 Loss of focus.
129 Receipt of the message wM_HELP.

The predef ined window classes 427

TheselectionthroughthemouseofanitemwillcausethenotificationcodeVN_SE-
LECTtobesentbymeansoftheWM_C0NTR0Lmessage.Adouble-clickorpressingthe
EnterkeywillbedetectedasVN_ENTER.Othernotificationcodesmostlyconcemdrag
& drop operations, as illustrated in Table 7.55.

hFigure7.37youcanseetheapplicationVALUESET;itcontainsthreewindowsof
this class. The frst window, on the lower left side, contains a piece of text, and helps
in understanding the default order followed when identifying cells. The valueset to
the right is an example of ``mixed contents": there are cells containing text, bitmaps,
icons, and a randomly selected color. The third and last valueset displays the 16
available colors corresponding to the C LR_ defines in PMGPI.H. The selection of an
item will cause the client to be colored in that hue.

Figure 7.37 The output of VALUESET illustrates the different kinds of
windows of this class.

Dialog Windows

After looking through so many windows, we will now have a look at. . . another
window!Inthischapterwewillexaminedz.¢Zogzt7£.7tdozus.Adialogwindow(orsimply
a dz.¢Zog) is similar to the windows we created earlier with Wz.7tc7`c¢fesfdwi.7tdozu() or
Wz.7tcrc¢fewz.77dozu() with some additional features. In the first place, dialogs play a
special role in PM applications: They are the kind of window that appears after
selectinganexfe#dedco77t777¢#dfromthemenubar(amenuitemfollowedbyanellipsis).
It is very unusual to use these windows as an application's main window. This first
point must be considered carefully. An extended command implies a much higher
degree of interaction between the user and the application before the operation
associated with the selected menu item will be performed. Think about the window
thatappearsafterselectinganextendedcommandasakindofextensionoftheselected
menu item. This window must capture the application's input focus exclusively, so
thattheusermustcompletetheoperationrequestedthroughtheselectedmenuitem.
Anyattempttoperformanactionoutsidethedialogwillbepreventedbythesystem,
which will emit a beep. This is already significantly different from an ordinary
window.Theprincipalpurposeofadialogistocontainanumberofco7tfrozsthatallow
the user to interact with the application in a flexible and articulate way.

Otherpeculiaritiesofdialogspertalntoprogrammingaspects.Thereisnopredefined
dassforcreatingadialog,butitis77ofnecessarytoregisteranywindowclassinorderto
create one. This makes dialogs akin to a predefined window dass. However, different
from a predefined class, the creation of a dialog holds the programmer responsible for
writhg the window procedure thaLt will receive its messages (as this is a dz.¢Zog, the
procedureisbetter]enownasadiezogproced#re).TheusermustalsouseaspecificAPIfor
creatinganddestroyingthedialog,andforhand]ingtheflowofmessages.

The most distinctive trait of a dialog is in the process used to create it. The
progralrm.ercandrawthedialogonthescreenbyusingspecifictoolsavailableinthe
Toolkit or with the compilers, save the work, and generate a dialog template in the
resource file. h the C source code the only operation to perform is that of loading the
dialog template.

429

430 0S/2 2.1 Workplace shell progranming

Two Types of Dialogs
OS/2 is equipped with two kinds of dialogs, called 77tod¢Z and 77€odezess (Figures 8.1
and 8.2). This terminology was introduced by MS Windows in the early 1980s and is
explained by the following line of reasoning. h a statistical distribution the modal
valuecorrespondstoahighfrequency,whilethemodelessvalueismuchlessfrequent.
hfact,inPMmodaldialogsareusedmuchmoreoftenthanmodelessdialogs.Itmight
beexpectedthatmodelessdialogswilleventuanydisappearaltogetherfromapplica-
tions, since their usefuhess is severely limited and replaceable by child windows.
Thus,thestudyofdialogswillinpracticefocusonmodaldialogs.Basicauy,adialog
isaLfranewindow.

Features of a Dialog
The primary purpose of a dialog is to make it easier for the user to interact with the
application, and to exchange information between the user and the application. The
screenareaoccupiedbyadialogwillcontaincontrols,thatis,windowsbelongingto
PM's predefined classes. SNOOPER will allow you to discover that the background
of a dialog is a window belonging to the class WC_FRAM E (Figure 8.3).

Figure 8.1 A typical modal dialog for loading a file from disk.

Dialog windows 4;31

isET VIO_XGA=DEVICE (BVHVGA , BVHXGA)
SET VIDEO_DEVI CES=VIO_XGA
IFS=D:`OS2upFS. IFS /CAcliE: 5|2 /CRECL: 4 /AUTOcliECK;CHEF
PROTSHEI.L=D : \OS2\PMsliELL . EXE
SET USEELINI=D :\OS2`OS2 . INI
SET SYSTEELINI=D: \OS2`OS2SYS . INI
SET OS2_SHELL=I) : \OS2\CMD . ERE
SET AUTOSTART=PRCX3RAMS. TASKL IST , FOLDERS
SET RUNWORKPI.ACE=D : `OS2`PMSHELL . ERE
SET COMSPEC=D : \OS2\CMD. E2E
LIBPATH=.;D:\os2uLI.;D:\os2u\4Dos;D:\;1]:\os2urpsuLL;F:"Mos2uLL;F:\IBMWFULL;F:\1]
SETPATH=D:`OS2;D:\OS2`SYSTEM:I):`OS2`MI)OS`WINOS2;I):`OS2\INSThLI.;D3`;D:`OS2\MIX)S;I):`{
SET LIB=F : "MOS2\"TcOLKT`I.IB ; F : `IBMC\LIB : F : `TcOI.KT2 0`OS21.IB : F : `IBMCPpulB :
SET INCLUI)E= . i F :\MMOS2\MMTcOLKRINC ; F : \MMOS2\MNIcOLRT\li ; F : \IBMhlNCLUDE ; F : \IBMC\IBM(
SETI)pATH=I):\os2;I):\os2`s¥sTEM:D:`oS2\MI)os\WINos2;1>:`os2`INSTAI.L;I):`;I):`os2ngl"Ap;I
SET PROMPT=Si [Sp]
sETIiEI.p=D:`os2`rlELp;I):\os2unl.p`TUTORIAI;F:`MMos2\IiEI.p:F:\IBMWF\iiEI.p:F:`IBMc\HELp;:
SET GLOSSARY=I) : \OS 2\IiELP\GI{OSS ;

__.....,.`

_ __ L .` ` ` ` . ` `

I ` `, ,''^ ,'..`^-h..:.-,

`--`-_ .-.. € ' 3

..,,.i-.:...:.... :..,` .,-., :::{ .,-..... :.i:.+._i, lLi::ii:il .._i±:::ijLJ

Figure8.2Amodelessdialogthatlookslikeanordinarywindowcreated
wifhwincreatestdw:indow().

§3RE§:7gaggtaig4'§=#i°i|°€:tx¥!i#:in,8e::#°3t2°796°6

Owner Cla§§Name: #1 - WC_FRAME

gx§t§i!i§§:i:]!jD#§:89°3g

Figure 8.3 The whole area occupied on the screen by a dialog is a
window of the class WC_FRAME.

432 0S/2 2.1 Wor:1aplace shell progivanming

Thefl#777e zoz.77dezo is the parent of all controls present, and provides them with the
needed pixels. Compared to applications developed in earlier chapters, there is no
client window interposed between the frame and the controls, as in most of the
samples of Chapter 7.

Thevisualfeaturethatismostevidentinadialogistheabsenceofasizingborder.
No design rules will prevent you from assigning this attribute to a dialog; but there
areothercousiderationsthatmakeitunwise.Ifadialogweresizable,thenausermight
makethecontrolsdisappearfromview.Thedirectconsequencewouldbealimitation
in the window's intended functionaHty of being an interaction area with the user.

The border of a dialog is always a thin separator line, or sometimes a thicker one.
The first style is FS_BORDER and the second one is FS_D LGB0RDER (Figure 8.4). Then
therearetheequivalentof¢¢777eco7tfrozfl¢gs,FCF_BORDER,andFCF_DLGB0RDER.

Often, a dialog will have a titlebar that will allow you to move it around on the
screen(Figure8.5).Totheleftofthetitlebaristheiconofthetitlebarmenu,containing
the options that are traditionally listed under the secondary Window menu.

Creating a Dialog
A dialog is mainly a container for controls. In Chapter 7 we used the function
Wc.77Lo¢dDzg()toloadthezoz.77dozofe77tpz¢feofawindowdefinedintheresourcefile.The

PROTSHELL=D : \OS 2uMSHELL . EXE
SET USERL_INI=D:\OS2\OS2 . INI
SET SYSTEM_INI=D : \OS2\OS2SYS . INI
SET 0S2_SHELL=D : \OS2\CMD.EZE
SET AUTOSTART=PRcORAMS , TASKL I ST , FOLDERS
SET RUNwoRKPLACE=D : \os2apMSRELL . EXE
SET coMspEc=D : \os2\crm. EXE
L IBPATH= . ; D : \Os2uLL ; D : \Os2\Mlros ; D : \ ; D : \Os2uppsuLI, ;

SET INCLUDE= . ; F : \MMOS
SET I)PATH=D : \OS2 ; D : \0
SET PROMPT=Si [Sp]

SET IPF_REYS=SBCS
PRIORITY_DISKL_IO=YES
FILES=20
DEVI CE=D : \OS 2\TESTCFG . coi5r25FTaffii5i¢a

LP;F:\IBMOuELP;:§§3.tnt:n gr':"g :ii *' : :+
r

Fted -w"-I-.,'

REEBHE]
yellow A I -.+-, h.A.A

This i§ an example of text.
iITiEit:I:_ii[*:th'iuimHmI=:|un

Figure 8.4 A dialog equipped with the typical border due to the style
FS_DLGB0RDER.

Dialogwindows 4;33

SET VIO_XGA=I)EVICE (BVHVGA , BVHXGA)
SET VIDEO_DEVICES=VIO_XGA
IFS=D:\OS2uipFS. IFS /CACHE: 512 /CRECL: 4 /AUTOCHECK:CDEF
pROTSHELL=D : \Os 2\pMSHELI. . Ezra
SET USER_INI=D : `OS2\OS2 . INI
SET SYSTEM_INI=D:\OS2\OS2SYS . INI

SET DPATH=D : \OS2 ; D : \OS2\
SET PROMPT=Si [Sp]
SET HELP=D : \OS2\IiELP ; I) : \
SET GLOSSARY=D : \OS2\H=LP

SKLIST,FOLIFRS
MSHELL . EXE

SET IPF_REYS=SBCS
PRIORITY_DISK_IO=YES
FILES=20
DEVICE=D : \OS 2\TESTCFG . SYS
DEVICE=D : \OS2\DOS . SYS
DEvl cE=D : \Os 2apMDD . sys
BUFFERS=30
10PL=YES
I)I SKCAcliE= 6 4 , LW
MAENAIT=3
MEMMAN=SWAP , PROTECT
SWAPPATH=D:\OS2\SYSTEM 2048
BREAK=OFF
THREADS= 2 5 6
PRINTMONBUFSIZE=13 4 ,13 4 ,13 4
COUNTRY=0 3 9 , D : \OS2\SYSTEM\COUNTRY . SYS
SET KEYS=ON

Figure 8.5 A dialog equipped with a titlebar can be moved around on the
screen.

nameofthefunctionsuggestscreatingadialog.hfact,Wc.7tLo¢dDzg()andWz.7tDzgBo#()
are the principal tools of the PM's API to implement a dialog. They are specialized,
respectively,form'odelessandmodaldialogs.Therefore,thefirstoperativedistinction
between the two kinds of dialogs is in the API call used to generate them:

#defi.ne INCL_WINDIALOGS
HWND APIENTRY Wi.nLoadDlg(HWND hwndparent,

HWND hwndowner,

PFNWP pfnDlgproc,
HMODULE hmod,

ULONG i.dDlg,

PV0ID pcreateparams) :

Parameter
hwndparent
hwndouner
pfuDlgproc
hmod
pcreateparans

Description
Handie of the parent window
Handie of the owner window
Address of the dialog procedure
Handieofthemodulefromwhichthedialogtemplateistobeloaded
Pointertoamemoryareacontainingusefuldatafortheapplication

434 0S/2 2.1 Wor:1aplace shell progranming

Retu:in vahae D escription
HWND Handle of the dialog window or DID_ERROR

#defi.ne INCL_WINDIALOGS

ULONG APIENTRY Wi.nDlgBox(HWND hwndparent,

HWND hwndowner,

PFNWP pfnDlgproc,

HMODULE hmod,

ULONG 1.dDlg,

PV0ID pcreateparams) ;

Parameter
hwndparent
hwndowner
pfuDlgproc
hmod

pcreateparams

Return Vahae
ULONG

Description
Handle of the parent window
Handle of the owner window
Address of the dialog procedure
Handle of the module from which the dialog template is to be
loaded
Pointer to a memory area containing useful data for the appli-
cation
Description
Termination value for dialog procedures

Both of these functions require the same six parameters to load a modeless or a
modaldialog.ThefirstHWNDdefinesthedialog'sparentwindow.Youcanspecifyany
valid handle, although it will usually be the desktop window that win provide the
pixels for creating the dialog. This is why dialogs appear almost everywhere on the
screen. The owner of the dialog win usually be the client window of the application.

The appearance of a dialog is always the, consequence of the user selecting an
extendedmenucommandamongtheavailablemenuitems.ThemessagewM_COMMAND
will reach the window procedure of the client, and from there a function is called to
create the dialog.

The PFNWP parameter is a pointer to the function that will perform as the dialog
procedure. It is always a function with a structure sinular to the following:

MRESULT EXPENTRY Dlgproc(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2) ;

i
swi.tch(msg)

I
®®,

)
return Wi.nDefDlgproc(hwnd, msg, mpl, mp2) ;

I

Dialogwindows 435

which is almost identical to a generic window procedure, with the exception that the
default message processing is provided by Wz.7zDepzgproc() instead of Wz.77De/Wi.7t-
dowproc().

The handie to the module identifies the source from which the dialog template is to
be loaded-the description of the dialog in the resource file. As this is the same as the
executablemodule,youcanspecifythevalueofNULLHANDLE.Eachdialogtemplatein
a resource file is characterized by a unique ID that allows it to describe more than one
dialog structure for each application. When the dialog is loaded, the correct template
must be identified through its corresponding ID.

ThelastparameterisaPV0IDpointer.Often,thisitemisconsideredasanalien,and
is assigned the value of NU L L because it is not known how to tise it. However, when
we examine the dialog procedures, we will see howto take advantage of this piece of
data.

Modal or Modeless?
The assumptions for creating a dialog are identical, whether it be modal or modeless,
so which should you choose and why? The two functions Wz.7zLo¢dDzg() and
W£.74DzgBox() are identical except for the return value. The first function returns the
handleofthenewlycreatedwindow,the frame.W.7tDzgBo%()retumsinsteadasimple
U LONG corresponding to what was indicated in the dialog procedure concerning the
pressing of OK or the Cancel button. The preclusion from interacting with the
application's other windows whenever a dialog is displayed holds only for modal
dialogs,whilethemodelessonesarealmostinallrespectsordinarywindowsthatcan
be managed through a handle. It is this consideration that makes modal dialogs
preferableforimplementingthecodeconcemedwithanexfe7zdedco77t777fl77d,andtouse
a standard window in place of a modeless dialog for other routine operations.

A modeless dialog will treat its dialog procedure in a way comparable to a simple
window belonging to a class registered by the application. Different from a standard
child window, though, a modeless dialog can drift out of the space of the application
window because its parent is the desktop. Notwithstanding the style model adopted
(MDI or SDI), modeless dialogs do not offer the programmer any significant advan-
tageapartfromtheeaseofdesignthroughspecifictools.Listing7.6implementingthe
FLOW application demonstrated that it is possible to create a window belonging to a
class registered by the application starting from a zoz.7tdozu fe7#pJ¢fe in the resource file.
Thisapproachcanbeextendedtoincludethecreationofcomplexwindowscontaining
initsclientareaseveralcontrols,withouthavingtoresorttoadialog.Modelessdialogs
are interesting solutions only in very special cases, and it is most often preferable to
use windows produced with Wz.7tcrc¢£esfdwz.7tdozo().

With the advent of version 2.x, there has been a decline of interest even in modal
dialogs. The new development rules for the user interface based on the WPS model
partially banish the presence of menus, and thus the item that introduces dialogs: the
menu item. This does not mean, however, that dialogs have lost their significance.
With the decline of menus has come the advance of 7tofez7ooks, featuring several pages

436 0S/2 2.1 WorkpHace shell programming

containing a number of controls. Often the best way to inselt controls in a page is to
rely on a dialog, especially because of the ease with which the set of windows can be
produced.

Afinalconsiderationisthepresenceofpredefineddialogs,whicharepreassembled
structures ready to perform specific tasks within an application, like opening a file,
saving it, searching for a text string, or replacing it. Let's start, though, by examining
dialog templates.

Dialog Templates
The first action item for a dialog is to prepare a dialog template in the iresource file;
the template will be loaded later, during the apphication's execution. The Develop-
ment Toolkit provides a specific utility, called DLGEDIT.EXE, which specializes in
creating dialog templates (Figure 8.6).

We will not describe here how to use DLGEDIT, since the program consists of
drawingadialogonthescreen,whereinyoupositioncontrolsbelongingtopredefined
classes or even to classes specifically created by the program. once these design
operations are over, the result is saved by the program in an ASCH file with the
extension .DLG. In this scrz.pf /i.Je, DLGEDIT inserts all resource compiler directives

Figure 8.6 With DLGEDIT.EXE, creating a dialog template means drawing
several windows on the screen.

Dialogwindows 437

necessary for creating the dialog designed on the screen. DLGEDIT also produces a
compiledversionoftheDLGfile,assigningittheextension.RES.Figure8.7showsa
typicaldialogtemplateasgeneratedbyDLGEDIT.

Nothing prevents the programmer from generating the dialog template manually,
providedthespecificsyntaxthatrequirestheuseoftheDLGTEMPLATEdirectiveunder
which subordinate blocks have to be inserted for describing the actual dialog and the
controls that are present in it are fonowed.

DLGTEMPLATE i.dtemplate [load opti.ons][memory opti.ons]

DIALOG text, i.d, x, y, cx, cy [, [style][.framectl]][data def]

CONTROL text, i.d, x, y, cx, cy, class [, style][data-def]
®®,

)
)

A D LGTEMP LATE resource is identified by a numeric ID. The value to indicate after
theDLGTEMPLATEandDIAL0Gdirectivesmustbethesame,anditmustfallwithinthe
range 0-65,536. This value win also be specified as the fifth parameter of either the
W{.7£Lo¢dDzgo or the W{.7£DzgBoxO function call. As we have seen in Chapter 7, the
syntaxofboththeDIAL0GaswellastheC0NTR0Ldirectivesareakintotheparameters
o£ W£.7tcre¢fewi.7£dozoo, and this is no surprise since the final purpose is the same:
creatingawindow.Theautomaticgenerationofthedialogtemplatewilloftenmean
that the programmer win rely completely on DLGEDIT for setting the creation and

DLGTEMPLATE DL_PRES LOADONCALL MOVEABLE DISCARDABLE

(
DIALOG

"Presentati.on params", DL_PRES, 42,10,155,111,

FS_N0BYTEALIGN I

WS_VISIBLE, FCF_SYSMENU I FCF_TI-

TLEBAR

(
PUSHBUTTON

12, 38, 13, WS_DISABLED

PUSHBUTTON

51,12. 38,13
DEFPUSHBUTTON

PUSHBUTTON

12, 38, 13
LISTB0X

142, 43, LS_MULTIPLESEL I

WS_GROUP

"Enable", DL_ENABLE, 9,

"Di.sable", DL_DISABLE,

"~OK", DID_OK,113, 30, 38,13

"~Cancel", MN_FILE,113,

DL_LIST, 9, 55,

Figure 8.7 A dialog template generated by DLGEDIT.EXE.

438 0S/2 2.1 Workplace shed progranming

display flags of the components of a dialog. The styles employed are the traditional
ones: WS. FS_, and the frame control flags FC F_.

EachcontrolisidentifiedbyanIDdefinedduringdesignphase.Asoundapproach
forlarge-sizedprojectsistogenerateaspecificheaderfilelistingalldefinesrelatedto
the drawn controls. This new header file is then included in the application's header
file, and thus it is accessible both from the . RC as well as from the source code. A
convention adopted in this text is that of introducing the defines of the control's IDs
withtheprefixDL_.Accordingtothisplan,alistboxdesignedtodisplaythecontents
of a directory could be indicated with the ID DL_DI R, while another one could be
indicated for listing the drives and directories with D L_D R I V E S.

®,

// di.alog header fi.le

#defl.ne DL_DIR 100

#defi.ne DL_DRIVES 101

®,®

AverycommonapproachisgeneratingadialogtemplatewithDLGEDIToranother
equivalent tool, and t'hen adjusting the size or the position of controls manually by
changing the template. When writing an application, it is convenient to maintain
dialog templates separate from the other resources, and leave them in one or more
. DLG files. The insertion into . RC is governed by the rci. ncl ude directive, or by the
more general #1. n c 1 u d e directive; the two have slightly different syntaxes:

I

®,,

rci.nclude mydlg.dlg

®®,

#i.nclude "mydlg.dlg"

The Styles WS_GROUP and WS_TABSTOP
The styles WS_GROU P and WS_TABSTOP, while they are generic WS_ styles, are applied
almostexclusivelyinthetemplateofadialog.Thestylews_GROupallowsyoutocollect
several controls into one logical group, inside of which you can transfer focus and
select items by pressing the cursor control keys. The means by which this is done are
somewhat odd. The style WS_GROUP must be specified only for the ¢.rsf control
belongingtothenewgroup.Allcontrolsthatbelongtothatgroup,andthatphysically
follow the define of the frst one in the template, must appear without this style. To
understand where a group ends, and where a new one starts, you must apply once
againthestyleWS_GROUP:Theprecedingcontrolwinbethelastoneofthefirstgroup,
and the one with the WS_GROU P style will be the first one of the second group. Odd,
indeed!

WS_TABSTOP is conceptually much simpler. This flag is assigned to each control
which the user is allowed to access to by pressing the TAB key on the keyboard.

Dialogwindows 4;39

The Dialog Procedure
A dz.¢Zog proced#re is a function similar in most aspects to a window procedure, with
only a few sHght differences. As with a window procedure, it is mandatory to
implementdefaultprocessingforanymessagethatwillbereceivedbytheprocedure.
In this case, you can resort to the specific function called Wz.7tDepzgproc(), which
specializes in handling the messages of a dialog.

#defi.ne INCL_WINDIALOGS
MRESULT wi.nDefDlgproc(HWND hwndDlg, t

ULONG msg,

MPARAM mpl,

MPARAM mp2) ;

Description
Handle of the dialog
Message
Parameter
Parameter
Description
Refum value of the dialog procedure

dialog procedure refer to the possible interactions between the
userandthe-dialog,which-i;awindowbelongingtotheclassWC_FRAME.Actuallythe
userwiuperformonlyalimitednunberofactionswithintheareasoftheframethat
areoccupiedbycontrols.Thedialogissimplyapixelproviderwindowforthedisplay
of its controls, and thus the user's actions are concentrated on controls. These will ten
the dialog what is happening by means of notification codes that are sent to the
windowproceduresofthewindowbelongingtopredefinedclasses.Onemessagethat
ispracticallyalwaysdetectedinadialogprocedureisWM_COMMAND,asisWM_CONTROL.
inpractice,adialogprocedurecanbereducedtoprocessingonlythesetwomessages
together with a third one, WM_I N I TD LG.

A Doubrf ul Question
We started examiring dialogs by saying that a dialog procedure is comparable to a
window procedure. There are some further points to consider. A dialog is a window
belonging to the class WC_FRAME. A frame win send its messages to the window
procedure of its class, which is certainly a function that has nothing to do with the
dialog procedure written by the programmer. This also appHes to controls. These are
almostinvariablywindowsbelongingtopredefinedclasses,andveryseldomtoaclass
registered by the application. h both cases, however, the messages produced by the
user's actions are always addressed to the window procedure of the corresponding
classes. So here's the question: What is a dialog procedure?

It is clear that the application that creates a dialog is not provided with any
mechanismforinterceptingthemessageflowgeneratedbytheuser'sinteractingwith

Parameter
hundDlg
msg
mpl
mp2
Return Vahae
NIESULT

All messages in a

440 0S/2 2.1 Workplace shed progranming

the window. It is totally excluded, with no apparent means of intervention. The
ownership/parenthood relationship, in fact, is with regard to the dialog and its
controls. For these windows, the interaction mechanism is notification codes, in
addition to specific messages for the various classes. So, in order to let an application
understandwhatactionstheuserperformsinadialog',itisnecessarytosupplyakind
ofbridgeintotheapplicationcodethatwillallowthedialogtotapintotheprogram's
code. Hence, the message flow that runs through the window procedure of the class
WC_FRAME will be partly branched off toward the dialog procedure whenever the
involved frame is the parent of a dialog (Figure 8.8).

What goes on here is a kind of extrusion of messages from the window procedure
of the class WC_FRAM E toward an appropriate piece of code that will always take the
formofafunctioncapableofprocessingthosemessages.Theabandoningofthedialog
procedure means that the message is rendered back to the window procedure of the
classwc_FRAME,whereitwillbesubjecttostandardprocessing.Thisbehaviorexplains
the presence of Wz.7tDepzgproc() in place of Wz.77De/Wz.7tdozoproc(). The action per-
formed by Wz.77Depzgproc() is limited to transferring control to the dialog's handier.

Therefore, messages that reach a dialog procedure are in some way ``deviated" and
"selected"messages.Moreprecisely,adialogprocedurewillreceiveaumessagesthat

are actually addressed to the dialog's frame window. However, the designer will be
interested only in the two messages mentioned earlier, because they are the ones that

Figure 8.8 The message flow in a dialog.

Dialogwindows 441

indicate what actions were executed by the user on the dialog's controls, in addition
to WM_I N I TD LG, needed for initialization purposes.

The Message WM_INITDLG
Whenyoudesignadialog,youneedtodecidethepositionandsizeofeachcontrolitwi]l
contain.Evenmoreimportant,youhavetoa§signtoeachcontrolaspecificfunctionality
thatithastodeliverduringruntime.hanape7t-bow,asinFigure8.1,youwillhaveaHstbox
todisplaythenamesofdrivesanddirectoriespresentinthesystem,andasecondoneto
containthefflecorrespondingtowhatissetinanentryfield.Allthesedataitemsneedto
appearinthecontrolsatthemomentthedialogisdisplayed-notbefore,sinceitwould
beimpossible,andnotlater,sinceitwouldonlyconfusetheuser.

ThemessageWM_INITDLGreachesthedialogprocedureimmediatelyaftertheframe
and all its controls have been created, but before PM displays the dialog. This means
that when the application receives the WM_I N ITD LG message, all the handles will be
available as will all necessary tools for interacting with each single item so that it can
be set up to present the appropriate information.

WM_I N I TD LG 0x0 03b Descr£.pf!.orf

mpl HWND hwnd Handle of the control that has the input
focus

mp2 PCREATEPARAMS- Pointer to a memory area containing
pcreateparams dialog specific data

Return value BOOL fResult TRUE if the window having focus has
changed; FALSE if it has not changed

WM_I N ITD LG contains interesting pieces of information to customize the look of
controls and to take advantage of the dialog.

The message presents in mp 1 the handle of the first control, defined at the template
level,whichhastheinputfocus.Thecontentsofmp2aremuchmoreuseful:Itisapointer
to a memory area containing appfication-specific data. By looking again at the syntax
of both Wz.7tLo¢dDzg() and Wz.74DzgBox(), you will notice that the last parameter is a
generic pointer to a memory area containing data defined by the programmer. On the
basis of the relationship that exists between a dialog procedure and the application, it
is obvious that there is a communication problem between these two portions of the
code. To avoid resorting to global variables (the worst solution), the dialog's API
providesaveryefficientmechanismforpassinginformationtoadialogprocedure.The
final pointer in a Wz.7tLo¢dDzg() or a Wc.7tDzgBo#() call, provided it is not a N U L L pointer,
indicates a memory area allocated by the programmer within which you can insert all
data that needs to be passed to the dialog procedure. Ih this function, access to this
information is granted by the value in mp2. Figure 8.9 illustrates the whole mechanism
ofinformationpassingbetweenthetwoprocedures.

The advantage of this solution lies in having a permanent connecting bridge
betweenthewindowprocedureandthedialogproceduresothattheexchangeofdata
can take place in both directions, not just from the caller to the callee. Thus, a dialog

int main(void)

(

message loop

)
MRESULT EXPENTF]Y Clientwndproc(...)

(
static MYDATA myData;

Data structure

hrmATA

switch(msg)

(

case WM_COMMAND:

WinDlgBox(...,(PVOID)&myData);

break;
®

)

)
MF}ESULT EXPENTRY DIgproc(...)

switch(msg)

(

case WM_INITDLG:

(
PMYDATA pmyData;

pmyData=(PMYDATA)mp2;

)
break;

)

Figure 8.9 Passing of data between the window procedure and the dialog
procedure by taking advantage of the mechanism provided by PM's API.

442

Dialogwindows 443

is capable of informing its owner window about the selections and operations per-
formed by the user. This is done by inserting appropriate data in the shared commu-
nication area between the two functions. Once processing returns to the window
procedure,theimplicatedpointertotheprivateareaisstillvalid,andcanbeusedfor
reading that information.

Take advantage of this provision by passing all information needed by the dialog
procedureattheverymomentitiscaued,ratherthanusingglobalvariables.Wewill
put this into practice in the next few samples.

The Owriership Problem
When a dialog is created, you have to indicate its parent (generally HWND_DESKTOP)
and its owner (the cZz.e7tf zt7z.7tdozo of the main window). Therefore, it would be natural
toexpectthatwhenyouaskadialogforthehandleofitsowner,youwouldberetumed
the value of the client window. But this is not the case. hstead, the value returned by
Wz.77Q#e7rywz.77dozo()whenitisaskedfortheowner,isahandledifferentfromtheclient
window specified in W2.7tDzgBox().

This strange behavior is not a bug in PM, but a design choice made by IBM in the
early stages of designing the API. The SNOOPER utility will help us to understand
whatisgoingon.hFigure8.10,youcanseeSNOOPERpresentinginformationabout
the client area of a window that will later generate a dialog.

So, 1et's now proceed and display a simple modal dialog by selecting the option
Product information from the File menu. Figure 8.11 presents the data regarding the
dialog as it is retrieved by SNOOPER. The dialog was created starting with the
followhg portion of code:

®®®

case MN_PRODINFO:

Wi.nDlgBox(HWND_DESKTOP, hwnd,

ProdlnfoDl gproc ,
NULLHANDLE, DL_PRODINFO,

NULL) ;

break ;
®,,

The second parameter, hwnd, is the handle of the client window; the call to
Wz.7tDzgBox() takes place within its window procedure.

It is clear by reading the data delivered by SNOOPER that the owner of the dialog
has become the frame window of the application rather than the client window that
was specified originally.

h Chapter 4 we met the function W1.7tQ#e7tywz.7cdozu(), together with its syntax and
auofitsflags.Amongthese,wehadOW_FRAME0WNER,whichseemssomewhatesoteric
according to its description in the documentation. When execution reaches the code
fragmentdealingwiththeWM_INITDLGmessageinadialogprocedure,thesystemhas
alreadychangedthe.ownerofthedialog.Thisiswhythevalueretumedbywc.7tQcteny-
Wz.7tdozo() is different from what you might expect.

444 0S/2 2.1 Workplace shed programming

i;aR§tdi?Nb3xmg%:£3f:i;eA§Rentationparam§
nab: Ox720001

#ajE:dft8#otfti§:t8g828ooooo
Parent Cla§§Name: #1 - WC_FRAME
Owner: OxO

a#§#58c:::tF£¥gT6eie3ie6
Wndproc: 10160

EixDt:riai§9!efiDq¥ffeo

+A*

Figure 8.10 Discovering information about a window with SNOOPER.

Figure 8.11 The action performed by SNOOPER on a dialog of the
application illustrated in Figure 8.10.

Dialogwindows 445

Apart from what was specified when calling We.7tDzgBox(), the owner of a dialog
is certainly the return value of the W1.7tQ#enyw€.7tdozu() function called with the
OW_FRAMEOWNERflag.

®®

hwndF0wner = Wi.nQuerywi.ndow(hwnd, QW_FRAMEOWNER) ;

®,®

What happens when an application calls this function directly or when PM calls it
for a dialog? The first operation starts with the original owner, and then traverses the
genealogy tree of that window until a sibling of hwnd is reached. If the parent and the
ownerarethesamewindow,thenthefunctionWz.7tQ#enywz.7tde"()wi]lretumNULLHAN-
D LE. The change of owner of a dialog is necessary if the dialog is to be modal, in which
case its owner needs to be disabled. To disable a window also means to disable all its
dhildren, thus, the parent and the owner of a dialog carmot be the same window. There
areseveralmethodsforgettingtothehandleoftheownercfientwindowofadialog.

If you assign to a dialog the same handle for its parent and owner, even if createdJ

with Wz.7tDzgBox(), the dialog becomes 77todezcss. This means that any actions per-
formed outside the dialog will be accepted by the system. The dialog will lose focus
and the whole logic of the application is ruined.

Getting to Know the Owner
Gettingtoknowtheownerofadialogisoftenessentialforaprogramtoperformcorrectly.
But how do you get this information? There are two viable solutious, which are not
completelyinterchangeable..Thesimpleronecousistsofaskingforthedialog'sownerand
throughtheretunedhandiegettoitsdhildwindowthatfeaturestheIDofFID_CLIENT.

®®®

case WM_INITDLG:

hwndowner = Wi.nQuerywi.ndow(hwnd, QW_OWNER) ;

hwndparent = Wi.nwi.ndowFromlD(hwndowner, FID_CLIENT) ;
®,,

break ;
®®®

where hwnd is the handle of the dialog. This logic should always work, but it is not
based on any granted principle and should be tested directly, application by applica-
tion.Onlyexperiencesuggeststhatthenewownerofamodaldialogwfllbetheframe
window of the owner actually indicated when calling Wz.7tDzgBox().

The second solution is much broader, and takes advantage of the memory area
shared between the owner's window procedure and the dialog procedure. Before
ca]Jing W{.7tDzgBox(), you allocate a block of memory within which you can place,
among other things, the handle of the application's client window. When execution
flow reaches the WM_I NITDLG message, in the dz.¢Zog proccd#rc you can retrieve the
information stored in this memory area by means of the value in mp 2.

446 0S/2 2.1 Workplace shell progranming

Even more simply, since in PM a handle is a plain U LONG value, you can use this
address as a reference to a hypothetical shared memory area between the window
procedure and the dialog procedure. Here's an example:

®®®

case MN_PRODINFO:

Wi.nDlgBox(HWND_DESKTOP, hwnd,

ProdlnfoDl gproc ,
NULLHANDLE, DL_PRODINFO.

break
(PV0ID)&hwnd) ;

I

hside the dialog procedure, in the code fragment dealing with the WM_I N ITDLG
message, you can retrieve the handle of the client window directly from mp 2:

®®,

case WM_INITDLG:

hwndcli.ent = *((PHWND)PV0IDFROMMP(mp2)) ;
£

®

break ;
®®®

This simple solution will flzzoeys work, does not create any kind of problem, and
requires no addition of any further code.

Accessing Controls
Fillinginthecontrolspresentinadialogisanoperationthatmustbeperformedbc/ore
thewindowisdisplayed:ThemessageWM_INITDLGsignalsthebesttimefordoingso.
The programmer will have the dialog's handle, which is always the first parameter
passed by the system to a dialog procedure, and can access to any of its controls
through their ID or by getting their handie.

AswehaveseeninChapter7,insertinginformationinawindowbelongingtoany
of the predefined classes is an operation governed by specific messages. Sending a
messageinpMisessentiallybasedonthefunctionwz.77Se7zdMsg(),providedyouknow
the handle of the destination window. This piece of information is not available for
controls, but can easily be retrieved through Wz.7tw3.77dozoF7'o777JD().

Let's assume that there exists a listbox for displaying the names of files contained
in the current directory, and that it has been described through the ID D L_D I R. The
code becomes:

®,

hwndDi.r = Wi.nwi.ndowFromlD(hwnd, DL_DIR) ;
®®

The handle is available ordy during the whole of the WM_I N I TD LG message's proc-
essing. To extend its visibility, it is necessary to declare it with s t a t i. c storage class.
Ifyouaresurethatyouwillnotneedthispieceofinformationlaterduringthedialogs
management,thenitisbesttodeclareitsidentifierwithinthecodeblockdealingwith

Dialogwindows 44:7

the WM_I N I TD LG message: the application win be smaller and you win not consume
stack space for allocating an identifier used only once.

®,®

case WM_INITDLG:

I
HWND hwndDi.r ;

®,,

hwndDi.r = Wi.nwi.ndowFromlD(hwnd, DL_DIR) ;
®,®

I
break ;

®®®

Another approach is using the Wz.7ese77dDzgrfe777Msg() function:

#defi.ne INCL_WINDIALOGS
MRESULT APIENTRY Wi.nsendDlgltemMsg(HWND hwndDlg,

ULONG i.dltem,

ULONG msg,

MPARAM mpl,

MPARAM mp2) ;

Parameter
hwndDlg
iditem
msg
mpl
mp2
Return Value
RESULT

Description
Handle of the dialog
ID of the control
Message
Parameter
Parameter
Description
ketum value of the dialog procedure

The syntax is absolutely identical to that of Wt.7tsc#dMsg() in its last three parame-
ters. However, the frst pair of parameters correspond to those of Wz.7cWz.7cdozo-
Fro77cJD(), and that is the parent's handle (the dialog) and the ID of the control. h
practice,Wz.7tse7tdDzgJfe7#Msg()wmfirstcallWz.7?W€.7tdozoFro7#JD(),andthencallWz.7t-
Se77dMsg() to perform. its duty.

You might find it convenient to always use Wz.7tse#dMsg() and sometimes specify
directly the handle of a control previously obtained with the method just described,
or evenby using the CTRL (x , y) macro, which is defined in the application's header
file in the following manner:

®®®

#defi.ne CTRL(x, y) Wi.nwi.ndowFromlD(x, y)
®

where the two place holders are replaced, respectively, by the handle of the dialog
and the ID of the control, which is the destination of the messaLge.

448 0S/2 2.1 Workplace shell progranming

To quickly get to several IDs, PM's API provides the special function Wz.7tM#Z£Wz.7?-
dozoF7'o77tJDs(), which returns all the handles of a variable number of child windows,
simply by specifying the handle of their owner and their IDs:

#defi.ne INCL_WINMESSAGEMGR
LONG APIENTRY Wi.nMultwi.ndowFromlDs(HWND hwndparent,

PHWND phwnd,

ULONG ulFi.rst,
ULONG ulLast) :

Parameter
hwndparent
phwnd

ulFirst
ulLast
Retwn Value
LONG

Description
Handie of the owner window (i.e., the dialog)
Pointer to a memory area within which are listed all handles of
the controls within the numeric range ulFirst-ulLast
ID of the first control
ID of the last control
Description
Number of returned control handles

Thesecondparameterofthisfunctionisapointertoamemoryareawhereyouwm
insert the handles of child windows; these handles must have IDs that fall in the
numeric range between ul Fl. rst and ul Last, respectively the third and fourth
parameters. The number of returned handles is equal to ul Last - ul Fl. rst + 1. To
make it efficient to use Wz.77M#Z£Wz.7tdozt7F7'o777JDs(), it is therefore necessary to group
and assign sequential IDs to the controls belonging to the same group.

Both WinwindowFromlD() aLs wdi aLs WinMultwindowFromlDs() carl be used with
anyhandleidentifyingachildorseveralchildren.PMwillnotdistinguishinanyway
between a traditional window created with Wz.7tcrc¢fcsfdwz.7tdezu() or W€.7tc7ie¢fewz.7t-
dozt7() and a dialog.

The Presentation Parameters
When you create a window out of the predefined classes, you are allowed to specify
aseriesofattributestochangeitsfontandcolors.Thisinformationisgenerallyreferred
toastheprcsc7i£¢£z.o7tpfl71¢77tefers,orpresentationparamsforshort.Theimplementation
of prcsp¢r¢777s can take place both at the resource file level in the definition of a dialog
template,aswellaslaterduringthecode'sexecution.Thissecondsolutionisgenerally
preferredbecauseitgrantsahigherdegreeofflexibilitytothedesigner.Thehandling
oftheWM_INITDLGmessageistherighttimeforchangingthevisualaspectofacontrol.
Starting with OS/2 1.2 it is possible to change the prcsp¢r4z777s with the function
Winsetpresparam()..

#defi.ne INCL_WINSYS i
B00L Wi.nsetpresparam(HWND hwnd,

ULONG l.d,

ULONG cbparam,
PV0ID p`bparam) ;

Parameter
hwnd

id
cbparan
pbparam

Retttm Value
BOOL

Dialogwindows 44!9

Description
Handle of the window to which the presentation parameters
refer
Type of presentation parameter
Size of the area pointed at by pbparam
Addressofamemoryareacontainingthepresentationparame-
ters' data
Description
Success or failure

Thehandleidentifiesthewindowtowhichthechangesofthepresentationparame-
ters should be applied. The first U LO NG, i. d, corresponds to the kind of presp¢7i¢77t you
want to change. The choices are any of the defines listed in Table 8.1.

Table 8.1 The Values of the Presentation Parameters Available for a Control

Presparan Value Description

PP_FOREGROUNDCOLOR
PP_FOREGROUNDCOLORINDEX
PP_BACKGROUNDCOLOR
PP_BACKGROUNDCOLORINDEX
PP_HILITEFOREGROUNDCOLOR
PP_HILITEFOREGROUNDCOLORINDEX

PP_HILITEBACKGROUNDCOLOR
PP_HILITEBACKGROUNDCOLORINDEX

PP_DISABLEDFOREGROUNDCOLOR
PP DISABLEDFOREGROUNDCOLORINDEX
PP_DISABLEDBACKGROUNDCOLOR
PP DISABLEDBACKGROUND COLORINDEX
PP BORDERCOLOR
PP_BORDERCOLORINDEX
PP FONTNANISIZE
PP FONTHANDLE
PP_RESERVED
PP_ACTIVICOLOR
PP ACTIVECOLORINDEX
PP INACTIVECOLOR
PP_INACTIVECOLORINDEX

1L RGBforegroundcolor.
2L Indexof foreground color.
3L RGBbackgroundcolor.
4L hdexofbackground color.
5L RGBhigh]ightedforegroundcolor.
6L Index of highlighted foreground

color.
7L RGBhigh]ightedbackgroundcolor.
8L hdex ofhighlightedbackground

color.
9L RGB disabled foreground color.

10L hdex of disabledforeground color.
llL RGB disabledbackground color.
12L hdexof disabledbackgroundcolor.
13L RGB window border color.
14L hdex of window border color.
15L Name and size of font.
16L Handle of font.
17L Reserved.
18L Active color.
19L hdex of active color.
20L Inactive color.
21L index of inactive color.

(contirmed)

Table 8.1 (Co#f£.7!cfed)

Presparan Vahae Description

PP_ACTIVETEXTFGNDCOLOR
PP_ACTIVETEXTFGNDCOLORINDEX

PP_ACTIVETEXTBGNDCOLOR
PP_ACTIVETEXTBGNDCOLORINDEX

PP_INACTIVETEXTFGNDCOLOR
PP_INACTIVETEXTFGNDCOLORINDEX

PP_INACTIVETEXTBGNDCOLOR
PP_INACTIVETEXTBGNDCOLORINDEX

PP_SHADOW

PP_MENUFOREGROUNDCOLOR
PP_MENUFOREGROUNDCOLORINDEX

PP_MENUBACKGROUNDCOLOR
PP_MENUBACKGROUNDCOLORINDEX

I

PP_MENUHILITEFGNDCOLOR

PP_MENUELITEFGNDCOLORINDEX

PP_MENUIHLITEBGNDCOLOR

PP_MENUHLITEBGNDCOLORINDEX

PP_MENUDISABLEDFGNDCOLOR

22L Foreground color for active text.
23L hdex of foreground color for active

text.
24L Background color for active text.
25L hdex of background color for

active text.
26L Foreground colorfor inactive text.
27L hdex of foreground color for in-

active text.
28L Background color forinactive text.
29L hdex of background colorforin-

active text.
30L Usedto changethe colorwhena

shadow object is dropped on a
control.

31L Foreground color formenus.
32L Ihdex of foreground color for

menus.
33L Background color for menus.
34L hdex of background color for

menus.
35L Foregroundcolorforselectedmenu

items.
36L hdex of foreground color for se-

1ected menu items.
37L Background color for selected

menu items.
38L hdeLx of background color for se-

1ected menu items.
39L Foreground color for disabled

menu items.
PP_MENUDISABLEDFGNDCOLORINDEX 40L Index of foreground color for

disabled menu items.
PP_MENUDISABLEDBGNDCOLOR 41L Background color for disabled

menu items.
PP_MENUDISABLEDBGNDCOLORINDEX 42L Index of background color for

disabled menu items.
PP_USER 0x8000L User-defined presentation para-

meter.

450

Dialogwindows 451

To get to know the current presentation parameters of a control, you can call the
i:unctionwinQuerypresparan()..

#defi.ne INCL_WINSYS
ULONG APIENTRY Wi.nouerypresparam(HWND hwnd,

ULONG i.dl,

ULONG I.d2,

PULONG pulld,

ULONG cbBuf ,

PV0ID pbBuf ,

ULONG fl) :

Parameter
hrmd

idl
id2
pullD
cbBuf

pbBuf'

H]

Return Value
ULONG

Description
Handle of the window of which the presentation parameters
wELbe changed
First presentation parameter to retrieve
Second presentation parameter to retrieve
Value of the indicated presentation parameter
Size of the pbBuf buffer
Buffer where the indicated presentation parameter's value will
be returned
Search options
Description
Success or failure of the operation

h addition to specifying the window's handle, you must provide the numeric ID
of the type of the first and of the second parameter you wish to retrieve (i. d 1 and i. d 2).
The fourth parameter, pul ID, will contain the ID of the presentation parameter
returned between the two that are specified. The parameters are completed by a
memory area pointed at by a P V 0 I D, its size, and one or more flags among those Hsted
in Table 8.2.

Finally, to remove a presentati,on parameter, you can call the function Wz.77Re-
movepresparam()..

#defi.ne INCL_WINSYS
B00L APIENTRY Wi.nRemovepresparam(HWND hwnd, ULONG i.d) :

Parameter
hwnd

id
Return Vahae
BOOL

Description
Handle of the window the presentation parameters of which
will be changed
ID of the presentation parameter to be removed
Description
Success or failure of the operation

where hwn d is the control upon which you want to act, and 1. d is one of the P P_ defines
listed in Table 8.1.

452 0S/2 2.1 Wor:laplace shell progranming

Table 8.2 Flags of the WI.#Qcfenypresp¢r¢ffls() Function

Flag Vahae D es cription

QPF_NOINHERIT OxOool Defines that the search for the presentation
parameters must be limited only to the
window identified by the handle hwnd.

QPF_IDICOLORINDEX 0x0002 Thenuneric value specifiedinidl is theindex
ofacolor:WhatwillberetumedinpbBufwill
be the equivalent RGB color.

QPF_ID2COLORINDEX 0x0004 Thenunericvalue specifiedinid2 is theindex
ofacolor:WhatwillberetumedinpbBufwill
be the equivalent RGB color.

QPF_PURERGBCOLOR 0xOOO8 Requires that the returned value be a pure
RGB color.

Setting the Presentation P arameters
Before displaying the controls present in a dialog, it is convenient to change their look
by calling the function Wz.77Se£Presp¢r#77t(). h Figure 8.12, you see a dialog with some
modified controls, like the listbox background and the color of the entryfield font
(although the black-and-white print will not give you an appreciation of the selected
colors).

Listing 8.1 presents the source code that generates the output in Figure 8.12.
ThecodeofPRESPARisnotlimitedtochangingthelookofsomeofthecomponents

ofthedialogthatisdisplayedaftertheselectionoftheDialog...menuitemofftheFile
menu.Bothdialogspresentintheprogramprovideadditionalfunctionality,whichis
notpresentinPMnorindicatedintheCUA91stylerules,noradoptedbyWPS.What
is this all about? Nothing other than the result of some ergonomic considerations.
Dialogs are often large windows that hide a great deal of the underlying client
window. In general, this is not a serious problem, since the focus is on the dialog, and
theuserisnotallowedtointeractwithanyotherpartoftheapplication.Althoughthis
is true, the user is often forced to remember some information visible on the underly-
ing window, which might turn out to be useful even in the dialog. This is the case, for
instance, of KWIKINF.EXE, a help utility furnished with IBM's Toolkit. To be certain
nottowriteabadname,youareoftenforcedtomovethedialog,which-fortunately-
isprovidedwithatitlebar.Theadditionmentionedbeforeallowsyoutoconsiderably
reduce the overall region taken by a dialog, leaving visible only its titlebar (Figure
8:13) after a double-click on the right mouse button.

A subsequent double-click on the same right mouse button will restore the original
dialog.Youmightnotbeffe¢£impressedwiththisnewfeature;buttheimportantthing
is feozo the WM_BUTTON2DBLCLK message is handled within the code of the dialog

procedure, demonstrating messages other than the traditional ones. The governing
logicisthatofstoringthepositionofthedialoginanidentifieroftypeSWPwithstati.c

Dialogwindows 453

Figure 8.12 The presentation parameters of the controls present in the
dialog have been changed.

`'.#'-Ei.,
a+a in Srma {¢ ire

E§ct&5ch6R:I `L=-5; -` -+i;ri ch s+e<r-±RA i+^*¢ `see§¢s*.46¢.4o.6e`A±o+apRE¥IBMOS?ZaiPfiPr09ramm{nEpeg:F

StefanQ M8ruzz{ ig¥93 EH`_,,`__-_._.,...,.1.\......`...+,....,r...i...Lu_.--

ffi®
Templtites System clodL

Figure 8.13 The Product information dialog after it has been reduced to
the sole titlebar.

454 0S/2 2.1 Workplace shell programming

storage class, and then placing the titlebar there alone. After a second WM_BUT-
TON2D8LCLKmessage,thedialogwillberestoredtoitsoriginalsize.

Presentation P arameters and Wincreate;Window()
The syntax of Wz.77Crc¢fewz.7tdow() needs as its last parameter a pointer to a memory
area containing the presentation parameters. This solution is very simple (at least
theoretically) compared to a call to Wz.7tsefprcsp4zr4z77c(), since it is executed at the same
time the window is created.

Theprogrammeronlyhastoallocateamemoryblocklargeenoughtoaccommodate
a PRESPARAMS structure, and as many PARAM structures as there are presentation
parameters to be changed.

typedef struct _PRESPARAMS
I // pres

ULONG cb ;

PARAM aparam[1] ;

} PRESPARAMS ;

typedef PRESPARAMS *PPRESPARAMS ;

ThePRESPARAMSstructuredefinesinthemembercbtheoverausizeofthearrayof
PARAM structures, which appears as its second member.

typedef struct _PARAM
I // param

ULONG l.d

ULONG cb

BYTE ab[

) PARAM :

typedef PARAM *PPARAM ;

This structure, in turn, contains the presentation parameter of type P P_ in i d, the
sizeofthetextstringorofaLONGvalue(thecbmember),andthentheactualparameter
itself (the a b [1] member). The memory block to be allocated must take into consid-
eration the size of each structure, and also the size of the presentation parameter. In
some cases, it will be a text string, in others it will be a four-byte object. The situation
is depicted in Figure 8.14.

Summarizing,theoperationstobeexecutedare:theallocationofamemorypage,the
useofsomepointersofthetypespRESPARAMS,PARAM,andmaybeevenapcHARtocompute
thesizeoftheinsertedobjectthatwi]lhavetobestoredinthecbmemberofpRESPARAMS.

// allocati.on of a chunck of memory for the presparams
rc = DosAllocMem((PPV0ID)&ppresp, 4096, PAG_COMMIT I PAG_WRITE) ;
1.f(rc)

break ;

// presentati.on params for the Parent & Owner pushbuttons
pparam = (PPARAM)(PV0ID) (ppresp -aparam) ;
p = (PCHAR)pparam :

Dialogwindows 455

// set the values
ppresp -> aparam -> 1.d = PP_FONTNAMESIZE ;
strcpy(pparam -> ab, szFont) ;
pparam -> cb = si.zeof(szFont) ;
1Delta = si.zeof(szFont) + si.zeof(ULONG) * 2 ;
ppresp -> cb + = lDelta ;

// move the poi.nter at the end of the fi.rst presparam
p + -1Delta ;
pparam = (PPARAM)p ;

// set the values
pparam -> i.d = PP_FOREGROUNDCOLORINDEX ;
pparam -> cb = si.zeof(COLOR) ;
*((COLOR *)pparam -> ab) = CLR_WHITE ;

lDelta = si.zeof(COLOR) + si.zeof(ULONG) * 2 ;

ppresp -> cb + = lDelta ;

// move the poi.nter at the end of the second presparam
p + -lDelta ;
pparam = (PPARAM)p ;

// set the values
pparam -> I.d = PP_BACKGROUNDCOLORINDEX ;
pparam -> cb = si.zeof(COLOR) ;
*((COLOR *)pparam -> ab) = CLR_RED ;

lDelta = si.zeof(COLOR) + si.zeof(ULONG) * 2 ;

ppresp -> cb + = lDelta ;
®®,

aparan[1]

OVERALL
SIZE OF ALL
TEE PARAM
data srfuctures
and their
presentation
Parans

aparam[2]

aparam[3]

PRESPARAMS
data structure

presentation
Paran
dineusion

prpgar==n /,

/
\

presentation \
Param
dimension

presentation
param type
(a PP_definition)
presentation
Param
dimension

presentation
Paran

Figure 8.14 Scheme for managing a block of memory containing a number of
pres entation parameters.

456 0S/2 2.1 Wor:laplace shell programming

When this preparatory phase is over, you only have to pass the pointer to Wz.7t-
C7ie¢fewz.77dozo() as its last parameter:

®,®

hwndctl = Wi.ncreatewi.ndow(..., ppresp) ;
®,®

Finally, you must destroy the auocated memory block:

®,

DosFreeMem(ppresp) ;
®,®

Chapter 13 contains a significant example of how to assign different presentation
parameters by this approach.

• Presentation Parameters and Resource Files

Thesamedefines-introducedbytheprefixPP_-thatareusedinthesourcecodecan
beusedintheresourcefileswiththeMENU,DLGTEMPLATE,WIND0WTEMPLATE,andother
directives. The RC.EXE resource compiler also supports the P RES PARAMS directive
with the following syntax:

PRESPARAMS PP_xxx, presentati.on attri.bute

h Listing 8.2, implementing a first version of the WIIEREIS utihity, you win find
inside a WI NDOWTEMPLATE the use of PRESPARAMS to overcome an aesthetic problem
due to the background color of the entryfields in a template. The adopted color is
always light gray, which is not appropriate when the rest of the window is white.
ThankstothepresentationparameterPP_BACKGR0UNDC0L0RINDEXinthewindowor
dialogtemplate,itispossibletoassignthesamecolorusedfortheremainingpartsof
the window (white in this case).

Teriihinating a Modal Dialog
The function Wz.7tDzgBox() does not return any value to the window procedure from
which it was called, at least not until the function Wz.7?Dz.s77tz.ssDzg() is executed in the
dialog procedure. This is yet another characteristic that differentiates a dialog proce-
dune from a window procedure.

#defi.ne INCL_WINDIALOGS
B00L Wi.nDi.smi.ssDlg(HWND hwndDlg, ULONG ulResult) ;

P arameter Description
hwndDlg Handle to the dialog
ulResult Return value of the dialog procedure
Retunii value D es cription
BOOL Success or failure

Dialogwindows 457

It is not possible to estabHsh in absolute terms the physical position of W€.7tDz.s-
77cz.ssDzg()inadialogprocedure,althoughitwillgenerallybefoundinthecodedealing
with the WM_COMMAN D message. More precisely, the call to Wz.7tDz.s777€.ssDzg() concerns
the interception of the conditions of the OK and Cancel buttons of the dialog. It is the
designer'sresponsibilitytodefinetheterminationconditionsofthedialog,fromwhen
the template is written, until adequate code is implemented.

®®

case WM_COMMAND:

swi.tch(SHORTIFROMMP(mpl))

I
case DID_OK:

Wi.nDi.smi.ssDlg(hDlg, TRUE) ;

return (MRESULT)1L ;

case DID CANCEL:

Wi.nDi.smi.ssDlg(hDlg, FALSE) ;

return (MRESULT)OL ;

I
break ;

®®®

Fora77eod¢ZdialogloadedwithWz.7tDzgBox()itisnotpossibletouseWz.77Dcsfreywz.7t-
dozu(), an operation that is permitted with 77todezess dialogs. The defines D I D_0 K and
D I D_CANC E L are present in PMWIN.H, and are usually used to indicate the termina-
tion conditions of a dialog for positive actions (D I D_0 K) or for cancellation (D I D_CAN -
C E L). The values in PMWIN.H are the following:

#defi.ne DID_OK
#defi.ne DID_CANCEL

When terminating a dialog with Wz.7tDz.s77tz.ssDzg() you must indicate in the second
parameter the value TRUE when dealing With a DID_OK condition, or FALSE for
D I D_CAN C E L. The value specified as the second parameter of Wz.7tDz.s777z.ssDzg() will be
returned by Wz.7tDzgBox() in the window procedure.

Def unit Message Processing
Each message passing through a dialog must be subject to some default processing.
The function Wz.77Depzgproc() will take care of this task.

®®

swi.tch(msg)

I
®,

]
return Wi.nDefDlgproc(hwnd, msg, mpl, mp2) ;

I

458 0S/2 2.1 Workplace shed progranming

As for window procedures, it is preferable to place Wz.77Depzgproc() outside the
sw1.tchblockprocessingmessages,soastomakesurethataumessageswillgettothe
default processing provided by the system.

Some Considerations
The activation of a modal dialog with Wz.77DzgBox() will cause input focus to be
captured from the owner window. This will depend on the nature of the Wz.7£DzgBox()
function: when it is executing it will prevent any messages that are not addressed to
itself from reaching the application's message queue, and thus grant itself exclusive
dominance over the user's input. Later, when the W1.7tDz.s77tz.ssDzg() is called, the
window is not yet destroyed. Wz.7tDzgBox() will always perform this operation before
returning a value to the calling window procedure.

Furthermore,asyoucanseeinListing8.1,thefunctionwz.7tDepzgproc()willexhibit
rather unusual behavior concerning the default processing of the WM_COMMAN D mes-
sage. Wc.77Depzgproc() will always destroy the dialog, whatever the source of the
message. Given that this is the ideal behavior when the OK or the Cancel button is
pressed,itisnotanoptimalwayforhandlinganyotherpossiblepushbuttonspresent
inside the dialog. You have to take care of this when implementing the dialog
procedure.

Never forget that you must always export the name of a dialog procedure to the
application's module definition file. A dialog procedure, just like a window proce-
dune, is a function of the EX P E NT RY type, so it must always be present in the EX P 0 RTS
section of the DEF file.

A Utility for PM
Now we know about all the components that will let us build a PM appHcation that
is more significant than the previous tutorial examples. A problem present since the
very first versions of PM is that of the generation of support files during the compila-
tionand]inkingphasesofdevelopment.Thisisevenmoreevidentinthosecaseswhen
you want to take advantage of the advanced features of Borland's compiler, like the
generation of precompiled headers. The directory containing the examples will be
overcrowdedwithfilesthatarevitalduringthedevelopmentphase,butthatlaterjust
take up disk space. You need to be able to get rid of all these with one command and
reclaim the unused disk space. The WHEREIS application shown in Figure 8.15 will
accomplish this.

The application of WHEREIS cannot be resized manually in order to stop the user
from hiding from view some essential controls for the program's correct operation.
However, a minimize icon is present so that you can make the application disappear
temporarily.

In the upper part of the window there are two listboxes for displaying the drives
that are present in the system and the files that have been found after the user's
specifying some search criteria.

Dialogwindows 459

Figure 8.15 The window of the WIIEREIS application contains several con-
trols specialized for searching a file in a drive of the system.

Beneath the listboxes you will find the complete p¢£fe7t¢777e of the current directory,
which will show you where you are in the file system. Nonetheless, the search for a
file will be conducted on the whole drive, rather than on a directory alone. To the left
of this,therewillappeartwopushbuttonswiththelabelsDeleteandDeleteAl1;these
two pushbuttons are initially disabled. They will be enabled automatically by the
appHcation as soon as the search operation finds some positive matches.

The search for a ffle or for a set of files (the usual wildcard characters are fully
supported) requires the user to write the search criteria in the entryfield that holds
input focus when the application is started. h the lower part of the window there are
three buttons for starting a search, canceling the search request, and quitting the
application.

Searching for a File
To search for a file, the user will have to input its name in the entryfield, as shown in
Figure8.16,thenselectthesearchbutton.Theapplicationisalsoprovidedwithaseries
ofaccelerators(ALT+Sforsearch,ALT+Cforcancel,andALT+Qforquit),tofacilitate
keyboard operations.

460 0S/2 2.1 Wor:laplace shell progranming

Figure 8.16 Search for files with the BAK extension in the C drive of the
system.

Don't get confused by the way the window is created. This is 7cof a dialog, and its
behavior is different. Notice the button with the style BS_DEFAU LT. This attribute is
assigned to Search, however, pressing the Enter key after typing some text in the
entryfield will not cause this button to be selected automatically. To overcome this,
the code provides a special accelerator that is equivalent to pressing the Enter key.
Any time the Enter key is pressed, the Search button win be selected. Be careful,
though!hthe102-keykeyboardstherearetwoEnterkeys:thetraditionaloneandthe
one on the numeric key pad. The two keys, although being theoretically equivalent,
are handled by PM with two distinct defines: VK_NEWLINE and VK_ENTER. h the
resource file of WHEREIS you will therefore find that these two accelerators will
ewhibit the same behavior typical of a dialog, even in this ordinary window.

Duringthesearch,thecursorchangesintothehourglassi.contostressevenvisually
that the application is busy in its processing phase. Once a file has been found, it will
be displayed directly in the appropriate listbox, and the count of matches will be
incremented.

This listbox is also provided with the style LS_EXTEN D ED ES E L to allow the user to
select more than one file at the same time. When the user chicks the left mouse button
over a file, he will indirectly enable the Delete and Delete All buttons. These two

Dialog windows 461

pushbuttons are associated with accelerators, Ctrl+D and Ctrl+A, respectively. There
are two basic actions that the user can perform: execute a selected file by selecting it
andconfirmingthechoice(doublemouse-click),ordeleteoneormorefiles.Executing
a file is possible only if it represents an executable module with the EXE extension,
while there are no special restrictions for deleting a file.

The Scheme of the ALppucation
Severalcontrolsarepositionedintheclientareaoftheapplication.Tomakeoperations
simpler,awindowtemplatehasbeenwrittenintheresourcefile;itislaterloadedby
meansofacalltothefunctionwz.7tLo¢dDzg(),alreadydescribedinthepreviouslistings.
The main window of the application belongs to the class WH E RE I S, a class registered
bytheapplication.Thismeansthattheresourcefilemustalsodefinethisnarneinthe
window template, and, above all, it means that you cannot rely upon receiving the
message WM_I N ITD LG for customizing the look of the controls contained in the win-
dow. It is the application itself that takes care of this aspect, by implementing a
different solution. The mechanism is very simple, and consists of sending a message
defined in the code to the window procedure in order to prepare au controls before
thewindowisactuallydisplayed.hthewindowtemplatethereisnoFCF_SHELLP0-
S ITI 0N flag in order to prevent the execution of Wz.77Lo¢dDzg() from displaying the
window.Forthispurpose,theapplicationreliesontheservicesofWi.7isefwz.7tdozopos(),
which is called immediately after sending the WM_COMMAN D message with the special
value of MN_STARTU P defined in the code.

®®

Wi.nsendMsg(CLIENT(hwndFrame), WM_COMMAND,

MPFROMSHORT(MN_STARTUP), OL) :

®®

M N_STARTU P is defined in the application's header file, just like an ID assigned to a
menu item. There is a corresponding c a s e branch that will be taken only when that
message is sent by 777¢z.7t(); the purpose of this portion of code is principally that of
capturing in identifiers with static storage class the handles of all controls.

®,

case MN_STARTUP:

I
ULONG ulDri.veNum, i. = 0 ;

ULONG ulDri.ves ;

CHAR szBuffer[10] ;

// retri.eve control handles
hwndDri.ve = Wi.nwi.ndowFromlD(hwnd, ID_DRIVE) ;

hwndDi.r = Wi.nwi.ndowFromlD(hwnd, ID_DIR) ;

®®®

hwndFound = Wi.nwi.ndowFromlD(hwnd, ID_FOUND) ;

DosQuerycurrentDi.sk(&ulDri.veNum, &ulDri.ves) ;

462 0S/2 2.1 Workplace shell progranming

whi.le(i. < 26 && ulDri.ves)

(
i.f(ulDri.ves & 1)

I
spri.ntf(szBuffer, "%c:", 65 + i.) ;
Wi.nsendMsg(hwndDri.ve, LM_INSERTITEM,

MPFROMSHORT(LIT_SORTASCENDING) ,

MPFROMP((PSZ)szBuffer)) ;

)
ulDri.ves >= 1 ;
1'+ + ;

)
sprl.ntf(szBuffer, "%c:", ulDri.veNum + 64) ;
Wi.nsetwi.ndowText(hwndDri.ve, (PSZ)szBuffer) ;
ShowcurDi.r(ulDri.veNum -1, hwndcurDi.r) ;

Wi.nsetFocus(HWND_DESKTOP, hwndEdi.t) ;

)
break ;

®®

AlltheidentifiersoftypeHWNDaredeclaredwithstat1.cstorageclass,sothatthey
arealwaysaccessibleduringthehandlingofamessageinthewindowprocedune.This
situationwouldhavebeenidealevenforWz.7tM#Zfwz.7tdozoFro77eJlds(),providedthatall
IDs were sequential. However, the one-at-a-time approach used with Wz.7tw€.#dozD-
Fro77£JD() was preferred because it allows you to deal with any handle in separate
identifiers, and is easier to understand and remember than in a single array of hwnd
thatwouldbeaccessedonlythroughcrypticindexes.(Changingthecodeinthissense
would be an excellent exercise, though. Try it!).

Afterretrievingthehandlesofallcontrols,theprogramwilldetectalldrivespresent
inthesystembycal]ingthefunctionDosQ#cnya4rre7ifDz.sk()thatretumsinthesecond
U L0 NG a map of the devices installed in the computer.

#defi.ne INCL_DOSFILEMGR
APIRET APIENTRY DosQuerycurrentDi.sk(PULONG pDri.veNumb,

PULONG pLogi.calDri.veMap) :

P arameter D escription
pDriveNumb Number of drives present in the system
pLogicalDrivemap Map of the drives present in the system
Return vahae Description
APIRET Success or failure of the operation

The wh 1.1 e loop allows you to find the letters that identify each drive and display
them in the appropriate fistbox. The function Sfeozuc#rDz.r(), not documented in the
previouscodefragment,willsimplyselectinthelistboxthecurrentdriveanddisplay
the current directory. The preparatory phase ends with assigning focus to the entry-
field so that the user can type in the name of the file to be searched for.

Dialog windows 463

The Accelerator Table
Tomakeiteveneasiertousetheapplication,weassigneachpushbuttonanaccelerator
consisting of the ALT key together with the first letter of the button's name. There is
no way to load the accelerator automatically, since in this case we are not using
Wz.7tc7'e¢£esfdwz.7tdozo(). Therefore, it is necessary to load it directly with W€.77Lo¢dAc-
cezT¢bJe(), and thus associate it with the application's frame window by calling
WinsetAccelTable()..

®®

haccel = Wi.nLoadAccelTable(hab. NULLHANDLE, RS_ACCELTABLE) ;

Wi.nsetAccelTable(hab, haccel, hwndFrame) ;
®®

The accelerator table acts at the frame window level by detecting any key or
combination of keys before passing them to the target window procedure under the
disguise of a WM_CHAR message.

Error Handling
The WHEREIS program allows the user to select one of the drives that are physically
present in the system. For hard disks there are no problems and, in the case of a
hardware or media failure, selecting the corresponding string (C:, D: ,...) will change
theselecteddrive.Thisisnottrue,though,forfloppydrives(A:and8:).Afloppydisk
mustphysicallybepresentinthedriveiftheoperationistosucceed.Ifyoudon'ttake
care of this in the code, and the users happen to select a floppy drive without a disk,
thenthesystemwilldisplayonthescreenatypicalOS/2errormessage.Theproblem
can be solved by inserting in the code a call to the function DosE77or():

®®®

DosError(HARDERROR_DISABLE) ;

From this point on, the application's business is that of detecting and handling any
hardware error condition that might occur as a result of the user's selections.

Executing a File
Only EXE files can be executed from the listbox: the triggering event is aL double-click
with the left mouse button. To decide whether the selected file is actually an EXE file,
the last three letters of the selected item are compared to the string EXE, as iuustrated
in the following code fragment:

®,,

case LN_ENTER:

sPos = (short)Wi.nsendMsg(hwndDi.r, LM_OUERYSELECTI0N,
MPFROMSHORT(LIT_FIRST), OL) ;

®®®

464 0S/2 2.1 Worlaplace shell progranming

The first operation that is performed when the notification code LN_ENTER is
receivedisidentifyingwhatitemwasselectedinthelistbox.Onthebasisoftheretum
value of Wz.7zse77dMsg(), the program retrieves the selected text string (the file name)
and its length:

®

sltem = (short)Wi.nsendMsg(hwndDi.r, LM_QUERYITEMTEXT,

MPFROM2SHORT(sPos, si.zeof(szBuffer)),
MPFROMP(szBuffer)) ;

®®®

Once the string is available, it is necessary to check if its extension is EXE, and in
that case execute the corresponding file. The sfrc77cpz.() library function will return a
value of zero when two strings are equal. h case of failure this portion of code is
abandoned without calling DosExecpg77z() :

®,®

// ski.p i.f not an EXE
I.f(strcmpi.((szBuffer + (sltem -3)), "EXE"))

break ;
DosExecpgm(szstri.ng, si.zeof(szstri.ng),

EX EC_ASY N C ,

NULL, NULL,

&rc'
szBuffer) ;

®®®

The execution of the new application is obviously asynchronous in relation to its
parent, so that it will have a completely autonomous life with respect to the parent
process.

Selection of a File
Once a search has been executed, the names of all matching files appear in the
appropriate listbox. When periodically cleaning up the hard disk, you will probably
be interested in deleting all BAK, OBJ, RES, and other files that consume space. The
Hstbox is provided with the flag LS_E XT E N D E D S E L , and will therefore allow the user
to select more than one file at a time. The notification code LN_SELECT , originating
from the user's interactions with this listbox, is issued by the appfication to change
the status of the Delete and Delete All buttons. These buttons are enabled as soon as
one item is selected, and disabled when no items are selected.

®®

I.f((sltem = (short)Wi.nsendMsg(hwndDi.r, LM_QUERYSELECTI0N,

MPFROMSHORT(LIT_FIRST) ,

MPFROMLONG(OL))) != LIT_NONE)

I
Wi.nEnablewi.ndow(hwndDel, TRUE) ;

Wi.nEnablewi.ndow(hwndDelAll, TRUE) ;

Dialogwindows 465

I
else
I

Wi.nEnablewi.ndow(hwndDel, FALSE) ;

Wi.nEnablewi.ndow(hwndDelAl1, FALSE) ;

)
®,®

The buttons are enabled several times in case of multiple selections. h each case,
when the notification code LN_S E LECT is received, there is no simple and immediate
way of knowing if it refers to some item different from the previous one, since this is
a listbox with LS_EXTENDEDS E L. Rather than implementing complex algorithms for
determining this, we take a simple and straightforward route, even if its actions are
somewhat redundant.

D eleting Fi.Ies
This portion of the program is both interesting and dangerous. Never ever use the
WHEREIS utility with important files like C or RC; if you press the wrong keys and
have no updated backups available, then you're ruined!

The selection of an item in the listbox displaying the result of the search, win
automaticallyenabletheDeleteandDeleteAllbuttons.Ifyoupressthefirstone,you
WEL delete all selected files, wLfh Delete AI you WEL delete all files listed in the tistpox.,
and here, the word ``delete" refers to the magnetic media, not to the contents of the
listbox! So, be careful.

The code that takes care of these two ways of handling deletions is practically
identical, although the action is more selective in the first case. The only distinction
concerns the selection of the whole listbox when Delete All is pressed.

®

sltem = (short)Wi.nsendMsg(hwndDi.r, LM_QUERYITEMCOUNT, OL, OL) ;

for(sPos = 0; sPos < sltem; sPos+ +)
Wi.nsendMsg(hwndDi.r, LM_SELECTITEM,

MPFROMSHORT(sPos),

MPFROMSHORT(TRUE)) :

®®

The delete all ca s e does not have aL b re a k delimiting its end, so its processing will
proceed with whatever code follows, and that is the code handling the Delete button:

®®

sstart = LIT_FIRST ;
Wi.nsendMsg(hwndDi.r, LM_SETTOPINDEX,

MPFROMSHORT(0), OL) ;

®,,

The first operation performed by the code is to make visible as the Hstbox's
top-index item, the first one physically available (item 0). The user could have
performed a vertical scron of the window's contents when selecting a file. Although

466 0S/2 2.1 Wor:Iof ace shell progranming

this operation does not change the order of the items in the listbox, it does, however,
induce erroneous behavior in the selection of the appropriate listbox item, probably
due to some intemal bug. To overcome this odd problem, we resort to a solution that
is just as odd, because it is not logically consistent: making the first item the topmost.
At this point everything is ready for deletion. A question to the user is mandatory
beforeproceedingwiththisriskyoperation:Areyoureallysureyouwanttocontinue?
Sinceoftentheanswerwillbenegative,wedecidetosuspendtheprogram'sexecution
indefinitely by displaying a modal dialog with a rather unusual look (Figure 8.17).

The dialog, by capturing the input focus, will impede the execution of any other
operationintheapplication,soitdoesindeedachievetheintendedpurpose.Thecode
for displaying the dialog and getting its return value is very simple and terse:

®,,

i.f(!Wi.nDlgBox(HWND_DESKTOP, hwnd,

YesNoproc,

NULLHANDLE, DL_CONFIRM,

NULL))

break ;
®®,

Figure 8.17 Before proceeding with the deletion of the selected files, the user
must press the Yes button that appears in the window.

Dialogwindows 467

If the retrrm value is FALS E, then execution of the code of the two buttons Delete
and Delete AJl is skipped, thus canceling the requested deletion. The Yes button has
agreenbackground,whiletheNobuttonhasaredbackground.ItisintheYesNoproco
dialogprocedurethatthecolorattributesareassignedwhenthemessageWM_INITDLG
is received:

®®

case WM_INITDLG:

(
COLOR clr = CLR_GREEN ;

Wi.nsetpresparam(CTRL(. hwnd, DID_OK), PP_BACKGROUNDCOLORINDEX,
si.zeof clr, &clr) ;

clr = CLR_RED ;
Wi.nsetpresparam(CTRL(hwnd, DID_CANCEL), PP_BACKGROUNDCOLORINDEX,

si.zeof clr, &clr) ;

)
break ;

TheCTRLmacroretumsthehandleofeachpushbutton,startingfromthehandleof
thedialogandtheIDassignedtoitintheresourcefile.Theconfirmationofthedelete
operation is allowed only once, before initiating the operation. To make the utility
evensafer,itisadvisabletotransfertheconfirmationrequestdirectlyintothedeletion
algorithm, and thereby ask for confirmation for each file about to be deleted. (You
nright try to implement this change as an exer¢ise!)

Thedeleteoperationsareplacedinawh1.1eloopbasedonthevalueretumedbythe
messageLM_QUERYITEMSELECTI0Ntothelistboxcontainingthefiles.Thelistboxwill
return the index of the selected item, or LI T_N0 N E if there is no selection. The search
forthefirsthigh]ighteddisplayeditemmustalwaysstartfromtheoriginofthelistbox,
eventhoughthisisanLS_EXTENDEDSELlistbox.Thisbehavioralvariationisindicated
by the application's desigri. In general, in an exfe7tdcd sezecfz.o7t, only the first selected
item can be identified, starting with L IT_F I RST. For an other items, the search must
progressfromtheindexofthepreviousone.This'isnotthecasehere,becauseassoon
as the index of the first selected item is retrieved, that item is deleted from the listbox
togetherwiththecorrespondingfileinthefilesystem.Hence,theitemthatoriginally
appeared as the seco77d selected item, now becomes the¢.rsf one, after the deletion of
what was originally the first selected item.

®,,

Whi.le((sPos = (short)Wi.nsendMsg(hwndDi.r, LM_QUERYSELECTI0N,
MPFROMSHORT(LIT_FIRST) ,

OL)) != LIT_NONE)
u

Wi.nsendMsg(hwndDir, LM_QUERYITEMTEXT,
MPFROM2SHORT(sPos, sizeof(szBuffer)),
MPFROMP(szBuffer)) :

468 0S/2 2.1 Wor:laplace shell progranming

EI

DosQuerypathlnfo(szBuffer, FIL_STANDARD, &fs3, si.zeof(fs3)) ;
1.f(fs3.attrFi.le & (FILE_NORMAL I FILE_ARCHIVED))

(
rc = DosDelete(szBuffer) ;
sltem = (short)Wi.nsendMsg(hwndDi.r, LM_DELETEITEM,

MPFROMSHORT(sPos), OL) ;
spri.ntf(szBuffer, "%d", sltem) ;
Wi.nsetwi.ndowText(hwndFound, szBuffer) ;

)
)

®®

The removal of an item from the listbox. is done by sending the message
LM_DELETEITEM. The return value of Wz.7tse7tdMsg() corresponds to the number of
remainingitemsinthewindow.TheappHcationwillimmediatelyupdatethenunber
of files left in the Hstbox before proceeding with a new iteration in the deletion loop.
This piece of information is then used to disable the delete buttons and to clear the
searchcriteriapreviouslyinsertedintotheentryfield(sincetherewillnolongerbeany
file of that type in the selected drive).

®®®

// check i.f empty
l.f(!sltem)
I

Wi.nEnablewi.ndow(hwndDel, FALSE) ;
Wi.nEnablewi.ndow(hwndDelAll, FALSE) ;
Wi.nsetwi.ndowText(hwndEdi.t, "') ;
Wi.nsetFocus(HWND_DESKTOP, hwndEdi.t) ;

1
®,,

If the request for confirming the deletion were executed for each single file in the
listbox, it would have been necessary to introduce a minor modification in the code.
hfact,inordernottochangetheworkinglogicofthewhi.1eloop,itwouldhavebeen
necessary that the not yet deleted selected items lose their highlighting, in order to
preventthemfrombeingpresentedforconfirmationoverandoveragainthrougheach
subsequent run through the loop, and so freezing the application.

The entire source code of WIIEREIS appears in Listing 8.2.

Searching f or Files
AveryimportanttaskinthewHEREIsapplicationisthatperformedbythefilesystem
searchalgorithm.ThecodeofthisportionoftheprogramisextemaltothePMmodule
of WHEREIS, but it is not a separate thread from the application. The entire logic of
the search algorithm is based on the functions DosFz.7tdFz.7's£() and DosFz.7zdNe#£(). h
order to operate correctly in an OS/2 system that employs the HPFS ffle system, it is
necessary to introduce some changes to the code to be able to access those files that
have extended attributes and long names. But this an exercise left to the reader!

Dialogwindows 469

Creating an Open Box
A task that shows up in almost every OS/2 application is that of letting the user select
afiletobeloaLdedintomemory.Generally,forthispurposeanOpenexfe7tdedco77£77t¢7zd
option will be available in the File top-level menu.

Buildinganopenbox-thisisthejargonforamodaldialogthatallowsyoutoselect
andloadafile+isasimpleoperation.Althoughitisimpossibletostandardizeitslook,
s.uch a dialog win always have aL Hstbox, some static windows, and one or more
entryfieds. The listbox will contain the list of ffles, the directory path, and the system
drive from which the selection is being made. A recent trend is toward a more
complicatedandsophisticatedlookaswellasgreaterfunctionaHty,whichbettercaters
to the growing number of drives present in personal computers, and better helps the
user in making selections. The first consideration is how to create a dialog that looks
good and works well. In Figure 8.18 you can see the dialog that is implemented in the
application of Listing 8.3.

The contents of the current directory are listed in the listbox labeled with the text
Files. This control is large enough to accommodate file names conforming to the rules
of FAT (8 characters plus 3 for the extension), and it should probably be made larger
if you were to use long file names, like those recognized by the HPFS. The Hstbox on

Figure 8.18 A typical modal dialog used to select and load a file from disk.

4:70 0S/2 2.1 Wor:laplace shell progranming

the lower left side of the window lists the names of the drives present in `the system
` and the subdirectories of the current one (if any).

The name of the current directory is shown in a static control in the upper part of
the dialog. Under this window there appears an entryfield that is ready to accept the
user's keyboard input. The dialog is then completed by two pushbuttons that either
confirmi the selection or cancel the operation.

The separation of file names from other information makes it easier for thet user to
perform selections, as it prevents having to keep up with ongoing vertical scrolling,
which is the rule in open boxes that have ordy one listbox.

r\

Posidoving the Dialog
The generic position of a dialog is defined in its template, and is expressed in
coordinatesoftheparentwindow.Asthiswillbethescreen,thepositionofthedialog
is often independent of the position of the application window, especially when this
oneisnotmaximized.hthiscase,though,weimplementanalgorithmtopositionthe
dialogatthecenteroftheapplication'sclientwindow.Thereisnowaytobesurethat
this operation will succeed, because it depends on the actual size of the main window
on the screen. The algorithm computes an experimental position and then checks it
against the size of the application's client window. The computation is based on the
measurement of both the dialog's size and the client's. The first is easy to obtain, since
the handle of the window is available when the message WM_I N ITD LG is handled in
the dialog procedure. To get to the handle of the client window, it is necessary to
declare a source file scope identifier (which we will 7tez7er do in this book), or resort to
one of the information-passing techniques previously described (which is the right
way of doing things!).

A New Data Type
h the dialog procedure it is necessary to know the handie of the client window; then
we need to let the client window have the name of the ffle by returning its complete
pathname. This is a typical situation that requires a shared memory area to be defined
and accessible to both procedures for exchanging information in both directions
(Figure 8.19). To handle data in the shared memory area we define a new data type in
the apphication's header file:

®®,

typedef struct _DATA
I

CHAR szFi.leName[80] ;

HWND hwndowner ;

) DATA ;

typedef DATA * PDATA ;

®®,

Dialogwindows 4;71

iiREEH
I..I +-..L: (i~r`.I I ,-

)

i-i.;;i'=:::i:--,,;:a:i.,--:;n:1,

LD-il --. : - :?j=: I

[E;r!.`=:a:.'S-i i `
ieil +c. : -:i~.=-l'

OLDOPEN,DEF
1~,i

g[B-g:ERE:,g|Epr *+
oLDoPEN.EXE a
.OiDOPEN,H t t
OLDOPEN,ICO
OLDOP.EN,MAK + +
OLDOPEN.Obj ~ i'+3

i RE ERE]REprEHERERE RE

iEHERE

Figure 8.19 The application will force the listbox to scroll its contents accord-
ingly to the text typed into the entryfield.

ThearrayofCHARwinholdthecompletenameoftheselectedffle,whilethehandle
willrefertotheapplicaLtion'sclientwindow(hereithasbeencalledhwndOwner,since
the client should in theory play the role of the dialog's owner). h the window
procedure there appears the declaration of an identifier of type DATA with stati. c
storageclass.ThemessagehandlingcodeforWM_CREATEwillassigntothehwndOwner
member the handle of the client window, which will eventually be used in other
portions of the code.

Ceutering the Dialog
h order to position the dialog at the center of the cHent, a simple algorithm win
compute its position on the basis of the sizes of the two rectangles obtained through
Wz.7tQ#enywz.7tdozoRec£(). Before calling Wi.7zse£Wi.7tdozt7Pos() to position the open box,

you must convert the position into screen coordinates, which is the right unit, as the
desktop is the dialog's parent.

®®

Wl.nQuerywi.ndowRect(hwndowner, &rcl) ;

Wi.nQuerywi.ndowRect(hwnd, &rc2) ;

4:72. OS/2 2.1Workylace shed progranming

ptl.x = ((rcl.xRi.ght -rcl.xLeft) -(rc2.xRi.ght -rc2.xLeft))
ptl.y = ((rcl.yTop -rcl.yBottom) -(rc2.yTop -rc2.yBottom))

// centered di.alog
l.f(ptl.x > 0 && ptl.y > 0)
I

Wi.nMapwi.ndowpoi.nts(hwndowner, HWND_DESKTOP, &ptl ,1) ;

Wi.nsetwi.ndowpos(hwnd, HWND_TOP,

ptl.x, ptl.y,
0,0,
SWP_MOVE) ;

)
®

Filling in Controls
The PM API, although rich in functions and messages for dealing with the most
disparate requirements, does not have a specific tool for transferring the contents of
a directory directly into an open box. The whole chore is on the programmer's
shoulders, and this will allow a degree of customization that would be difficult to
achieve through API functions only.

So,aspecificfunctionhasbeenwrittenforfillinginthelistbox,LisfFz7esD!ts(),which
is essentially based on the usage of the Dos functions that we have already met in the
description of WHEREIS. Resorting to an extemal function responds to a precise
design criterion of the program. An open box is an area of continuous interaction
between the user and the application, and therefore subject to frequent and rapid
changes pertaining to the contents of the various controls it contains. It is reasonable
toexpectthattheoperationoffillinginthelistboxwillhappenmorethanonceduring
the time 'the dialog is on the screen, rather than just when the window is initialized.

Input Sources
Writing an open box is an excellent exercise for the programmer because of the high
degreeofinteractionthattakesplaceamongtheapplication,theuser,andthevarious
controls.Thechangestothedialog'soutputcanoriginatefromaninputdirectlyinthe
entryfield,orfromselectionsofitemsinthelistbox,andtheselectionofthedrive,the
directory, and the files. For each of the two listboxes, both kinds of selection actions
are supported: simple selection and selection with confirmation (double-click). The
selection of the name of a directory or a drive in the corresponding listbox does not
generate any kind of apparent effect on the program. The same action in the Files
listbox,ontheotherhand,willcausetheselecteditemtobedisplayedintheentryfield.

A double-click on the nalne of a drive or a directory will cause the current directory
to be abandoned, and the selected one to be displayed. A double-click on a file name
implies its selection and the notification to the window procedure, with the conse-
quential loading operation (which, though, is not implemented in Listing 8.3). For a
listbox,adouble-clickoftheleftmousebuttonisequivalenttopressingtheEnterkey.

Dialogwindows 473

Thetexttypedbytheuserintheentryfieldcantakeondifferentforms-inthedialog
procedure there must be some code knowledgeable enough to interpret its meaning.
Assuming that the user does not commit any input error, the fonowing scenarios are
possible:

• Direct input of a file name
• Input of a drive name
• hput of a directory name
• hput of a drive name and a directory name

The entryfield will comlnunicate with the dialog procedure by sending it notifica-
tion codes through the WM_CONTR0 L message. The same is true for the two listboxes,
whilethetwopushbuttons,OKandcancel,willusewM_COMMAND.Whentheusertypes
in some text in the entryfield, a piece of code dealing with the notification code
EN_CHANGEwillbecalledautomaticallytoperformthescrollingofthecontentsofthe
listbox of files, provided there is a file starting with the same characters.

hFigure8.18,thelistoffilescontainsanumberofnamesstartingwiththeletter0,
and only one starting with the letter D. If the user types the letter 0 (case doesn't
matter), then the entryfield will force the listbox to scroll its contents so as to display
asitsfirstelementtheitemwiththelowestindexstartingwiththatletter(Figure8.19).

Thismechanismisnothitedtothefirstcharacter,butextendsforthewholelength
oftexttypedinbytheuser.So,whenthenamebeingtypedinbecomesOLDOPEN.D,
thepossible,choicesarerepresentedbyOLDOPEN.DEForOLDOPEN.DLG,asillus-
trated in Figure 8.20.

To search for a text string in a listbox, send the message LM_SEARCHSTRI NG, and
specifyhowthesearchistobeperformed:inthiscasethestyleLSS_SUBSTRINGisused.

®,®

whi.le(TRUE)

(
sPos = (SHORT)Wi.nsendDlgltemMsg(hwnd, DL_FILELIST,

LM_SEARCHSTRING,

MPFROM2SHORT(LSS_SUBSTRING, slndex) ,

MPFROMP(buffer)) ;

®®,

First, the return value of Wz.7tsc77dDzglte77zMsg() is checked to see that there does not
exist any file name that matches the text string typed by the user in the entryfield
(that's the s Pos < 0 condition). The second conditionbeing checked determines if the
involved item has an index that is lower than that identified in a previous search.

®,®

// no match,1et's ski.p
i.f(sPos < 0 I I (sPos >= 0 && sPos < slndex))

break ;
®®®

4:74 0S/2 2.1 Workplace shell progranming

Figure 8.20 The scrolling of the Files listbox's contents extends for the whole
length of the text typed by the user.

The algorithm then goes on and retrieves the text string from the listbox, and
compares it with what the user typed into the entryfield. If there is a match, then that
item is placed at the topmost position in the window.

®,®

// retri.eve stri.ng
sLen = (SHORT)Wi.nsendDlgltemMsg(hwnd, DL_FILELIST,

LM_OUERYITEMTEXTLENGTH,

MPFROMSHORT(sPos), OL) ;

Wi.nsendDlgltemMsg(hwnd, DL_FILELIST, LM_OUERYITEMTEXT,

MPFROM2SHORT(sPos, sLen + 1),

MPFROMP(szTmp)) ;

i.f(strstr(szTmp, buffer) = = szTmp)
I

Wi.nsendDlgltemMsg(hwnd, DL_FILELIST, LM_SETTOPINDEX,

MPFROMSHORT(sPos), OL) ;

return 0 ;
)
®®®

Dialogwindows 4:75

If there is no match, then the search will go on only if the first character typed in by
the user is less than the corresponding character in the item just identified.

®

// check i.f fi.rst char i.n entryfi.eld
// i.s bi.gger than fi.rst i.n stri.ng
i.f(*szTmp > *buffer)

break ;

// set new starti.ng posi.ti.on
slndex = sPos :

®®

Selecting a File
Apartfromthetechniqueusedforselectingafilefromthelistbox,theappHcationwill
only return its name to the calling window procedure, storing it in the memory area
shared with the dialog procedure. For sake of exercise, the application then changes
thecontentsofthetitlebarbywritingthefileselectedthroughtheopenboxtotheright
of the Open Box title (Figure 8.21).

Figure 8.21 The name of the selected file is reproduced in the application's
titlebar.

4:76 0S/2 2.1 Workplace shed progranming

Predefined Dialogs
The PM API has been emiched with new functions to simplify writing applications.
The designer can now use predefined dialog windows to access the file system
(ope7tbox and s¢z7ez7ox), and even display the fonts available in the system. The positive
aspect of predefined dialogs is essentially in the standardization of some parts of the
application'sinterface,andconsequentlymakingtheleamingcuIvelesssteepasusers
get used to a consistent look. The system editor takes advantage of the predefined
dialogs in all file system access operations and in font selection.

There are, however, some drawbacks. h the first place, they do not make writing
code that much simpler. Predefined dialogs are based on the retrieval of members
from rather complex data structures that have lots of styles for controlling customiza-
tion and behavior. in the second place, the WPS style rules reduce considerably the
need to design applications according to traditional schemes, still anchored to the
presenceofmenubarsandassociateddrop-clowns.AswewinseeinChapter13,some
fundamental operations, like opening a file, saving it, or changing a font, can b(
implemented according to new schemes that follow the object-oriented logic rof th
system's interface.

Accessing the File Systems
To implement a dialog of the type ope77Z7ox, s¢z7ebo#, or s¢z7e¢sbox, you can follow the
same design plan. The trick is all in the retrieval of the 20 members of the FI LED LG
structure, with appropriate values and defines present in PMSTDDLG.H.

typedef struct _FILEDLG
I // fl'ledlg

ULONG cbsi.ze ;

ULONG fl ;

ULONG uluser ;

LONG IReturn ;

LONG ISRC ;

PSZ pszTi.tle ;
PSZ pszOKButton ;

PFNWP pfnDlgproc ;

PSZ pszlType ;
PAPSZ papszlTypeLi.st ;
PSZ pszlDri.ve ;

PAPSZ papszlDri.veLi.st ;

HMODULE hMod ;

CHAR szFullFi.le[CCHMAXPATH] ;

PAPSZ papszFQFl.lename ;

ULONG ulFOFCount ;

USHORT usDlgld ;

SHORT x ;

SHORT y ;

Dialogwindows 4:77

SHORT sEAType ;

} FILEDLG ;

typedef FILEDLG *PFILEDLG ;

h Table 8.3 the usage of each member of the structure FILEDLG is described.
Once the members of the F I LED LG structure have been appropriately filled in, the

onlyremainingactionisthatofcallingWz.7tFi7eDzg()accordingtothefollowingsyntax:

Table 8.3 The Members of the Structure FILEDLG

Memb er D es cription

cbsize
fl
uluser
lRetum
lsRC
pszTitle
pszOKButton
pfhDlgproc

pszIType

papszlTypeList

pszlDrive
PapszlDriveList

hMod

szFullFile [CCI"A)ffATH]
papszFQFilename

ulFQFCount
usDlgld

Size of the structure.
FDS_ flags to define the behavior of the dialog.
Field available to the programmer.
Return value from the dialogs destruction.
Return value in case of error.
Title of the dialog.
Title to display in the OK button.
Entry point of the dialog's customized dialog
procedure (optional).
Text string containing the kind of filter for extended
attributes.
Address of a table of pointers to text strings concern-
ing various kinds of extended attributes.
Text string containing the name of the initial drive.
Address of a table of pointers to text strings pertain-
ing to the drives to be examined.
Handle of the module from which the customized
dialog template is to be retrieved if the style FDS_-
CUSTOM is used.
Complete pathname of the selected file.
Address of a table of pointers to text strings pertain-
ing to the selected files.
Number of selected files in the dialog.
ID of the dz.¢Zog fe77tpJ¢fe defined in the application,
which should be used in place of the standard one if
the style FDS_CUSTOM is used.
Position of the dialog along the X axis.
Position of the dialog along the Y axis.
Type of extended attribute to associate with a file
`when it is saved.

4:78 0S/2 2.1 Workplace shed progranming

#defi.ne INCL_WINSTDFILE
HWND APIENTRY Wi.nFi.leDlg(HWND hwndp,

HWND hwndo,

PFILEDLG pfi.ld)

Parameter
hwndp
hwndo
pfild
Retan Vahae-D

Description
Handle of the parent window
Handle of the owner window
Address of a FILEDLG structure
Description
Handle of the dialog if the style FDS_MODELESS has been set
(NULLHANDLE in case of error) or TRUE if this is a 77£od¢Z
dialog

TheinformationregardingtheselectedfileiscontainedintheszFullFi.1emember,
whileinthecaseofamultipleselectionape7zZ7ox,youwillhavetoexaminethecontents
ofthewholeblockpapszFQFi.1ename.

Listing F Oats
The same logic described for Wc.77Fz7eDzg() appfies to the operation of displaying the
fist of fonts installed in the system. h this case, though, the structure will have the
name F0 NTD LG, and the function to be called is Wz.7tFo7t£Dzg():

#defi.ne INCL_WINSTDFILE

HWND APIENTRY Wi.nFontDlg(HWND hwndp,

HWND hwndo,

PFONTDLG pfntd) ;

Parameter
hwndp
hwndo
pfutd
Return Value
EHuiRE

El

Description
Handle of the parent window
Handle of the owner window
Address of a FOP\ITDLG structure
Description
Handie of the dialog if the style FDS_MODELESS has been set
(NUILHANDLE in case of error) or TRUE if this is a 77tod¢Z
dialog

h Figure 8.22 you can see the NEWOPEN appHcation immediately after selecting
the Open option. The dialog that appears at the center of the screen is a predefined
openbox.

inFigure8.23NEWOPENshowsthe/07t£Z7oxactivatedafterselectingtheFontoption
from the File menu.

Listing8.4presentsthesourcecodeoftheNEWOPENapplicationandisanexcellent
starting point for implementing predefined dialogs in apphications.

Dialogwindows 4:79

Figure 8.22 NEWOPEN takes advantage of the predefined openbox
dialog to access the file system.

Figure 8.23 Displaying the system fonts after the selection of the Font
Option.

480 0S/2 2.1 Worlaplace shell progranming

Modeless Dialogs
Some fundamental aspects of the nature of modeless dialogs were described in the
first part of this chapter. Let's sumlnarize them briefly:

• A fe777pZ¢£e is mandatory

• The template must be loaded with Wz.7tLo¢dDzg()

• A dialog procedure has to be written specifically for the window
• Access and handling of the modeless dialog is performed through the handle

returned by Wz.77Lo¢dDzg()

Although these are the distinctive features of a modeless dialog, often the dialog
procedureisnotwritten;insteaditispreferredtosimplyconveya]lmessagestosome
windowprocedurethatisalreadyavailable.ThisisexactlywhatwasdoneinListing
7.6. The effect produced by Wz.77Lo¢dDzg() is that of returning to the application the
handle of a window belonging to the class WC_FRAME inside which appear a number
of controls.Thehandlingofthiswindowfollowsthetraditionalrulesalreadyseenin
the preceding chapters. The destruction of a modeless dialog does not take place
throughwinDismissDlg(),butwiththemoregeneralwinDestroywindow()function,
which is usuany called from a zo!.77dozu proced#re.

A Sample of a Modeless Dialog

EI Toillustratepossibleuseofamodelessdialog,1et'sonceagainchangethecolorofthe
client window. Ih Listing 8.5, the scro]ling amplitude of the scrollbar corresponds to
the numeric values of the colors in PM. The user can change the color of the client
window by acting directly on the scrollbar contained in a modeless dialog (Figure
8.24).Afterselectingacolor,focuscanbetransferredtotheapplication'smainwindow
without making the modeless dialog disappear.

The interaction between the dialog and window procedure relies on the receipt of
the notification codes of the scrollbar, which are transformed into input for coloring
the window. The client window's handle is passed to the dialog procedure, which is
ready to color the window when receiving the WM_PAI NT message. The modeless
dialog will send the client an appHcation-defined message (#defl. ne WM_COLOR
WM_U S E R) whenever the user selects a color from the scrollbar.

®,®

Wi.nsendMsg(hwndowner, WM_COLOR,

MPFROMSHORT(sPos), OL) ;

®,,

The message is then processed in the window procedure, retrieving from mp 1 the
numeric value of the color and then invalidating the whole window.

Dialogwindows 481

Figure 8.24 The modeless dialog of this application is yet another input source
in addition to menus.

®®

case WM COLOR:

clr = LONGFROMMP(mpl) ;

Wi.nlnvali.dateRect(hwnd, NULL, TRUE)
break ;

®,,

.-:' .%*SRE..
. .` :`*+ `

meveloping REast
Multithaeaded
Applications
OneofthetypicalfeaturesoftheiAPX86familyoflntel'sprocessorsisthesubdivision
oftheaddressablespaceintosegments.Upto,andincludingthe286,segmentscould
beatmost64KB.Forthe32-bitprocessors(386,486,andPentium),segmentscanbe
aslargeas4GB.Furthermore,the286,386,486,andPentiunprovideavirtualaddress
space that frees the operating system from the actual amount of physical memory
installedinthePC.Table9.1summarizesthefeaturesofallIntelprocessorscurrently
available.

Table 9.1 Operating Features of Intel's

iAPX86 Mo de

8088 Real mode
8086 Real mode
80286 Protected mode 16-bit
80386dx -dx2 Protected mode 32-bit

iAPX86 Processor Family

Virfual Address
Emul ation RAM Sp ace

None
None
Real mode
Real mode-
protected mode
16-bit

80486dx -dx2 Protected mode 32-bit Real mode-
protectedmode
16-bit

Pentiun Protected mode 32-bit Real mode-
protectedmode
16-bit

483

1MB Ab s ent
lMB Ab sent
16MB IGB
4GB 6 4TB

4GB 64TB

4GB 6 4TB

484 0S/2 2.1 Worlcplace shell progranming

The features of the 32-bit processors are a significant improvement over the 16-bit
architecture, appreciated by system progra]rm.ers as well as software developers.
OS/22.1canbeinstalledonlyona32-bithtelprocessororcompatible.Segmentation
is an intrinsic operating mode that carmot be disabled in any way. Therefore, even
the 386, 486, and the Pentium are segmented processors. This, however, does not
implythatOS/2mustbesegmentedaswell.Asamatteroffact,theimplementation
of OS/2 on a 32-bit processor is unusual. The concept is very simple: A single 4GB
segment gives an address space that is vastly superior to that attainable in the 16-bit
mode, and is large enough to contain both the operating system as well as the
applications.

Therefore, even if the 32-bit Intel processors are segmented, OS/2 ``sees" just one
flat address space of 4GB. For this reason, memory management is typically linear,
andnolongersegmentedasinthepast.The32-bitoffsetisbasicallytheonlysource
ofinformationtocalculateamemoryaddresspassingthroughthepagingalgorithm.

Itfo11owsthatthetheoretical1imitsof32-bitprocessorsareusedonlypartiallyby
OS/2 and other similar operating systems. For compatibility reasons, with older
16-bit OS/2 applications, at the current stage the amount of memory that can be
addressed directly by any 32-bit OS/2 process is ``ouly'' 512MB, although this
Hmitationwillsoonberemoved.Thisblockcontainseventhememoryspaceshared
between processes. Each single rurming task in OS/2 2.1 can access up to 512MB of
address space, which is conceivably the amount of RAM that could be physically
installedinacomputer(although,morerealistically,thebest-equippedmachinesare
currently limited to 20-30MB). Figure 9.1 depicts a scheme of memory in OS/2 2.1.

Figure 9.1 Memory scheme of OS/2 2.1 systems.

Developing Fast Multithreaded Applications 485

Memory Allocation
Theallocationofablockofmemoryisnolongerbasedontheconceptofthesegment,
but on that of the page. 32-bit processors also have a paging unit of memory, a tool
that allows optimized access to a large memory area. A page in OS/2 is a block of
4.096contiguousbytes,andistheminimumamountofmemorythatcanbeallocated.
Even if you need only two bytes, you win have to allocate a whole page. Don't be
deceivedintothinkingthatthisisawaste:Thesizeofapageissosmanwithrespect
to the processor's capabilities that this is no problem. Furthermore, the adoption of
the page as the minimum chunk of allocable memory provides considerable advan-
tageswhenswappingmemoryblocktotheharddisk.Anotherfeatureistheautomatic
initialization to zero for each allocated page.

Thelinearaddressingofmemory,releasedofthelimitationsandconstraintsofthe
old segments, makes things easier. The first change is the disappearance of memory
models.YouwillnolongerhavetochoosebetweenaSmallratherthanaMediulnor
Large memory model. Just compile, and you're done. Consequently, even pointers
are of one kind, and always four bytes large.

Ifyouthenneedtoaccesstoalargeareaofmemory(maybesomemegabytes!)you
just need to call DosAZZocMeffl() and the trick is done!

#defi.ne INCL_DOSMEMMGR

APIRET APIENTRY DosAllocMem(PPV0ID ppb, ULONG cb, ULONG flag);

P arameter D esoription

ppb Address of the pointer to the memory block
cb Size of the memory block
flag Attributes of the memory block
Retun;I vahae D es oription
APIRET Success or failure of the operation

Comparedwiththememoryallocationtechniquesin16-bitenvironments,thereis
one more important difference. The memory allocated by DosAZJocMe7%O can effec-
tivelybeusedthroughapointeronlyiftheflagpAG_COMMIThasbeenset.Co7#77c€.#€.ng
is what actually makes available the set of pages requested by the designer. The
separation of the request from use (allocation and committing) grants that you win
always be able to have large memory area without overloading the system with
oversized blocks. h fact, it is always possible to commit new pages at any later
moment by calling Dosse£Me77t().

th the 32-bit world of OS/2 there is yet another peculiarity regarding memory
allocation operations. Once a block has been auocated, the only operation that is
allowed on it is its destruction (in addition to the dynamic commitment). There is no
wayofreallocatingablock;butthisisnoproblem,thankstothedelayedcommitment
techniques.

486 0S/2 2.1 Wor:laplace shed programming

Memory Management
The Memory Manager of OS/2 resorts to three distinct techniques in dealing with
and solving any problems derived from overcrowded memory due to multiple
simultaneously rurming appHcations:

• MOving
• Discarding
• Swapping

The first technique consists of changing the position of memory blocks within the
physicalRAMpresentinthesystem.Thiscanpreventexcessivefragmentationofthe
residual memory into several portions too small for the system's needs. The com-
pacting of these free areas can create one block of contiguous RAM large enough to
containanewapplicationlaunchedbytheuser.Themovementofmemoryblocksis
averyfastoperation,anddoesnotrequireanykindofeffortonpartoftheoperating
system, as it is supported directly in hardware. However, the rearrangement of the
memory map will not always suffice to fuffill the needs of the system when even
larger blocks of free memory are requested.

The second technique employed by OS/2's Memory Manager is that of free
memory from those objects that are dz.sco7'd¢bze. When defining resources like menu
templates or dialog templates, you can use the memory option DISCARDABLE to
define the behavior of a menu or a dialog window once it has been loaded into
memory. A discardable object will allow OS/2's Memory Manager to free the space
it occupies whenever the need for more memory arises. h order for the assigrment
oftheattributeofDISCARDA8LEtobecorrect,itisnecessarythatitisassociatedwith
aread-onlyresource.TheactionperformedbytheMemoryManageronadiscardable
object is destroying it and freeing the RAM it held. This will be possible only if that
resource's contents do not get changed after being loaded in the system. The code
segment and resources like a menu template and a dialog template fall into this
category. The system maintains a table of objects marked dz.scardflbze in order to
identify those least recently used (LRU strategy), and that have not been locked.
Furthermore, it also maintains a reference to all free discardable segments to specify
iftheyarepresentinmemoryorreleasedduetoapreviousrequestforfreememory.
Whentheapplicationneedstoaccessagainanobjectthatwaspreviouslydiscarded,
it will automatically load it into RAM in a way that is completely transparent to the
application.

The third technique employed by the Memory Manager when there is little free
memory, is that of making a copy on disk of some portions of RAM (szu¢ppz.7eg). Of
thethreetechniquesusedbytheMemoryManager,thisistheslowest,sinceitimplies
the operation of hardware devices that respond in mean access time expressed in
milliseconds,comparedtothenanosecondsofRAM.However,itisthroughszo¢ppz.7tg
that OS/2 systems can continue to operate even in conditions of extreme memory
scarcity.

Developing Fast Multithreaded Apptications 487

Segmented Applications
The three techniques described in the previous paragraph are used and handled by
the Memory Manager of OS/2 when loading and executing processes. The software
designerhasaverylimiteddutyinauthis-justtodecidewhichobjectsshouldbeof
thed£.scord¢bzetypeintheresourcefileorwhenallocatingnewmemoryblocks.

ThankstotheimplementationofOS/2on32-bitprocessors,eachprogramismadeupOf
justonecodesegmentandonedatasegment(respectivelycsandDS).Theterm``segment"
inthethearworldofos/2hasnofhingtodowiththeequivalentconceptinthel6Jbitworld.
Itmeansmoregeneraflyan``object."Thelinkerofos/2systemsiscapableofgenerathgan
executablewithsubportiouswithdifferentattributesgoverningthetimeatwhichtheyare
loadedintomemoryandhowtheyaesubsequentlymanaged.inthepast,thesesubportions
coinddedwiththesegmentsOftheprocessor,andforconthuity,thesamenamehasbeen
kept,albeitwithadifferentmeaing.Therefore,itispossibletogeneratecodethatoptimizes
itsimpactonthesystem'smemorybydelayinginthethemomentOfitsbeingloadedinto
RAM.Toachievethis,theprogrammerwi]lneedtosubdividethecodeintodifferentsource
files,generatingacorrespondingnunberofobjectmodules.Thedefinitionof``segmented"
executablerefersthustothedifferentbchaviortakenbythe]inkerwithrespecttothesingle
objectmodulesthatmakeuptheexecutable.Somemoduleswi]1beloadedintoRAMas
soonasapro€essisactivated(PRELOAD);otherswi]lremainondiskuntiltheywi]1beinvolved
andrequestedapcftybytheappHcation(LOADONCALL)asshowninFigure9.2.Thissame
bdrvior can be extended to some resources specified in the resource file, as described in
Chapters6and8(menutemplatesanddialogtemplates).

Code Segment and Data Segment
EachPMapplicationconsistsofonesinglecodesegmentandonesingledatasegment.
This feature derives from the implementation devised by IBM's designers for the

-RAM
IIII III

DS

- DISK

I-cstEXEcunoNA

DS

I_-ICODESEGRENI

Figure 9.2 Operating scheme of the loading of a segmented os/2 PM application.

488 0S/2 2.1 Workylace shdl progranndng

32-bithtelprocessors.hthel6-bitworlditiscustomarytoreasonintermsofmemory
modelsthatdifferinthekindofpointers,andnumberofcodeanddatasegments,each
at most 64KB. You will have to forget all about this in OS/2 2.1. At the current stage,
OS/2apphicationshaveaccesstheoreticallytoaflataddressspacethatisatmost4GB,
but limited in practice to 512MB for compatibility reasons with the older 16-bit code
ofversionl.x(thislimitwillberemovedinforthcomingversions).Themaximunsize
ofthecodesegmentandofthedatasegmentisinanycaseseveralmagnitudesgreater
thanthepastlimit,andnolongercreatesabottleneckevenforthemostcomplexand
largest applications. A shared memory area can be 64MB, and win have to be
subtracted from the limit of 512MB. Each process thus has a practical address space
of approximately 448MB.

Executing Several Instances
Theproblemofexecutingseveralinstancesofthesameapplicationhasbeendealtwith
in Chapter 4 as far as windowing issues were concerned. Now we will see what
happens in the system with the code and data segments that characterize the ex-
ecutable.

Acriterionfollowed.tominimizetheoccupationofmemoryisthatofshaingamong
thevariousinstancesthecodesegmentoftheappfication.hthesystemsthatoperatein
profecfed 77code, all code segments are by definition read-only, and as such win never be
subject to any kind Of modification during their execution. Any attempt to change their
contentswillberejectedbyhardware,whichwi]lgenerateaGe77er¢ZProfecfz.o7tF¢#Jf.

When an application is executed, the system loader loads all its code and data
segments that have been declared with the directive PRELOAD. In any subsequent
execution of other instances, the program will load only the data segments, and not
the code segments already present in memory. Figure 9.3 illustrates this.

INSTANCE 2 DS

DS2 CS DS1
RAMINSTANCE1DSSTANCES

ffi A_EXECUTIONOFTWO

CS DS
DISK

Figure 9.3 The use of the code segments and data segments by different
instances of the same application.

Developing Fast Multitheeaded Applications q89

h order for every instance to have private data segments, it is necessary that the
DATAdirectivebecompletedbyMULTIPLEtoindicatemultiplecopiesofdatasegments.
The default values assumed by the linker are LOADONCA LL both for code segments as
well as for data segments.

Producing a Fast Executable
Most often, in an OS/2 application it is possible to identify portions and/or options
of the menu bar that are used less frequently than others. It is easy to guess that the
File:Open option is used frequently in any PM application. Less frequently will the
user select Product hformation, since the information returned is static and seldom
used in the application.

The Product information option generally displays a dialog window; that implies
thepresenceofadialogprocedureandadialogtemplate.Loadingintomemorythese
two objects directly when the application is rurming will often mean occupying
memory space without there being any real and tangible reason for it. It would be
muchbettertodefertheloadingintomemorytothemomentwhenitistrulyneeded.
BothoftheseobjectscanbedeclaredwiththeLOAD0NCALLmemoryoption.As'faras
the dialog template is concerned, it is sufficient to assign the option directly in the
resource file, as in the following example:

DLGTEMPLATE 256 LOADONCALL MOVEABLE DISCARDABLE

i
®®®

I

For the dialog procedure, you have to follow an approach that implies the imple-
mentation of the fouowing conditions:

•Writingofthedialogprocedureinaseparatefilewithrespecttothatoftheactual
application

• Compiling the source code
• Assigning the attribute LOADONCALL to the code segment containing the dialog

procedure of the Product hiormation option
• Linking the application

For the first step, it is simply a matter of applying the common programming
techniques in the C Language. The subdivision of code into distinct modules makes
it simpler to write and maintain the code, as it allows one to concentrate on the
progran.Whencompilingthissource,thereshouldbenoparticularflagsfortheactual
sourcecode.ToassigntheattributeLOAD0NCALLtothesegmentcorrespondingtothe
objectmodulecontainingthedialogprocedureoftheproductinformationoption,you
have to act at the level of the module definition file (DEF).

4!90 0S/2 2.1 Workplace shell progranming

The Structure of the DEF
The realization of a segmented application is the outcome of the assignment of
directives in the DEF file, regarding the linear's results. h writing the module
definition file, you define by means of the directives CODE, DATA, and SEGMENTS the
features that pertain to their loading and management in memory. According to the
syntaxandfunctioningofthelinker2.00,itisnecessarytoindicatethedirectivesC0DE
and DATA with the following default values: P RE LOAD MOV EAB LE and D I SCARDAB LE.

This means that all code segments and data segments of an application will be
loaded into memory when the process starts execution. With the directive S EGM ENTS
you can discriminate between all segments of the application, code or data, by giving
them a behavior different from what is indicated with C0 D E and DATA.

The identification of segments with features different from that indicated by C0 D E
and DATA will force you to state in a precise way the name of the code and the data
segments you are interested in. To achieve this, you must know the 777od#Jc 7t¢77te of
each object file that you want to treat as a separate segment with respect to the rest of
the application (Figure 9.4).

The module name corresponds to the name that is present intemally in each OBJ
file, and sought by the linker when it generates the executable. The intemal name of
an object module is, by default, equal to the name of the source file at the file system
level, with the addition of C0 D E3 2 or DATA3 2, respectively, for code segments and for
data segments.

On the basis of the previous example, the internal name of the object file
PRODINFO.OBJ becomes P R0 D I N F0 C0 D E3 2: This is the information that is specified

TWENY.C + lcc.EXE + TWENY.OBJ

INK:#::#:->>DCsS 1 LINK386+ TWENVEXEPRODINFO.C+ICC.EXE+PRODINFO.OBJ

lNTERNALNAME 1 .DEF

PF`ODINFO_TEXT->CS
PFIODINFO_DATA->DS

Figure 9.4 The creation of distinct code and data segments for subsequent
handling by the system's linker.

I

Devaloping Fast Multithreaded Applications 4!91

correspondingly to the S EGM ENTS directive. The linker explicitly assigns the loading
andmemoryimahagementoptionstothesegmentsdeclaredintheSEGMENTSdirective:

+

®®,

CODE PRELOAD MOVEABLE DISCARDABLE
JDATA PRELOAD MOVEABLE DISCARDABLE MULTIPLE

SEGMENTS

PRODINFOCODE32 LOADONCALL MOVEABLE DISCARDABLE

®,

ThecodesegmentpRODINFO_CODE32ismarkedwithLOADONCAL,andthereforewillnot
beload`edintomemorywhentheapplicationismrmingunththeuserselectstheoption
Product information. As this is an object of the type dz.sc¢71d¢Z7Ze, it will be released from
memorywhenthesystemsubsequentlyreceivesarequestforavaflableRAM.

TherulegovemingtheuseofcoDE,DATA,andsEGMENTsdoesnotimplytheexclusive
useofthePRELOADoptionforthefirsttwodirectives.Thecriteriatobefouowedisthat
of declaring with COD E and DATA the greatest possible nun.ber of segments, and then
distinguishingthemwithSEGMENTS.Ifanappficationhasanumberofsegmentsofthe
typeLOAD0NCALLthatisgreaterthanthenumberofthetypePRELOAD,itisconvenient
thatthisattributebespecifiedcorrespondinglytocoDEand/orDATA.ththenextchapter
we will examine in greater detail the syntax of the DATA directive, when dealing with
fhedevehoprner+±ofdynaniclinkinglibraries(DLLs)£orOS/2.

Segmentation Rules
WhiletheprotectedmodeofthehteliAPX86processorsdeliversanaddressingspace
thatismuchlargerthanthatofrealmode,oftentheamountofphysicalRAMinstailed
in the system turns out to be inadequate to contain very large applications. The
techniqueofsegmentationgivesthesoftwaredesignerasimplemeansforovercoming
this problem, at least partially. The advantages of this solution are many:

• Shorter times for loading an application into memory
• Shorter waiting times for the user during the initial activation ope,rations of the

Prooram
• Ability to work even on systems with a limited amount of memory
• Better contribution to multitasking the system

in general, all options that are selected less frequently in the application can be
transformed into code portions resident in distinct segments and marked with
LOAD0NCALL.Theoverheadduringthedesignphaseisminimum;theonlyadditionis
arelativelygreatercomplexityinthemoduledefinitionfile.Inthenextsectionwewill
examine the structure of an application called Menu Maker, a utility for generating
menu templates. The relative complexity of the program, and its operations being
strictlydependentonthechoicesmadebytheuser,makeitanexcellentwaytopractice
code segmentation.

4!92. OS/2 2.1 Workplace shed progranming

To this end, the analysis of the source code with the development environment's
browsing options is extremely rewarding for recognizing functions that are interre-
1ated. Different from what was stated in the previous example regarding the Product
hiormationoption,itisnotmandatorythatasegmentcontainonlyonecodefunction.
Rather, it is advisable to collect in a single segment a greater num.ber of functions,
provided they are closely related.

A Menu Editor
The OS/2 2.1 IBM Toolkit contains some tools for automatically producing dialog
templates, icons, and fonts. DLGEDIT.EXE will help you in writing a dialog window,
asitallowsyoutodrawthewindowandthecontrolsitcontainsdirectlyonthescreen.
The DLG file produced is a simple script file that summarizes all startup directives
for reproducing the window drawn on the screen. The Borland compiler provides a
more complete resource manager that also has a tool for producing menu templates.
Themarketoffersmanyothertoolsspecificallydesignedforcreatingmenutemplates.
WhatisinterestingaboutthisexampleisnotthefunctionaHtydeliveredbyit,butthat
it allows you to deal, with some rather obscure aspects of the menu API of PM. In
Figure 9.5 you can see the MENU MAKER utility.

Figure 9.5 The application MENU.EXE allows you to generate a menu tem-
plate by drawing it directly in a PM application.

Developing Fast Multithreaded Applications 493

The Inderf ace of Menu Maker
The Menu Maker application might look unusual; the program's window is maxi-
nrized and does not have either a restore or a minimize icon; an empty menu bar is
displayed;thelowerportionoftheclientwindowaccommodatesavaluesetwithfour
cells.

The Maximized Window
Creating a maxinrized window in OS/2 PM is not a difficult task due to the specific
style WS_MAXIMIZE: the simplest solution is to set this style directly in the call to
Wz.7tcre¢£esfdwz.7tdozo(). Uhfortunately, this way of writing the application does not
produce the desired result. To bypass this inconvenience, you will have to create the
window with no display option, and delegate the operation and the maximization
directly to the function Wz.7tse£Wz.7cdowpos():

®®®

ULONG flFrameFlags = FCF_WPS & ~FCF_ACCELTABLE ;

nab = Wi.nlni.ti.all.ze(0) ;

hmq = Wi.ncreateMsgQueue(hab, OL) ;

Wi.nRegi.sterclass(hab, szclassName,
C 1 i. e n t W n d P r o c ,

CS_SIZEREDRAW, OL) ;

hwndFrame = Wi.ncreatestdwi.ndow(HWND_DESKTOP,

OL,

&fl FrameFl ags ,

szcl assName ,

szWi.ndowTi.t1e,

WS_C LI PCH I LDREN ,

NULLHANDLE. RS_ICON,

&hwndcli.ent) ;

// show maxi.mi.zed wi.ndow

Wi.nsetwi.ndowpos(hwndFrame, HWND_TOP.

0, 0' 0, 0,

SWP_MAXIMIZE I SWP_ACTIVATE I SWP_SHOW) ;

®

The Empty Merm Bar
Beneath the titlebar there appears a menu bar with no top-level menus. Among the
¢#77ce crc¢fz.opt flngs declared in the Wz.7tcre¢fesfdwz.7tdozt7() function there will also
appear FCF_MENU: The menu template is thus very simple, as it defines only one
top-level menu item:

4!94 0S/2 2.1 Wor:laplace shell programming

®®

MENU RS_MENU

[
MENUITEM "", MN_FAKE

)
®®

Since it has no text, the menu item with the ID MN_FAKE will not display anything
onthescreen.However,youcanstillperceiveitspresencebypressingtheleftmouse
buttonovertheleftextremeofthemenubar.Itsselectionwillnotcauseanyeffectin
the application. By Specifying the style MIS_BUTTONSEPARATOR, the top-level gets
right-aligned on the menu bar, instead of left-aligned-in this case its detection is
somewhat more difficult. As shown in Figure 9.6, the menu bar is a window of the
class WC_MENU .

\,

As discussed in Chapter 6, there is no specific data structure for the class WC_M ENU,
evenifthetoolkit'sdocumentationproposesakindofstructureontowhichyoucould
base the creation of a window belonging to the class WC_MENU directly through
W2.7tcre¢few£.7idozuo.Listing6.10resortstothattechniqueforcreatingawindowofthe
classWC_MENU.hthiscase,instead,thecreationofatop-1ev[elmenuandofthemenu
items of the drop-down menus is performed dynamically under the direct control of
theuseroftheapplication,andnotunderthecontroloftheprogrammer.hanycase,

£@Rtd?B:xecoog77o
hab: Ox7aooo1

#a;E:dft8To%otxE#:b85838oooog
Parent Cla§§Name: #1 - WC_FRAME
Owner: Oxebb0997c

a#:i;8%i:=tfE¥g¥ife#,14 - wc_FRA ME
Wndproc: 0
=ixDt:ria2Pg±efiDq¥22

Figure 9.6 SNOOPER proves that the menu bar is a window of the class
WC MENU.

Developing Fast Multithreaded Applications 4!95

itisnotpossibletocreateamenubarwithoutatleastonemenuitem:Theloadingof
amenutemplatefromtheresourcefileisthesimplestandmostconvenientsolution.

The Control Panel
AwindowoftheclassWC_VALUESETappearsinthelowerportionoftheapplication's
cHent window, and is the sole means of communication between the user and the
program. The Edit... cell mimics with ellipses the look and feel of menu items of the
extended command type. Its selection will display the modeless dialog shown in
Figure 9.7, which is fitted for generating the menu structure.

Shortly,wewillexaminehowthedialogworks.ThepresenceOfthedialogisoften
subsequenttotheloadingofatemplatethatcanbeobtainedbypressingtheLoadcell,
orbyproducinganewmenustructure.Withclose,theusercanabandontheprogram,
whilewithSave,theusercangenerateanimageonthediskofthemenuscreatedwith
the application.

The Appucation's Logic
Producing a menu template means generating a resource of the type MENU, defining
its IDs, and creating an accelerator table. All of these aspects are dealt with in Menu

Figure 9.7 The setting of the top-level menu and of the drop-down menus is
performed by selecting among the options presented in this modeless dialog.

4!96 0S/2 2.1 Workplace shell programming

Maker.Whengeneratingatemplate,theoperationiscontrolledbythemodelessdialog
displayed with the Edit... cell. hitially, the only option allowed is that of generating
a top-level menu (Figure 9.8).

Defining a Top-Level Mere
Theusercaninputinthespecificentryfieldthetextthatistoappearinthemenubar.
The application sets no limit whatsoever on the inserted text: Any combination of
upper-/1owercaseletters,aswenasthedefinitionoftheunderlinedletter(mnemonic
character),canbeused.Toimplementthis,itisconvenienttocreateaspecificfunction
that forces the first letter to be a capital and the rest in lowercase. Furthermore, the
strings of text of top-level options can contain only letters of the alphabet. The check
forthemnemoniccodecanbeassimpleascheckingforthepresenceofatflde,orwith
ainuchmoresophisticatedalgorithmthatwouldevencheckiftheselectedletterwere
already used by some other top-level. The style attributes, represented in the dialog
as check boxes, are au disabled, as is the entryfield pertaining to the insertion of an
acceleratorcombination.ThischoiceisimposedbytheCUArules.Afterinsertingthe
text of the top-level, the user must press the button Add Item in order to insert the
new item into the menu bar (Figure 9.9).

Figure 9.8 The first operation to perform when generating a menu is that of
defining one or more top-level menus.

Developing Fast Multithreaded Apptications 4!97

Figure 9.9 Insertion of the File top-level in the application's menu bar.

The choice of a modeless dialog is justified in this portion of the program. h fact,
asyoucanseeinFigure9.7,themodelesswill1osefocuswhenitistransferredtothe
menubar.Thetransferoffocusbetweenthetwowindowsallowsyoutocheckdirectly
during the writing of the menus as to how they actually appear.

The insertion of a top-level menu that does not cause a drop-down to appear is a
possible situation in PM, although it is advised against in the CUA specifications (it
is preferable to transform the item into a menu item, rather than taking up space in
the menu bar). Once a top-level has been created, the user defines the items to be
insertedintheassociateddrop-downmenuordefinesyetothertop-1evelmenus.Each
top-level defined by the user is accumulated in a specific listbox presented in the
modelessdialog.Thisallowstheusertoselectintowhichtop-1evelmenutoinsertthe
menu items of the associated drop-down (Figure 9.10).

Defining a Drop-Down Merm
After having defined a top-level menu, the four radio buttons in the dialog are
activated-top-level, drop-down, submenu, and separator. h general the user will
foucs on the drop-down radio button. The text is always defined in the entryfield
called Menuitem, while even the entryfield for defining the accelerator now gets
activated, as well as the check boxes (Figure 9.11).

4!98 0S/2 2.1 Workplace shed progranming

Figure 9.10 In the definition of drop-down menus, Menu Maker allows
the user to select the associated top-level menu.

I..-.`..,.__
ha F E¥ EE=aryrffu

ERE
Jig a Jg,rfe

6utffiBnu
• `. . . Iffll-Edit`+.-.1`..': -..it,.,,::.::ri±;:':+ii.:::--~L...:.:::.::+,.,..1:?:I: ,

a RE NI€'oJutl

Aoge{Bratorrfe ..` :. . . ,i,
y6

::!%F%f|E:E:¥:IS:SE::.::::.::==cO.®"===LLe&*.®e^£h£B^<£<^*®*^A:%rfe,

H3±

+grr£!! ¥##ffsfesi§,T8=¥D}_§abted_+LapsG#eoked
i

.
.. ` ... :=T::ng:;::?r.-`~.-L`.n^-hL..I.I.a.....a.~_u

Figure 9.11 Insertion of the text pertaining to a drop-down menu.

Developing Fast Multithreaded Applicedons 4!99

Wheninsertingthetextdescribingtheaccelerator,theapplicationdoesnotperform
any kind of control. The best syntax involves at most two keys for the accelerator
combination, based on one or two virtual keys (CTRL, SHFT, ALT, or Fxx) possibly
followed by a letter of the alphabet.

When the first drop-down of a top-level is defined, it is necessary to change its
nature:Thisoperationisequivalenttodeclaringatop-1evelwiththeSU8MENUdirective
ratherthanwithMENUITEM.Theoperationisnotdifficult,butitobviouslyrequiresyou
tohavethehandleofawindowbelongingtotheclassWC_MENU.Theapplicationmust
provide it, and then fill it in with the text defined by the user. h the next paragraphs
we win examine in greater detail the nature of the code implementing each single
operation of the application.

Defining a Separator
The operation of inserting a horizontal separator bar in a drop-down is relatively
simple. When the corresponding radio button is selected, the text S EPARATOR will
appear in the entryfield accommodating the menu item text (Figure 9.12).

The only quick in the implementation of this function is in defining the rules for
inserting a SEPARATOR in a drop-down. It is good to check that the bar never gets
positionedattheextremeendsofadrop-down,orthatitispresenttwoormoretimes

<# „ ¥ a¥seSd#nI givE h Tch tr qu ¥.h=,..T#.*#
#,

© Top-level ® Drop-down
em ~r nee.fro*qu he$4P dr` ch

© sub%ehu fa5eparator i]nF¥l
*

ii

Menuit€m |sEPARA,To.Riff fl*+.h i I-:
9 0P sve§. +

ffi ys #riieewii

Afasglara£Sr i {q=„~= : T3i=:==€=-:fr=3.:--:i.=~ :=`j=:~;? .-[L 3 :
t_ty--.I a -=:i:.I:.;r;:i`;:,:::::;ii:::.:;::.:-i:::;:;:::-i:f+-+-ho-=r+±=±.:u-=:-I-a-rl-I--t

i+
t . I #faa trlbu e§

RE gitspBfs g%#i§ab}€S ffi**£Ske# rr. + -~e;{3_-a--a+.-++.,,r:.tl.I^~+.-`.a-I+vi..tr`It~+~dr ~

t` -'.

Figure 9.12 Inserting a horizontal separator bar in a drop-down.

500 0S/2 2.1 Workplace shell progranming

in a row. It is possible to avoid this at the top of the window or inside a drop-down,
butitcannotbecheckedforattheendofthelist.Onlytheusercanmakesurethatthat
does not happen there.

Defining a Submerm
The CUA specifications are very clear concerning the creation of drop-down menus
atanylevelbeyondthefirstone.Althoughtheoperationispossible(sincetheresource
compiler does not impose any practical limit on the mum.ber of concatenated drop-
clowns), it is nonetheless advisable to make all possible efforts to avoid it, for ergo-
nomic and functional reasons regarding the user interface. The Menu Maker utility
allows you to define a second-level drop-down, but not any one beyond the second
level (which isn't acceptable in a real-world appHcation). This means that the radio
buttonSubmenumustbehandledwithspecialcare.Onceyouhavespecifiedanitem
of type S U BM E N U (Figure 9.13), the corresponding radio button gets disabled, and the
user will be allowed to define only a drop-down.

As before, it is not permissible to specify a 'SEPARATOR as the first item in a new
drop-down.Toinformtheapplicationthattheendofthesecond-1eveldrop-downhas
been reached, the user must select the Submenu button once again. This behavior
establishes the moment when the definition of a second-level drop-down starts and

REiRE]. ;i; .. -` ..-......i.. ---- -- - . ;-...-.-` ------. ---i. .;----.--.-.-. -_-.-_ _.____` .-__ _ .-.-_RE.ISgiv8P"# Sh'iefe§€

k

Figure 9.13 Definition of a second-level drop-down in Menu Maker.

Devaloping Fast Multithaeaded Applications 5On

Figure 9.14 With Menu Maker, the menu structure of a PM application can
take articulate forms with the presence of second-level drop-down menus.

whenitends,thusgrantingtheapplicationaccesstotheappropriatemenuwindows.
hFigure9.14youcanseethestructureofthemenuscreatedwithMenuMakerwhich
contain second-level drop-clowns.

Saving the Template
Once the menu structure has been defined, you can abandon the modeless dialog by
selecting the Terminate or Cancel button. The generation of the files ¢containing the
descriptionofthemenuwindowtakesplacewhenyouselecttheSavebutton.Asmall
modal dialog will appear on the screen, asking for the name to assign to the ffle
containingthemenutemplate,theacceleratortable,andthedefinitionoftheIDs.The
extensions used are, respectively: MNU, ACC, and HH (Figure 9.15).

Whenwritingtheresourceffle,youthenonlyneedtoestablishintheRCareference
to these files in order to have them compiled. Here's an example:

®

rci.nclude TWENY.HHH

rci.nclude TWENY.MNU

u rci.nclude TWENY.ACC

®

502. OS/2 2.1 Wor:laplace shell progranming

Figure 9.15 To save the menu structure, the user must assign a name to the set
of files generated by Menu Maker.

It is mandatory that the specific menu template header file be declared before the
onewiththeextensionMNU,becauseitcontainsthenecessarydefines.hFigure9.16
you can see the MNU, HHII, and ACC files generated by the Menu Maker utility.

Loading a Merm Template
To transfer into memory the contents of the files MNU, HIHI, and ACC, you carmot
take advantage of any of the services offered by OS/2's API. The application must
therefore implement a specific parser for the syntax of the three files in order to
interpret the information therein contained. This solution is extremely flexible, since
it also acts on any menu template generated with Menu Maker. It would have been
mucheasiertosimplyretrieveamenutemplatedirectlyfromanEXEmodule,andlet
OS/2's API perform all the loading operations. Before implementing this algorithm,
it is necessary to analyze in great detail the scenario we have to deal with. The
templates generated by Menu Maker will eventually be inserted in the resource file
associated with some application other than Menu Maker. The function Wz.7tLo¢d-
Mc77c4() provides a parameter for identifying, by means of an appropriate handle, the
modulefromwhichtheresourcetemplateistobeloaded.hgeneral,theNULLHANDLE

MENU ID_RES

I
SUBMENU "~Fi.le", MN_FILE

I
MENUITEM "~New\tctrl+N", MN_NEW„MIA_CHECKED

MENUITEM "~Open...\tAlt+Ins", MN_OPEN
MENUITEM "~Delete", MN_DELETE

SUBMENU "~Save", MN_SAVE

(
MENUITEM "Save ~As...". MN_SAVEAS„MIA_DISABLED

MENUITEM "Save A~1l", MN_SAVEALL

I
MENUITEM "P~lace", MN_PLACE

SUBMENU "~Pri.nter", MN_PRINTER

(
MENUITEM "Pa~ge setup...", MN_PAGESETUP

MENUITEM "P~ri.nter setup...", MN_PRINTERSETUP

I
MENUITEM SEPARATOR

MENUITEM "E~xi.t", MN_EXIT

I
MENUITEM "~Wi.ndow", MN_WINDOW

MENUITEM "~Help", MN_HELP

)
-_----------------------------

ACCELTABLE ID_RES

I
"N", MN_NEW, CTRL

VK_INSERT, MN_OPEN, ALT

)

#defi.neMN_MENU90
#defi.ne MN_FILE 500
#define MN_NEW501
#defi.ne MN_OPEN 502
#define MN_DELETE 503
#defi.ne MN_SAVE 504
#defi.ne MN_SAVEAS 505
#define MN_SAVEALL 506
#defi.ne MN_PLACE 507
#defi.ne MN_PRINTER 508
#defi.ne MN_PAGESETUP 509
#defi.ne MN_PRINTERSETUP 510
#defi.ne MN_EXIT 512
#defi.ne MN_WINDOW 540
#defi.ne MN_HELP 580

Figure 9.16 The contents of the files MNU, HHH, and ACC generated by
Menu Maker.

503

504 0S/2 2.1 Workplace shell progranming

value is used to indicate that the menu template resides in the executable from which
theWz.7tLo¢dMe7t#()functioniscalled.However,nothingprohibitsthatthemodulebe
differentfromtheonecurrentlyexecuting.Togettothehandleofamoduleyoumust
employ the function DosLo¢dMod#Ze():

#defi.ne INCL_DOSMODULEMGR

APIRET APIENTRY DosLoadModule(PSZ pszName,

ULONG cbName,

PSZ pszModname,
PHMODULE phmod);

Parameter
pszName

cbName
pszModName
phmod

Return Vahae
APIRET

Description
Buffercontainingthenameoftheobjectthatmighthavecaused
a problem during the function's execution
Size of the buffer declared in the first parameter
Name of the module
Address of an identifier of type HMODULE wherein the mod-
ule's handle win be inserted
Description
Success or failure of the operation

The first two parameters identify, respectively, the buffer and its size as will be
employed by the function DosLo¢dMod#Ze() in case of some execution error. With
pszModName you indicate the name of the module of which you want to know the
handle, which will then be stored in the fourth parameter. Generally, this function is
used to access to some dynamic link library (DLL) containing one or more resources
that will eventually be used in the application. This will be discussed in the next
chapter,sinceitisnotaviablesolutionatthisstage.Furthermore,thissolutionwould
force the program's resource to be resident in a DLL, which, although possible, is a
somewhat rare situation.

Parsing the MNU and HHH Files
At this point, we have to code a z7¢7`ser. This is what we will do:

• Ask the user for the name of the project previously indicated when saving the
menu structure

•OpenthefileswiththeextensionMNuandlHHI(theACcfilewillnotbeparsed,
since the information it contains does not affect the creation of a menu window,
but simply the accelerator table, and therefore is not relevant in this context)

• Detect in the MNU file the first item, which can be either a M E N U I T EM or a S U a M E N U

• Retrieve the text string of the item and the corresponding ID
•IssuethemessageMM_INSERTIITEMtothemenuwindow,afterappropriatelyfi]]ing

in the M E N U I T EM structure with the data retrieved from the MMM and IHH files
• Repeat the last two steps until the end of the MNU file is reached

Developing Fast Multithreaded Applications 505

A great deal of the inner workings of the parser depends on your skill and knowl-
edge in using pointers. There is a whole science about how to generate flexible and
efficient parsers; but this is a subject we will not be concerned about. The proposed
algorithmisjustastraightforwardsolutionamongseveralthatcouldbedevised,and
may not be the best one.

The MENUITEM Structure
Each single item that appears in a window of the type WC_M ENU is fully described by
the data contained in a structure of the type M EN U ITEM. The aspects that characterize
it are: its position, styles, attribute, ID, handle of the possible associated drop-down,
and a bitmap (if present). This is always valid, whether the item is a SUBMENU or a
MENUITEM.

#defi.ne INCL_WINMENUS
typedef struct _MENUITEM

I // ml.
SHORT i.Posi.ti.on ;

USHORT afstyle ;

USHORT afAttri.bute ;
USHORT I.d ;

HWND hwndsubMenu ;

ULONG hltem ;

I MENUITEM ;

typedef MENUITEM *PMENUITEM ;

When generating menus starting from the text contained in the MNU and IHH
files, it is necessary to retrieve all of the data required by the MENU ITEM structure.
Notably,theMENUITEMstructuredoesnotcontainthetextofthemenuitem:thispiece
of data must be passed to the window by means of the message MM_SETITEMTEXT.
Let's now examine, one by one, the members of the MENU ITEM structure in order to
determine the source of the data in the two files, MNU and HH.

The Position
It is very simple to determine the position where to insert each menu item described
inthemenutemplate;youonlyneedtospecifyMIT_ENDinordertohavetheinserted
elementappendedtothebottomofthelistofthepreviousones.Thisruleapplieseven
to drop-down menus, first-level or second-level. The position of the top-level menu
is always counted starting from zero from the extreme left. This is computed by the
parserwhenreadingtheMNUfileinthesearchforthefirstlevelSUBMENUstring.

The Style
The styles of WC_M ENU window items are defines having the prefix M I S. as described
in Table 6.5. h the case of Menu Maker, the only three styles supported are:

506 0S/2 2.1 Workplace shell progranming

MIS_TEXT-thedefaultvalue-MIS_SUBMENU,andMIS_SEPARATOR.Itistheparser's
duty to define the appropriate style. Some considerations:

•ThestyleMIS_SEPARAT0RappearsonlywherethereisaMENUITEMdirectiveinthe
how file

•MIS_SU8MENUisneverpresentintheMNUfile,butmustbeenforcedbytheparser
wheneveritencountersthestringSU8MENU

• Also, M I S_TEXT never appears in the template generated by Menu Maker, and must
bedeclaredforagenericmenuitemforatop-level,butnotwithanMIS_SEPARATOR

The AL±tri:bates
The attributes of the menu item are selected among those described in Table 6.7.
Actuauy, the only two that we win encounter in the menu template, except for
hand-craftedchanges,are:MIA_DISABLEDandMIA_CHECKED.Thesecorrespondtotwo
of the three check boxes that are present in the lower part of the modeless dialog.

The ID
Each menu item must have an ID, as we know. During the parsing of the MNU file,
this information is retrieved from the IHH file and automatically assigned to the
appropriate member in the MENUITEM structure. As we will see, the problem is not
computingtheIDs,butratherassigningthemwhendefiningatemplate.TheIDmust
alwaysbeanintegernumberintherangebetween0and65,536.Notably,aSEPARAT0R
will be missing an ID when implemented like MENUITEM SEPARATOR. On the other
hand,ifitisdefinedthroughthestyleMIS_SEPARATORthenitmustbeassociatedwith
an ID.

The Submenu Handle
Itisnecessarytospecifythehandleofawindowoftheclasswc_SUBMENUordyforthose
menu items of the menu bar or of a drop-down that in turn implies a drop-down. h
any other case, it is sufficient to specify a NU LL. This handle is an ordinary handle to
a window created with the function W€.7ic7ic¢fewz.77dozur).

The Bitmap Handle
AswasillustratedinChapter6,theitemsofamenucanbebitmapsinadditiontotext.
This possibility is not supported by Menu Maker, and therefore the h I t em member of
theMENUITEMstructureisneverusedintheprogram.ThefourbytesintheL0NGh1tem
might therefore be employed as best suites the application. More generally, this space
is accessible as a memory area for containing a pointer, a handle, or any other
informationthatcouldbeequaltothereservedmemoryareaofeachiteminalistbox.

.'`

Devaloping Fast Multithreaded Applications 5Or

Saving a Merm Template
PressingtheSave...buttonwillcausethemenutemplategeneratedbytheapplication
to be saved in a file. During this stage it will be necessary to inspect the windows of
the class WC_M ENU present in the program. The algorithln implemented here is recur-
sive in nature, as it has to account for nested drop-clowns. The operations involved
requiretheuseofspecificfunctiousforpreparingthestringstobestoredinthehINU,
HHH, and ACC files. The action performed by this pool of routines directly affects
thelateroperatiousoftheparser,sothattabs,commas,andwhitespacearepositioned
in the documents according to precise rules that will eventually help the parsing
operations.

Adding a Top-Level
Oncethetexttypedinbytheuserhasbeenretrieved,ithastobepurgedofallspurious
characters, like tildes. Then it is inserted in the specific listbox present in the dialog,
and finany selected.

®®®

// i.nsert an i.tern i.n the li.stbox
sPos = (SHORT)Wi.nsendMsg(CTRL(hdlg, DL_LIST), LM_INSERTITEM,

MPFROMSHORT(LIT_END), MPFROMP(buff)) ;

// select a top-level menu
Wi.nsendMsg(CTRL(hdlg, DL_LIST), LM_SELECTITEM,

MPFROMSHORT(sPos), MPFROMSHORT(TRUE)) ;

®®,

A rather subtle aspect in the creation of menus is that of the ID's assigrment. The
algorithmusedhereisverysimple,andsubjecttomanyenhancements.TheIDofthe
firsttop-1evelequalstothenumber500,thesecond540,thethird580,andsoon.This
means that the maximum number of menu items for each drop-down is 40. This
quantityisdefinedinsidetheapplication,andcanbevariedifdesired.Thefirstmenu
itemofthedrop-downassociatedwiththefirsttop-1evelwillhavetheIDof501,with
subsequent increments. Actually, it is not that important to assign specific IDs to the
menu items inserted in the WC_MENU windows. The application win not use these
valuesinaninperativeway:Thealgorithmimplementedherewillsimplytransferto
diskwhateverwaspreviouslycomputed,butitwouldalwaysbepossibletoredefine
themwithaplaincounterbasedonthephysicalpositionofthemenuiteminthemenu
structure. Although top-level, the value of NULLHANDLE is specified for the
mi. . hwndsubmenu member of the MENU ITEM structure. The modification of this value
takesplaceonlyaftertheuserdefinesadrop-downtobeassociatedtothattop-level.

\

®,

slD = MN_START + sPos * TOTITEM ;

mi..1.posi.ti.On = spOs ;
mi. .afstyle = MIS_TEXT ;
ml. .afAttri.bute = 0 :

508 0S/2 2.1 Wor:Iaplace shell progranming

ml`.I'd -slD ;
mi..hwndsubMenu = (HWND)NULLHANDLE ;

mi..hltem = (ULONG)NULLHANDLE ;

// add the top level to the menubar
Wi.nsendMsg(menu, MM_INSERTITEM,

MPFROMP(&mi.), MPFROMP(buffer)) ;

(buffer) ;
®®,

Adding a Drop-Down
Itismuchmoredifficulttoinsertadrop-down.hthefirstplace,youmustdetermine
the name of the top-level selected in the listbox of the modeless dialog. This win
indicate where the new item is to be inserted, and anow its ID to'be computed.

®®

// determi.ne the selected top-level
sPos = (SHORT)Wi.nsendMsg(CTRL(hdlg, DL_LIST), LM_OUERYSELECTI0N,

MPFROMSHORT(LIT_FIRST), OL) ;
®®®

If it is a first level drop-down, you must check that the appropriate WC_MENU class
has been created. This information can be gotten by examining the hwndsubMenu
member of the corresponding top-level.

®

1.f(!mi..hwndsubMenu)

(
CHAR szstri.ng[40] ;'

®®®

Ifthereisnodrop-down,youwmhavetocreateitthroughWz.7tc7`e¢£ewz.77dozo():The
parent window is HWN D_OBJ ECT, while the owner window is the application's menu
bar. p

®,

// create new WC_MENU wi.ndow
mi. .hwndsubMenu = Wi.ncreatewi.ndow(HWND_OBJECT, WC_MENU,

NULL, OL'

OL, OL, OL, OL,

hmenu, HWND_TOP,

OL,

NULL, NULL) ;

®®®

Oncethisoperationhasbeenperformed,youmustmodifythestyleofthetop-level
inordertosettheMIS_SU8MENUflag:

•rii...afstyie = Mls_TEXT I Mls_suBMENu ;

®

Developing Fast Multithreaded Applications 509

ThenextstepisnecessaryinordertoavoidaminorannoyingbugofpM.Tomodify
the attributes of the previously created top-level, it is enough to issue the message
WM_S ET I TEN. However, this operation will make the underscore disappear from the
character defined as mnemonic code. To avoid this, you can retrieve the text of the
top-level,includingthetildesymbols,andthenreinsertitafterchangingitsattributes
withMM_SETITEM.

®,

Wi.nsendMsg(hmenu, MM_QUERYITEMTEXT,

MPFROM2SHORT(MN_START +sPos*TOTITEM,

si.zeof szstri.ng),
MPFROMP(szstri.ng)) ;

\

// set handle of drop-down menu i.n the top level structure

Wi.nsendMsg(hmenu, MM_SETITEM,

MPFROM2SHORT(0, FALSE), (MPARAM) &mi.) ;

Wi.nsendMsg(hmenu, MM_SETITEMTEXT,

MPFROMSHORT(MN_START + sPos * TOTITEM),

MPFROMP(szstri.ng)) ;

fi

®

From this moment on, any subsequent insertion of new menu items must refer to
thedrop-down,ratherthantothemenubar.Nowitisnecessarytodefinethemembers
oftheMENUITEMstructureinordertoinsertthenewoptioninthemenuwindow.The
process is identical to that employed for the top-level.

Adding a SEPARATOR
Of the four actions supported by Menu Maker, this one is the simplest. When filling
intheMENUITEMstructure,youcanspecifythestyleMIS_SEPARATOR,butnoattribute.
The code will make appropriate checks to avoid the insertion of a separator bar in a
top-level or as the first item of a drop-down.

Adding a Submenu
To define a second level drop-down, you must first create a new window of the class
WC_MENU,accordingtothemodeldescribedearlier.Theoperationmustbeperformed
twice if the top-level referenced does not have a drop-down of its own. Only a
subsequent selection of the Submenu radio button will allow the interruption of the
insertion sequence regarding a second level drop-down.

5L0 0S/2 2.1 Wor:laplace shed progranming

Gathering Merm Maker Functions
hMenuMaker,youcantellsubportiousofthecodeapartsoastoallowsegmentation
oftheexecutable.Theapplication'sentrypointisnaturallythe777¢z.71()function,which
does not call directly any function except for the application's window procedure
through Wz.7zDz.sp¢£chMsg(). Figure 9.17 shows the correlation that exists between the
functions written in the appHcation.

h the program there are three large accessory areas: the loading of a template, the
saving of a template, and the editing of a template. Let's examine the portion saving
a template produced by the user. The function SflzJe() is the basis of the operation of
saving in a file the template drawn on the screen. This function will in turn can the
furmcfio"s ChecksubMenu(), Stringparser(), art CalcMenultem(). The laLst two a[re even
calledbyMe7t#DJgproc(),andthislatterfunctionisintumcalledfromczz.e#fw#dproc()

?Lpne. The fou f\rmcfuous ChecksubMenu(), Stringparser(), CalcMenultem(), and
Me#t!Dzgprococanthusbecollectedinaseparatesourcefilefromthatoftheapplica-
tion.ThefunctionAccez()iscalledfromCfeecks#Z7Me7t#()onlyifatleastoneofthemenu
itemsisassociatedwithanaccelerator.Sincethiswillhappenwithafrequencythatis
difficulttoassessbeforehand(probablynotveryhigh),itispossibletosetitapartin
a segment of its own, and call the corresponding source file ACCEL.C. Analogous
treatment can be reserved for Re777oz7eBJ¢77ke(), putting it in a file called REMOVE.C.

Themoduledefinitionfilewillthentakeonthefollowing,moreconvolutedaspect:

Function
Accel
CalcMenultem

ChecksubMenu

Clientwndproc
MaskHandler
MenuDlgproc
Project
RemoveBlanks

Save
Stringparser

stristr
strrep
Sublwith2

Called by
ChecksubMenu
MenuDlgproc
CalcMenultem
Save
ChecksubMenu
main
MenuDlgproc
Clientwndproc
Clientwndproc
ChecksubMenu
Accel
Clientwndproc
MenuDlgproc
Save
ChecksubMenu
Accel
ChecksubMenu
ChecksubMenu

Figure 9.17 List of functions of the Menu Maker application.

Developing Fast Multi±hreaded Applications 5L1

®,

CODE PRELOAD

DATA PRELOAD MULTIPLE

SEGMENTS

SAVECODE32 LOADONCALL

ACCELCODE32 LOADONCALL

REMOVECODE32 LOADONCALL

®,

Stronglyrelatedfunctiousshouldbeforcedinthesamecodeportion(page)byusing
the a 11 o c_text pragma directive. If carefully planned, the paging activity dramati-
cally decreases.

The relative complexity and length of the source code shown in Listing 9.1 requires
a careful exalnination available only through reading the source code.

Multithreaded OS/2 Applications
OneofthefeaturesoftheOS/2operatingsystemisitshardware-govemedmultitask-
ing capabilities. The simultaneous execution of several applications is based on the
partitioning of the CPU's time into very short intervals dedicated to the tasks waiting
in line. The instantaneous switching between active tasks confers to the system all
capabilities that are required for a true multitasking environment. The minimum
interval that a task will persist in the CPU is equal to 32 mi]liseconds, while the
maximum is by default approximately a quarter of a second. It is very unlikely that
such a long interval will ever occur because of the competition among tasks.

Thechoiceofthecodetobeprocessedistakenbythesystem'sschedc£Zeronthebasis
of priority; this is, in other words, true pree77tpfz.z7e multitasking. h OS/2 there are as
"ar\:y aLs four distinct classes of pTtorrty-time critical, fixed-high, regular, and idle in
decreasing order-each of which has 32 sub levels. By default, any process belongs to
the reg#Z¢r class, but it can have its priority level increased or decreased through the
furmchorLDossetpriority().

OS/2 has also introduced a new concept as far as multitasking is concerned on
personal computers: the so-called ffe7'e¢ds. By this term one refers to the minimum
quantityofcodethatcanbeaddresseddirectlybythesched#ZertotheCPU.hgeneral,
a whole process coincides with the idea of a fferc¢d--the collection of several logically
interrelated functions that are called to solve a specific problem.

Creating a Mullithreaded Application
To make the multitasking mechanism of OS/2 even more seamless, it is possible to
design77t#Zfz.£fere¢dedapplicationsconsistingofseveralthreads.InCLanguageathread
corresponds, in broad terms, to a function, including the contingent calls to other

5T2 0S/2 2.1 Worlaplace shell progranming

functions present in the code. According to the specifications of the API of OS/2, a
ffere¢d is a function that accepts a parameter of the type U LONG , and does not return
any value, as illustrated in the fouowing function prototype:

voi.d EXPENTRY MyThread(ULONG ulData) ;

Each thread possesses some distinctive characteristics: a stack of its own, an execu-
tion priority, and a set of system registers. The thread's stack is used for allocating
identifiers with bzock scope and for passing paralneters to the called functions. The
execution priority is by default the same as the process to which the thread belongs,
but it can easily be changed.

Whenafunctionofthecodegetspromotedtoaffere¢d,itwilloperateautonomously
as far as CPU access is concerned, and win compete with all other processes/threads
in execution, even with the one that spawned it. The sched#Zer will in fact send to the
CPU a thread at a time, rather than a process at a time.

Splitting a process's functionality into several threads will favor the overan per-
formance of a program's execution. hagine, for instance, an application that needs
to go through a long print session. This operation is generally slow and complex to
thepointofblockingthewholeprocess.Implementingthisfunctionalityinadistinct
thread will avoid this situation. The process can continue to operate while the print
thread will perform the output operations.

Creating a Thread
The first question to overcome when writing a multithreaded application is setting
apart the portions of the application that can be taken out and profit from their own
autonomy.hadditiontotheaforementionedexampleofaprintroutine,evenloading
afilefromdiskisanoperationthatcouldbeaccommodatedinadistinctthreadofthe
application, as is the recalculation of a spreadsheet, or the reading of data from the
serial port.

The next step in developing a multithreaded appfication is defining the rules
coordinating the activities of the single threads of the process in order to avoid
anomalous and undesired behavior. The preferred tool for governing the activities of
concurrent threads is usually represented by se77capfeores (muxwait or mutex, private
or shared), which are very fast and reliable. Once this design phase has been settled,
you can go on with writing the code.

Wehavealreadymentionedtheoverallstructureofafunctionthatwillbepromoted
toadistinctthread.Totransformafunctionintoathread,youhavetocallthefunction
DoscreateTheead()..

#defi.ne INCL_DOSPROCESS
APIRET APIENTRY DoscreateThread(PTID pti.d,

PFNTHREAD pfn,

ULONG param,

ULONG flag,

ULONG cbstack) :

Developing Fast Multithreaded Apphications 5L3

P ar aneter D e s cription
ptid Address of an identifier of the type TID
pfn Pointer to the function that will take on the role of an inde-

pendent thread
param Parameter passed to the thread when it will be activated
flag Initialization mode of the new thread
cbstack Size of the thread's stack
Return value D escription
APIRET Success or failure of the operation

This function, Hke all Dos functions, will return the value of zero in the case of
successorapositivevalueifanerrortakesplace.Thefirstparameteristheaddressof
anidentifieroftypeTIDwhereinthefunctionwillwritetheidentificationnumberof
the thread. Each process in OS/2 holds a process I.dc7tfz73.c¢fz.o77 7t#77cZ7er (P I D) which is

generated automatically by the system. This number will be in the range from 0 to 4
bihion. Furthermore, each thread is characterized by a ffe7'c¢d I.de7if£73.cofz.o77 77#77tz7er
(TI D). For the primary thread, the one containing the 77t¢z.7t() function, this value is
always 1, as we have already seen on many occasions by using SNOOPER. For all
subsequentthreads,thenumberissequentiallyincremented,althoughalwaysgener-
ated by the system. The secondary thread of a process is always spawned from the
primary one; for the subsequent ones there is no fixed rule.

The size of a thread's stack is the last parameter in the syntax of DoscreflfeTfere¢d().
Typically, you will request a block of memory large enough to satisfy the overall
requirements of the thread. There is no given algorithm for computing the size of a
thread's stack; in general, this area is equal to 8KB or larger. The documentation of
OS/2 lets us know that before calling any API function it is necessary to have a free
stack space of at least 4KB. A thread's stack, size of 8KB win therefore allow us to
declare identifiers with block scope of 4KB.

A tread created with DosC7'e¢£eTferc¢d() starts its execution as soon as the function
retrrmsbasedonthevalueoftheparamflag.Thestructureofthefunctionthatperforms
as a thread will allow it to exchange data with the generating thread. Therefore, it is
not necessary to define identifiers with so"rce¢.Ze scape in order tQ communicate with
the new thread. Often, the only parameter of a thread will act as a pointer to a data
structure previously defined in the application, so that all communication needs
between the existing thread and the one being spawned can be satisfied (Figure 9.18).

Retumingtothepreviousexampleofprinting,aspecificthreadcouldlooklikethis:

voi.d EXPENTRY Pri.ntThread(PPRINTINF0 pprnlnfo)

I
®®

)

wherePPRINTINF0issomespecificdatastructureimplementedbytheapplication.h
the function's body it is possible to include any kind of code, even cans to other
functions or the activation of other threads.

514 0S/2 2.1 Wor:laplace shell programming

Figure 9.18 Scheme of information passing between a thread being activated.

Among the run-time library functions of the C Set++ compiler, there is a special
function called _begi.7tfferc¢d(). h version 1.x of OS/2, the syntax of DosC7'e¢£eTferc¢d()
was different from the current one, and therefore the use of _begz.7t#zre¢d() has its
explanation.Bothsolutionsareviable,althoughtheAplcallisprobablytobepreferred
over the runtime library function.

The handling of threads is completed by DosS#spe7?dThrc¢d() and DosRe-
s#777eThrc¢d(),whichwillsuspendandresumetheexecutionofathreadbyspecifying
its TID. Both functions can be used exclusively within a process. The termination of a
threadisperformedwithDosKz7ZThrcad(),whiletheinterruptionofthecurrentthread
is achieved through DosW¢z.fTfere¢d().

Compiling a Multthreaded Appticat4on
The compilation of a multithreaded application does not require any special provi-
sions, as in the past with the selection of special libraries. Both with IBM's as well as
with Borland's compiler, the whole process is simply that of selecting a specific radio
button when creating a project.

Tlareads and PM Appticat4ons
Up to this point we have written several PM applications that were all strictly single
threaded. An OS/2 process is by definition made up of at least one single thread; i.e.,
the primary thread that features the TID of 1. The primary thread of a PM process is
distinguishedbythepresenceofthemessagequeue,createdbywz.7tcrc¢feMsgQ#e#e().
Calling this function will cause a switch to the PM Screen Group. If you need to
implement a multithreaded application, the first problem that arises is the message

Developing Fast Multithreaded Applications 5L5

queue.IsitnecessaryforeachpMthreadinapMapplicationtohaveadistinctmessage
queue? The answer is yes and no at the same time: It really depends on the specific
functional requirements designed into the application.

A PM thread characterized by a message queue of its own can perform au the
activities that are typical of this screen group: It can receive and send messages and
commulcate with other windows. Without a message queue, most of these opera-
tions are not possible. If you need a thread capable of sending messages, then you
must create a message queue and thus have an ¢77cfeor bzock:

®®®

VOID EXPENTRY SecondThread(PINF0 plnfo)

(
HAB hab ;

HWND hwnd ;

HMQ hmq ;

nab = Wi.nlni.ti.all.ze(0) ;
hmq = Wi.ncreateMsgQueue(hab, OL) ;

Wi.nsendMsg(plnfo -> hwnd, WM_USER, OL, OL) ;

Wi.nDestroyMsgQueue(hmq) ;
Wi.nTermi.nate(hab) ;

DosExl.t(EXIT_THREAD, 0) ;

)
®®®

However, nothing prevents a specific operation of a PM appHcation from being
performedinthreadslackingamessagequeue.hagine,forinstance,somedemand-
ing and time-consuming operations, like the earlier printing example. h a single
threaded code, the process that will generate the information for the output device is
treatedasasingleentitybythesystem'sscfecd#Zer.Theprogramisfundamentallytied
upinthecreationofaprintmetafileonthedisk;anyinteractionbetweentheuserand
the application is impossible. Generally this behavior is represented by the designer
changing the cursor into the hourglass icon.

The splitting of the code into several threads will allow complex operations, like
printing, without totally blocking any kind of interaction between the user and the
application.Beforeproceedingfurther,1et'sexamineinsomegreaterdetailtheaspects
regarding the priority classes and the 32 associated levels present in OS/2.

The Priority Classes
Figure 9.19 depicts the priority classes in OS/2. The priority of a process is automat-
ically inherited from its parent. The first application that is executed in the system is
PMSHELL.EXE,whichintumallowstheexecutionofnewprocesses.PMSHELL.EXE
is effectively the progenitor of all processes in OS/2.

Furthermore, a process can be structured into several threads, each one of which
can have a priority of its own. To discover the priority of a PM process, 1et's make
some changes to SNOOPER so that it can display some descriptive information

516 0S/2 2.1 Workplace shell progranming

Figure 9.19 The classes of priority in OS/2 with their 32 sublevels.

regarding this. Let's examine in detail how DosSc£Prz.orz.fry() works, in order to under-
stand how to employ it in SNOOPER.

#defi.ne INCL_DOSPROCESS

APIRET APIENTRY Dossetpri.ori.ty(ULONG scope,

ULONG class,

LONG delta,

ULONG PorTi.d) ;

Parameter
SCope
class
delta
PorTid

D escription `
Object that is affected by the priority change: defines PRTYS_
New class: defines PRTYC_
Change of priority ,
PID or TID of the process or thread affected by the change of
priority

Developing Fast Multithreaded Apphcations 5T7

Retunii v alue D es cription
APIRET Success or failure of the operation

Thefirstparameterdefineswhichlevelmustbeobtainedinthechangeofpriority.
TheoptionsavailablethroughthepMAplare:PRTYS_PROCESS,PRTYS_PROCESSTREE,
and P RTY S_TH READ. These defines indicate, respectively, a single process, a process,
andallitschildprocessesgeneratedwithDosE#ecpgr7t(),aspecificthread.Thepriority
class, the second parameter, is one of the five defines present in OS2.H and summa-
rized in Table 9.2.

PRTYC_IDLETIME, PRTYC_FOREGROUNDSERVER, PRTYC_REGULAR, and PRTYC_TIME-

CRITI GAL refer to the four classes. With PRTYC_NOCHANGE you can indicate that you
don't intend to change the priority class, but only the priority level within the same
class.

With the third parameter of Dosse£Prz.orz.fry(), you establish the relative change of
priority within the selected class. The numeric value of del ta is a number between
-31 and +31, a change relative to the current condition. There are also the constants
P RTY D_M I N I MUM (-31) and P RTY D_MAX I MUM (+31) to define a change to the maximum
or mihimun level.

The last parameter of Dosse£Prz.orz.fry() corresponds to the number assigned by the
systemtotheprocess(PID)orthethread(TID)thatwillbesubjecttothechangeinits
priority. By specifying zero you can indicate the current process or thread. To know
which is the current priority class, you can resort to DosGe£Z77/oBZock():

#defi.ne INCL_DOSPROCESS
APIRET APIENTRY

Parameter
ptib
ppib
Return Vahae
APIRET

DosGetlnfoBlocks(PTIB pti.b, PPIB ppi.b)

Description .
Address of a structure of type TIB
Address of a structure of type PIB
Description
No value

Understanding how the DosGe£J7i/oBZocks() function works is not straightforward.
Its syntax requires the presence of a pointer to a T I 8 structure and a pointer to a P I 8
structure. Data about the current thread will be written in the first structure, while the
second will receive data about the current process.

Table 9.2 Flags for the Dossetprz.or£.fry() Function

Cl ass Value D e scription

PRTYC_NOCHANGE
PRTYC_IDLETIME
PRTYC REGULAR
PRTYC_TIMECRITICAL
PRTYC_FOREGROUNDSERVIR

No change of class
Idie time class
Regular class
Time critical class
Fixed-high class

5L8 0S/2 2.1 Workplace shed programming

struct ti.b s
(

PV0ID ti.b_pexchai.n ;
PV0ID ti.b_pstack ;
PV0ID ti.b_pstackli.mi.t ;
PT182 ti.b_pti.b2 ;
ULONG ti.b_versi.on ;
ULONG ti.b_ordi.nal ;

);

typedef struct ti.b_s TIB ;
typedef struct ti.b_s *PTIB ; I

Actually, the T I 8 structure contains within its member a pointer to a T I 8 2 structure
that finally contains a member with the TID value:

struct ti.b2 s
I

ULONG ti.b`2_ulti.d ;

ULONG ti.b2_ulpri. ;

ULONG ti.b2_versi.on ;
USHORT ti.b2_usMCCount ; .

USHORT ti.b2_fMCForceFlag ;

);

typedef struct ti.b2_s T182 ;
typedef struct ti.b2_s *PT182 :
The acquisition of a thread's T I D is thus the outcome of writing code like this:

ptl.b -> tl.b2_ptl.b2 -> tl.b2_ultl.d ;

The class and the priority level area are packed in the tl. b2_ul prl. member-the
class priority in the high-byte, the level in the low-byte. The L0BYTE and HIBYTE
macros extract the two values:

pti.b -> ti.b2_pti.b2 -> ti.b2_ulpri. ;

Uhfortunately, DosGe£J7tfloBZock() returns the information of the current thread (the
one where the call is made). The previous DosGe£Prfty() function (no longer available)
had one parameter to indicate the process ID, giving the opportunity to extend
SNOOPER's capabilities to class and level priorities.

Selecting a Priority Class
This first approach with priority classes immediately gives rise to some observations.
h the first place, it is clear (from the action of SNOOPER) that all PM applications by
default belong to the reg#Z¢r class with level of 0. The schedc£Zer of OS/2 will always
execute the thread that has the highest priority: In absolute terms, this is represented
bythepairf{.777e-crz.fz.COZ,1evel31.ThesearchforthenextthreadtobepassedtotheCPU
takes place at preset time intervals, known as £!.77te-sZz.ces. h CONFIG.SYS you can

Developing Fast Multithieaded Apptications 5T9

includethedirectiveTIMESLICEtosettheminimumenduranceofathreadintheCPU;
this value is at least equal to 31.25 milliseconds. The thread being executed when a
time-slice expires will be taken off the processor if at that moment there is another
thread in the system with a higher priority. Another directive that can be set in
CONHG.SYS, is MAXWAIT , which defines the maximum amount of time, expressed
in seconds, that the CPU can wait upon a thread belonging to the regular class. When
this time in,teIval expires and a regular class thread carmot gain access to the CPU (it
"starves" out of CPU cycles), its priority will temporarily be increased, so that it will
be in a more favorable position the next time the scheduler selects a new thread to be
executed. The temporary increase in priority (Z7oosf) can take place only in the regular
class; therefore, it is more correct to speak about a variation in the priority level, and
not in the class.

This behavior will suggest that you never change the priority of an OS/2 applica-
tion, and accept the value provided by the parent process when it is activated.
However, you can have a completely different approach to the single threads of a
process. Often it is convenient to change the priority of a thread according to the
requirements and possible interactions that happen within a process. The writing of
multithreaded code is justified when by analyzing the code you can identify some
operation that is a performance bottleneck. Changing the priority of a thread is a
challengingexercise!Todiscoverhowtowriteamultithreadedapplication,1et'smake
some significant changes to WHEREIS.

Multithreaded WHEREIS
Themostcomplexandtime-consumingtaskinwHEREIsisunquestionablysearching
for files in the selected drive. The routine implemented will scan through all directo-
ries in the current drive in the search for any file matching whatever was specified by
the user in the specific entryfield. It is therefore the sc¢rcfe() routine that is the natural
candidate for being transformed into a separate thread within the process. A thread
is, by definition, a function that does not return any value and that accepts a generic
32-bit parameter. Ih the specific case of WHEREIS, it is necessary to pass to se¢rcfe()
the handle of the application's window, a counter, and the text string corresponding
tothefilestobesearchedfor.AllthesepiecesofinformationwillbegatheredinaDATA
structure declared in the application's header file, WIIEREIS.H.

// WHEREIS.H

®®

typedef struct _DATA
i

HWND hwnd ;

CHAR szstri.ng[100] ;
USHORT usTot ;

I DATA ;

typedef DATA * PDATA ;
®®

52J0 0S/2 2.1 Workplace shell programming

The definition of the pointer PDATA, pointing to the data structure, auows you to
implementthefollowingstrategyforpassingallinformationfromtheprimarythread
to the secondary one:

• Declare an identifier of the type DATA with static storage class:

stati.c DATA Data ;

• Whenever the Search button is pressed, the file counter is set to zero; this is the
usTot member in the DATA structure:

®,®

case ID SEARCH:
Wi.nQuerywi.ndowText(hwndEdi.t, si.zeof(buffer), buffer) ;

// ski.p i.f there i.s non fi.lename
i.f(!*buffer || !strcmpi.(buffer, Data.szstri.ng))
break ;

// copy text on pData
strcpy(Data.szstri.ng, buffer) ;

// erase counter
Data.usTot = 0 ;

// erase Found
Wi.nsetwi.ndowText(hwndFound, "') ;
Wi.nEnablewi.ndow(hwndDel, FALSE) ;
Wi.nEnablewi.ndow(hwndDelAll, FALSE) ;

// erase li.stbox content
Wi.nsendMsg(hwndDi.r, LM_DELETEALL, OL, OL) ;

®

• Execute the search thread by calling DosC7'e¢feTfe7`c¢d() and passing the address of
the DATA structure to the new thread; from this moment on, the search thread is
executing in parallel with the main application:

®,®

// acti.vate the search thread
rc = DoscreateThread(&ti.d,

(PFNTHREAD) sea rch ,
(U LONG) &Data ,
OL,

THREAD_STACK) ;

®,

• Disable access to the Search button and to the listbox of drives before terminating
handling of the message pertaining to the user's pressing the Search button:

®®®

// di.sable the search pushbutton
Wi.nEnablewi.ndow(hwndsearch, FALSE) ;

// di.sable the dri.ve li.stbox
Wi.nEnablewi.ndow(hwndDri.ve, FALSE) ;
break ;
®®®

Developing Fast Multithreaded Applications 521

Let's examine how the search thread works. Although the operation of scanning
through the disk directories is completely unconstrained by PM, it is nonetheless a
PM thread. This explains the presence of the function Wz.7tcrc¢£eMsgQ"e#e(). The
choice of a second PM thread is ordained by the desire of filling in the fistbox of files
attheverymomenttheyarefound.Theinteractionwiththelistboxdependsonissuing
the message LM_I NS ERTITEM by means of the Wz.7tse7tdMsg() function: In order to be
able to call Wz.7tse7zdMsg(), a thread must necessarily have a message queue. Posting,
I)z.a Wz.7tposfMsg() can be performed in a non-PM thread, since that operation does not
imply a reply in the traditional means of communication through the message flow
(Wz.77Pos£Msg() will simply post a message and notify the success or failure of the call
with a simple Boolean).

®,,

voi.d EXPENTRY search(PDATA pData)

I
ULONG ulDrv ;

USHORT usDrv ;

HAB hab ;

HMQ hmq ;

hab = Wi.nlni.ti.all.ze(0) ;

hmq = Wi.ncreateMsgQueue(hab, OL) ;

DosQuerycurrentDi.sk(&ulDrvNum, &ulDrv) ;

schdi.r(pData, "\\") ;
DosBeep(175, 300) ;

®

E

®®®

To avoid the presence of the message, it would have been necessary to design the
applicationdifferently.Here'sasuggestion.Thepuaposeofthemessagequeue\isonly
that of supplying the listbox with information whenever a file name satisfying the
search criteria is found. hstead of using a PM tool like Wz.77Se77dMsg(), the secondary
thread could fill in some memory area shared between the two threads. Since both
threadsbelongtothesalneprocess,itwouldn'tbenecessarytoresorttoIPCtoolslike
theallocationofasharedmemoryblockthroughDosAZZocsfe¢redMe77€().Asimple,large
array of cha r with so#rce¢.Ze scope would be more than adequate for this purpose.
Disregarding this low-level solution, there is an abundance of others. An interesting
one involves the pointer that was passed when the thread was activated. The DATA
structurecouldbeassociatedwithablockofmemorywhereinyoucouldstorethefile
names as they are found. The initial abundant allocation is a concrete example for
delayed commitments, resorting even to p¢ge g#¢rd techniques for establishing when
it would be necessary to commit a new page.

Thewholesearchlogictakesplaceinthefunctionsscfedz.r()andscfe¢.Ze().Thefirstone
is called from se¢7'cfe(), while scfe/i.Ze() takes care of displaying the file name in the
appropriate listbox.

52:2 0S/2 2.1 Workplace shell progranming

®®®

voi.d schfi.le(PDATA pData)
I

®®

spri.ntf(buffer, "%c:\\%s%s", ulDrvNum + `a' -1,
strlwr(dbuf), strlwr(fi.leFi.nd.achName)) ;

Wi.nsendMsg(CTRL(pData -> hwnd, ID_DIR), LM_INSERTITEM,
MPFROMSHORT(LIT_END), MPFROMP(buffer)) ;

spri.ntf(buffer, "%u", ++pData -> usTot) ;
Wi.nsetwi.ndowText(CTRL(pData -> hwnd, ID_FOUND), buffer) ;

1
®,,

After retrieving the full file p¢£fe77¢77te, its text is inserted in the listbox, in sequential
order, by calling Wz.7tse7tdMsg(). The file counter is automatically updated with a
following call to Wz.7tse£W€.7idozuTex£(). The final part of search() takes care of enabling
interaction with the drive listbox, activating the Search button, and finally, terminat-
ing the thread correctly.

®®®

// enable the search button and the dri.ve li.stbox
Wi.nEnablewi.ndow(CTRL(pData -> hwnd, ID_SEARCH), TRUE) ;
Wi.nEnablewi.ndow(CTRL(pData -> hwnd, ID_DRIVE), TRUE) ;

Wi.nTermi.nate(hab) ;
Wi.nDestroyMsgQueue(hmq) ;
®®®

Some Considera;tions
OneoftheessentialrulesinprogrammingPMistryingtohandle¢7tymessagearriving
in a window procedure in less than 1 / 10 of a second. The single threaded WHEREIS,
presented in Listing 8.2 of Chapter 8, did not follow this rule. The CPU remained
locked during the processing of a message previously retrieved from the queue with
W1.7tGe£Msg() or received directly in the window procedure. Often the search for
matching files takes considerably more than 1/10 of a second, and thus violates the
fundamental rule of the event-oriented multitasking of the primary threads of any
OS/2 application. During the actual search, the user carmot perform any operation,
except for waiting for the whole disk to be scanned: Naturally, the wait is in no way
dependent on the appearance of the hourglass cursor, but rather on the impossibility
of taking the currently executing thread away from the processor (Figure 9.20).

Eventhepressingofthekeyboardcombinationctrl+Escwillnotproduceanyeffect.
Only after the whole scan has been performed will the Window List be displayed at
the center of the screen (Figure 9.21).

On the other hand, the suggested multithreaded implementation will hold the
WM_COMMAN D pertaining to pressing the Search button only for the time necessary for
triggeringthesearchthread.Evenduringthistime,theapplicationisreadytorespond
totheuser'sactions,1ikemovingthewindowonthescreen,ortheactivationofanother

Developing Fast Multithaeaded Applications 52:3

Figure 9.20 Execution of the single-threaded WHEREIS: The system is
locked until the end of the search.

D
FffDME

H EE i#
Volume Minimlzed Shredder
Control Window/Vlewer

mB H if EL
DrrveA Osraprograns R8soij!ee`^Jorfehop PRODINFOBMp FdypM

gL:LRE ELSg,;3,t:e A`,<;.

bg Stefano Maruzzi 1993

Figure 9.21 Window List is displayed in the PM screen group only after
the whole file search has been terminated.

524 0S/2 2.1 Wor:1aplace shell progranming

application, for instance. Figure 9.22 illustrates this behavior: Despite the fact that the
search is not yet completed (as can be inferred from the number of matching ffles
shownintheupperpartofwIIEREIS,immediatelybeneaththetitlebar),itispossible
for the user to move any window on the screen.

P erf ormance Tuning
There are many possible enhancements to make the execution of VVHEREIS even
faster. h the first place, the search thread could be promoted to the fz.777e-crz.fz.col class
in order to be more ``appealing" to the scheduler whenever a time-sfice expires.
Furthermore, the logic fouowed in WIIEREIS implies that the search thread be
executedeverytimetheuserpressestheSearchbutton.Thethreadautomaticallydies
at the end of the search. The call to Doscrc¢feTferc¢d() is repeated several times in the
program, and requires a certain amount of execution time.

Asomewhatdifferentdesignwouldinvolvetheactivationofthesearchthreadassoon
as the appfication is loaded, for instance when the message WM_CREATE is received. The
coordination between the search thread and the main process relies on a semaphore,
controned by both the primary as weu as by the search thread. Here is the scheme to be
implemented: The appHcation starts and enables an cz7e7tf semaphore that will keep the
search thread from executing. When the user presses the Search button, the primary
threadwflldisablethesemaphoreandthusletthesearchthreadexecute.Theentirecode

D
FunME vco¥; w#dF:ei, sh#Br OFA osraE?,ons Resou,RErf.shop raoD¥oBMP F#

Filename: t.h ~.,I::.~-.:.. ' ..,. r

mRERE RE ffiRERE

Figure 9.22 With the multithreaded WHEREIS, the user is not forced to
wait (found files reached 641, compared to 1004 in Figure 9.21).

Devaloping Fast Multithieaded Applications 5Z5

ofthesc¢7ic72()functionischangedintoaninfiniteloopinordertopreventthethreadfrom
destroyingitselfoncethefirstsearchisover.Thehand]ingofthesemaphorebythesecond
thread is limited to ca]]ing the function DosW¢z.ffz7e7tfse77c() immediately after the wh i 1 e
statement:Theonlydecisiontobemadepertalnstothecriteriatofollowindisplayingthe
pathnamesfoundbythesearch,cousideringthatthehitboxisunique.

A second change involves the application logic. h the present implementation the
search button is disabled while the secondary thread is rurming. Nothing prevents
the application from starting many search-threads at the same time. The same piece
of code can act as an independent thread in execution with no limitations at all. The
bottleneck here is the output surface. In WIIEREIS there is only one listbox to display
the results. The obstacle is bypassed by creating a new window each time the user
presses the search button or adopting a different interface (for example the matched
file can be located in a different page in a multi-page notebook).

Yet More Enhancemer[±s

E] TheversionofwIHRISshowninListing9.2isenhancedbyyetanothertoolformalchg
the utilities operations even more flexible. A double-cHck on the mouse button will
exeoutetheselectedfile,providedithastheexteusion.EXE.If,instead,itisafilewiththe
exteusionC,DEF,RC,MAK,orH,thenthesystemeditorisinvokedandtheselectedfile
isloadedintoit.Figure9.23showstheinteractionbetweenWHEREISandE.EXE.

Figure 9.23 The system editor has been launched automatically after a
double-click on the file with the extension of C.

52J6 0S/2 2.1 Workplace shdi progranming

The following code fragment refers to the portion of WIIEREIS that handles this
functionality. The function Dosfxecpg77c() is called on both occasions with the flag of
asynchronous execution, in order to give autonomous Ire to WIIEREIS and the child
processes generated in the meantime. As far as the system editor's execution is
concerned, it is necessary to specify a text string corresponding to the co]rm.and line
of the system prompt. The syntax requires the presence of a null character to separate
the arguments, and a double null at the end of the string.

®®,

case ID_DIR:

swi.tch(SHORT2FROMMP(mpl))

I
case LN_ENTER:

I
LONG 1. ;

USHORT usltem ;

CHAR *szExt[] = { ".c", ".clef", ".rc", "a.mak", ".h"} ;
CHAR szpath[200] = "C:\\OS2\\e.exe\0 " .

sPos = Wi.nsendMsg(hwndDi.r, LM_QUERYSELECTI0N,

MPFROMSHORT(LIT_FIRST) ,

MPFROMLONG(OL)) ;

usltem = Wi.nsendMsg(hwndDi.r, LM_QUERYITEMTEXT,

MPFROM2SHORT(sPos, si.zeof(buffer)),

MPFROMP(buffer)) ;

// execute i.t i.f i.t i.s an EXE fi.le
i.f(!stri.cmp((buffer + (usltem -3)), "EXE"))

I
DosExecpgm(szstri.ng, si.zeof(szstri.ng),

EX EC_ASY N C ,

NULL, NULL,

&rc, buffer) ;
)

// start the system edi.tor for an H, C, MAK, RC, DEf fi.le
for(1' -0; 1. < 5; 1`+ +)

[
i.f(!stri.cmp((buffer + (usltem -strlen(szExt[i.]))),

szExt[1.]))

I
// prepare arg stri.ng
strcpy(szpath + strlen(szpath) + 2, buffer) ;
DosExecpgm(szstri.ng, si.zeof(szstri.ng),

EX EC_ASY NC ,

szpath, NULL,

Devaloping Fast Multithieaded Applications 52:7

&rc,
„e.exe") ;

)
)

)
break ;

A second enhancement to improve performance deals with the deletion operation.
Thisportionofcodeshouldbeplacedinaseparatethreadtospeedupexecutionand
to let the user interact with the system.

Sutclassing,
Saperclassing, and I)LL

EI

Messages are the principal means of governing OS/2's multitasking. Any physical
inputactionperformedbytheuseristransformedintoamessagethatwilleventually
reachthezuz.7tdozoproced#reoftheclasstowhichthetargetwindowbelongs.Eventhe
designer can resort to messages for executing a number of operations hike changing
the status of a menu item, activating a window, inserting a text string into a Zz.s£Z7ox,
and others.

Whenthemessageisqueued,thepathitfollowsimpliesamoreorlesslengthystay
inside the application's queue and a later retrieval by means of Wz.77GG£Msg() within
theappropriateloop.Thechoiceofthetargetwindowprocedureisperformedthrough
Wz.7tDz.sp¢fchMsg(), on the basis of the window's handle, given in a QMSG structure. h
Listing10.1,MSGQUEUE,youcanseethecodeofasimpleapplicationthatmonitors
thecontentsofthemessagequeue:TheoutputoftheprogramisshowninFigure10.1.

The functions used in MSGQUEUE are Wz.7tQ#enyQ#c#eJ77/a() and Wz.7tQ#enyQ#e#e-
Sf¢£#s(). The first one allows you to examine, in general terms, the contents of a
message queue.

1.

#defi.ne INCL_WINMESSAGEMGR

B00L APIENTRY Wi.nQueryoueuelnfo(HM0 hmq, PMQINF0 pmqi., ULONG cbcopy) ;

Parameter
hmq
pmqi
cbcopy
Return Vahae
BOOL

Description
Handie of the message queue
Pointer to a structure of type MQINFO
Size of the MQINFO structure
Description
Success or failure of the operation

TheMQINF0structurecontainsinthecmsgsmembertheoverallnumberofmessages
currently present in the queue, in addition to giving the P I D and the T I D.

529

530 0S/2 2.1 Workplace shell progranming

Figure 10.1 PM does not provide any tool for examining in detail the contents of
themessagequeue:Youcanfindonlythecategorytowhichthemessagebelongs.

typedef struct _M0INFO
I // mql.

ULONG cb ;

PID pl'd ;

TID tl.d ;

ULONG cmsgs ;

PV0ID pReserved ;

) M0INFO ;

typedef MQINFO *PMQINFO ;

With Wz.77Q#enyQc/e#esf¢£#s() the application can get some information about the
contents of the queue. The return value of this function corresponds to a define that
summarizes the kinds of messages present in the queue.

#defi.ne INCL_WINMESSAGEMGR

ULONG APIENTRY Wi.noueryoueuestatus(HWND hwndDesktop) ;

Subclassing, Saperclassing, and DLL 531

P ar ameter D es cription
hwndDesktop Handle of the desktop
Return value D escription
ULONG Set of QS_ defines used to indicate the contents of the queue.

A number of defines, as Hsted in Table 10.1, are packed inside this return value.

Accessing the Window Procedure
ThepathfollowedbyPMtogetfromahandletotheaddressofawindowprocedure
is simple. This information appears in each window's reserved memory area. The
function Wz.7tQ#e7rywz.7tdozopfr(), together with the QW P_P FNW P flag, will return the
address of the window procedure associated with any specific window.

®®,

PFWNP pfwnp ;

®,®

pfwnp = (PFWNP)Wi.nQuerywi.ndowptr(hwnd, QWP_PFNWP) ;
®,,

Cince the window procedure's address is available, it is simple to call it with
W{.77Dz.sp¢fcfeMsg(). You can do the same by calling Wz.7zQ#e7tycz¢ssJ74/a(), as described
in ChaLpter 7 (Figure 10.2).

Table 10.1 The Flags Contained in the Value Returned by W.#Q#enyQ#ecfesf#fros()

Flag Value D es cription

QS_REY
QS_MOUSEBUTTON
QS_MOUSEMOVE

QS_MOUSE
QS_TIER
QS_PANT
QS_POSTMSG
QS_SEMI
QS_SEM2
QS_SEM3
QS_SEM4
QS_SENDMSG

OxOool Thereis awM_CHARinthe queue.
Ox0002 Eventrelated to the pressing of a`mousebutton.
Ox0004 Event related to the movement of the mouse

pointer.
Ox0006 Anykind of event associated with the mouse.
OxOOO8 There is a wM_TIMERmessage in the queue.
OxOO10 There is a wM_PAn\IT message in the queue.
Ox0020 Thereis apostedmessage.
Ox0040 There is awM_SEMI message inthe queue.
OxOO80 There is awM_SEM2 message inthe queue.
OxO100 There is awM_SEM3 message inthe queue.
Ox0200 There is a wM_SEM4message in the queue.
Ox0400 There is a sent message.

592 0S/2 2.1 Wor:laplace shdl programming

Figure 10.2 Storage scheme of the window procedure's address in PM.

The presence of the window procedure's address in the reserved memory area of
eachwindowmightappeartoberedundantandpurposeless,since,bydefinition,au
windows belonging to the same class whl have a, common window procedure.
However, the presence of a pointer to the window procedure associated with each
window, in that window's reserved memory area, offers a significant advantage in
writing PM applications.

Theconcreteoutcomeisthatyoucanactuallyhavedz#ere#fwindowproceduresfor
each single window, despite their belonging to the same specific window class. This
statement might seem to contradict what has been said in the previous chapters.
Actually, nothing prevents the designer from registering different window classes if
the plan is to use different window procedures, and thereby the designer would be
able to discriminate the behavior of each window with respect to any event (a right
mouse button click, for example).

Thedifferentiationofwindowproceduresmakessenseonlyforthosewindowsthat
belongtothepredefinedclasses.hthiscasethedesigneriskeptoutoftheinformation
flow that takes place, for instance, between a Zz.sfbo# window and its window proce-
dune, which is inside PM. The only possible method of interaction is to send specific
messages available in the API (like the LM_ messages for the class WC_L I STB0X), or to
catch notification codes. But, if you were interested in knowing about the data
generated by the system in response to any user-window interaction of a predefined
class,thesolutioniss#bcz¢ssz.7tg.ThistermindicatesachangeinthereseIvedmemory
areaofawindowbelongingtoapredefinedclass:thechangeoftheaddressofitsown
window procedure (Figure 10.3).

Subalassing, Saperalassing, and DLL 533

WC_ENTRYFIELD

intmain(void)

(

I...

I)
I MRESULTEXPENTPIYclientwndproc(...)

i { createtheentrviield&subclassit
I

L> MPIESULTEXPENTRY Newwndproc()

Callingtheoriginalwindowprocedure

MPIESULTEXPENTFIYEntryfieldwndproc(...)

(

Figure 10.3 Subclassing of a window belonging to a predefined class-in this
case, an entryfield.

h order to perform subclassing, you must have two items: the,handie of the
involved window and the name of a new function that win play the role of new
window procedure. To obtain the first item, you must create a window by calling
W£.7tc7`e¢fewz.7tdozt7() as this will be an instance of a predefined class. You must then
write the new window procedure according to all rules governing ordinary window
procedures. The only fundamental difference will be in the default processing re-
served for messages coming to this procedure. In an ordinary window procedure, all
messages-boththoseactuallycaughtaswellasthosenotcateredforbyspecificcase
branches -will eventually reach Wz.7tDe/WZ.7ide"Proc(), and thus be submitted to
default processing. hstead, in the case of a subclassed window, it is much simpler to
hand over the messages not pertaining to specific processing to the class's standard
window procedure, which is defined intemally in PM. It is thus possible to define
s#Z7czflssz.7tg as an operation consisting in temporarily deviating the message flow of a
window belonging to a predefined class towards a window procedure managed by
the designer, and then transferring information back to the original one for ordinary
processing. Figure 10.4 illustrates this.

The scheme in Figure 10.4 is similar, in a certain way, to what has been seen in
Chapter 8 regarding the role played by a dz.¢Zog .z7rocedt{re in handhig a 777odflz zoz.7tdozw
For dialogs, this is on the whole, a natural behavior; instead, subclassing is enforced
explicitly by the designer.

534 0S/2 2.1 Wor:laplace shed progranming

Figure 10.4 Implementation of subclassing for a window belonging to a
predefined class.

Performing Subclassing
There are two simple techniques that allow you to change the address of the window
procedure associated with a window. The first altemative is calling the special
furmcfuonwinswhclasswindow()..

#defi.ne INCL_WINWINDOWMGR

PFNWP Wi.nsubclasswi.ndow(HWND hwnd, PFNWP pfnwp) ;

P ar ameter D es cription
hwnd Handle of the window to subclass
pfnwp Name of the function that will take on the role of new window

procedure for the window
Retw:rn vahae D e s cription
PFNWP Address of the old window procedure

As it has been anticipated, the first parameter is the handle of the window to
subclass, and the second one is the name of the new window procedure. The return
value of this function is the address of the old window procedure. This piece of
information is valuable because it is usually used to tell the new window procedure
where it can find the original window procedure of the class.

Swhclassing, Saperclassing, and DLL 535

Often, the identifier of the type PFWNP containing the return value of Wz.7ts#b-
cJ¢ssWz.7tdozo()isaso#rce¢.Zescopeidentifier.However,thisapproachisbetteravoided.
A superior solution is sending a special message to the window immediately after it
has been subclassed, and thereby transferring to the programmer defined window
procedure the address of the original window procedure. The whole can be imple-
mented in a code fragment like the following:

®,®

#defi.ne WM_PASSPROCWM_USER

PFNWP pfnwp ;
®®,

pfnwp = Wi.nsubclasswi.ndow(hwnd, Newproc) ;
Wi.nsendMsg(hwnd, WM_PASSPROC, MPFROMP(pfnwp), OL) ;

®®®

h the function Nezoproc() the message is caught in this way:

MRESULT EXPENTRY Newproc(HWND hwnd,

ULONG msg,

MPARAM mpl,

MPARAM mp2)

(
stati.c PFNWP pfnwp ;
®,,

swi.tch(msg)
I

case WM_PASSPROC:

pfnwp = (PFNWP)mpl ;
return OL ;

®,

)
®

return (*pfnwp)(hwnd, msg, mpl, mp2) ;
)

The second solution for performing subclassing Of a window is calling W£.7tse£Wz.7z-
dowptr()..

#defi.ne INCL_WINWINDOWMGR

B00L Wi.nsetwi.ndowptr(HWND hwnd, LONG i.ndex, PV0ID p) ;

Parameter
hrmd
index
P

Retwm Vahae
BOOL

Description
Handie of the window to subclass
hdex corresponding to the memory area to modify
Name of the function that will become the new window proce-
dune for the window
Description
Success or failure of the operation

536 0S/2 2.1 Workplace shell progranming

TheflagtospecifyasthesecondparameterisalwaysQWP_PFNWP,whilethepointer
issimplytheaddressofthenewwindowprocedure.Sincethisfunctionisnotjustfor
performing subclassing, it is necessary to precede this operation with the retrieval of
the natural window procedure's address for the window, by calling W.7zQ#e7tyw.7e-
dozt7Pfr(), and then passing it to the appropriate function.

A Sanple Subclassing
The code in Listing 10.2 shows a simple PM program that will create within the
application client window two other windows belonging to the class W C_M L E, which
share the available space of the client equally (Figure 10.5).

Of these two controls, the one on the left has been subclassed in order to catch the
message WM_CHAR and prevent lowercase letters from being displayed and accepted
by the window. Instead, when a lowercase letter is typed in, the routine will convert
it into the corresponding uppercase, as shown in Figure 10.5.

The action is performed in the new window procedure of the 77cJe on the left side of
theapplicationwindow,andisverysimpleandlimited.However,whatisimportant
hereisthattheexampleshowsthatsubclassingisanoperationspecifictoeachsingle
window.Asyoucansee,thesecondcontrolwillcontinuetoprocessanykindofinput,
with no distinction whatsoever.

When to Perf orm Subclassing
Subclassingawindowisaverysimpleandstraightforwardoperation-youordyhave
to be careful to store the correct address of the original window procedure, and

Figure 10.5 An application with two controls of class WC_MLE: The one on
the left has been subclassed and will not accept lowercase letters.

Subclassing, Saperclassing, and DLL 597

remembertoexportthenewfunctionasanEXPENTRYinthemoduledefinitionffle(if
present).Subclassingisthusanoptimalsolutionwhentheapplicationneedstochange
thetypicalfunctionalityofawindowofapredefinedclassonlyslighily.Itisdifficult
toestablishexactlyhowmuchmessageinterceptionworkshouldbeperformedinthe
new window procedure with respect to the original one. As a guideline, if the
customization effort of the behavior of a window is limited to approximately 15-20
percentofitswholefunctionality,itiscertainlybettertoresorttosubclassing.Greater
reworkingcouldsuggesttheneedforcreatinganewwindowaltogether,startingwith
its registration.

Consideringhowfrequentlywindowsbelongingtothepredefinedclassesareused
(as we have seen in Chapter 7), subclassing becomes a fundamental tool also for
implementing behaviors like displaying a window context menu, or the handling of
drag & drop operations.

Superclassing
in the development of a PM business application, the presence of dialog windows
should be consistent, both in terms of independent windows and notebook pages.
Consequently, custonrized controls are often used. Assume you have to implement
an accounting program. Windows of the class WC_ENTRYFI ELD can be used as the
primarysourceofuserinputinanum.berofsituations:customername,socialsecurity
numbers, and other alphanumeric data. '

Often,subclassingisanidealsolution.However,ifyoucanidentifyinthecodenew
kinds of windows used in several instances, subclassing each window becomes
cumbersome. It is then much more practical to create a new class of window having
mostfeaturesincormnonwithapredefinedwindowclass-like,forinstance,WC_EN-
TRYFI ELD. This approach to the problem is known as s#percJ¢ssz.7zg, which means
generatinganewclassofwindowfromtheinformationavaflableforsomepreexisting
class, most often a predefined window class.

P erf orming Sap erclassing

EI

PM's API provides the function W{.7tQ#enya¢ssJ7t/a() in order to allow you to have in
a CLASSINF0 structure the data that was specified when a class of windows was
registered. However, there is no provision that allows you to change these values
directly.Thereasonforthisistoprotecttheinnerworkingsofthepredefinedclasses.
Justthjnkwhatwouldhappenifthesystemcouldchangenatureandbehaviorofthe
class WC_SC R0 LLBAR? All applications using a scrollbar would find themselves with
an object with changed characteristics and probably wouldnot work as expected.

Thefirststeptoperformistoretrieveinformationfromapre-existingwindowclass.
h Listing 10.3 this phase is performed directly after the interception of the message
WM_CREATE:

538 0S/2 2.1 Workplace shed progranming

®,,

case WM_CREATE:
// retri.eve 1.nformati.on from the WC_ENTRYFIELD class
1.f(!Wi.nQueryclasslnfo(HAB(hwnd),

WC_ENTRY F I E LD ,

& c 1 s 1`))

Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

®,

h cl s 1. , an identifier of type C LASS I N FO, you can find information pertaining to the
name of the window procedure, the styles, and the size of the class's window words. h
practice, these are the parameters of Wz.7tRegr.sfera¢ss(). Cia the basis of these values, you
can now register a new class. There are only a few values that need to be changed.
Naturally, you must provide a new name+for example, NewEdit-and the address of
the function that will take on the role of window procedure. The style and the size of
windowwords,instead,areretrievedautomaticallyfromtheappropriatemembersofthe
cl s i. structure. The definition of the new window words must be added to the original
outfitoftheclass.Furthermore,inordertoavoiderrorsduringtheregistrationprocedure,
itisgoodtoclearthestyleflagCS_PU8LICinthec1si..f1C1assSty1emember.Thestyle
CS_PUBLIC is always set in the predefined windows; but it can be specified only if
registrationtakesplaceinsideaDLL.Thefollowingcodefragmentshowsthecorrectway
to resister a new class of windows, in order to prepare for superclassing.

®®

i.f(!Wi.nRegi.sterclass(HAB(hwnd),
szcl assName ,
Mywndproc,
clsi..flclassstyle & ~CS_PUBLIC,
c 1 s i. . c b W i. n d o w D a t a))

Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

®,

The new class, NewEdit, relies on the services of the Myw7dproc() window proce-
dune and on those of the original class for processing all messages it receives. Before
going on with the creation of the first window belonging to the new NewEdit class,
you must tell the function Myw7zdproc() the address of the window procedure of the
classWC_ENTRYFIELD.Eveninthiscaseyoucanresorttothemechanismwehaveseen
earlier,byusingthenewmessageWM_PASSPR0C.However,inrespecttos#bcz¢ssi.7tg,it
is not possible to call Wz.77Se7zdMsg(), because you do not have any handle. You must
callthefunctionMyw7tdproc()directly,andspecifynullhandleandallremainingdata
pertaining to the message WM_PAS S P R0 C.

®®

// pass the old wnd proc address to Mywndproc
(*Mywndproc)(NULLHANDLE,

WM_PASS P ROC ,

MPFROMLONG((ULONG)clsi..pfnwi.ndowproc),

OL);

®®,

Subctassing, Saperalassing, and DLL 539

0nceyouhaveregisteredtheclassandpassedtheaddressofthewindowprocedure
of the class from which the superclass h.as been derived, you can create the desired
windows,andbecertainthatmessageflowwillfirstreachtheMywtdproc()function,
then the intemal PM function that is specific to the class WC_ENTRYFI ELD. h Fig-
ure10.6youcanseeaPMapplicationthathastwocontrolsoftheclassNewEdit:Any
lowercase input is converted into uppercase.

Features of Saperctassing
h PM, class registration is an operation that takes place for each single instance of a
program. The scope of the class is therefore limited to the sole executable wherein it
has been registered. This means that a multimodule application will have to register
the same class of windows as often as appropriate. This situation is ideal in many
development projects. On the other hand, if\ you want registration to take place only
onceinthesystem,andthatcreationofwindowsbelongingtothoseclassesbeallowed
both for executable modules as well as for DLL, then you have no other solution than
to register the class directly inside a DLL. This DLL must then be loaded when you
boot the system. This is essential to be certain that any process will be able to take
advantage of the services provided by the new class.

Figure 10.6 A sample PM application that uses controls generated by means
of superclassing.

5qo OS/2 2.1 Workplace shed progranming

Theterminologyforthiskindofoperationisnots#percz¢ssz.77g,butcreatingcustom-
ized controls. To do this, it is necessary to understand the design rules governing
Dynanlc Lndcing Libraries.

Dynamic Linking Libraries
A frequent need in a multitasking environment is to reduce to the bare minimum the
amount of memory occupied by all executing applications. In the development of
OS/2, a number of solutions have been devised to limit the consumption of memory
by the applications. In the previous chapter we explored the techniques used for
producing segmented code.

The fundamental strategy of OS/2 is to provide the software designer with a series
of services-the API-which can be called directly from within any high level pro-
gramming language. The API of OS/2 is actually accommodated in a number of
modules known as Dy77¢773z.c Lz.77k€.7tg Lz.br#rz.cs (DLL). A typical PM application is
characterized by the presence of a number of calls to the Wz.7t and Gpz. services, in
addition to Dos, Pr£, Drg, and others. This means that a considerable portion of a PM
application resides in one or more DLLs that are shared among several applications.
There are many good reasons for this:

• The executable files are smaller
• The loading of an executable requires less time
•TheapplicationsareautomaticallyupgradedtothenewversionsoftheAPIwhich

might be released in subsequent revisions of the operating system, without any
need to recompile or relink the appHcation

Deftndtion of a DLL
A DLL is a file that is very sirfular in structure to an ordinary OS/2 executable, for
example, an EXE file, but with the extension DLL. A DLL is a collection of compiled
and linked functions, almost invariably written in the C Language. A fundamental
difference between a DLL and an EXE is in the lack of a unifying logic among the
functions in a DLL, as opposed to what happens in an EXE. A program is generally
structured in several functions that altogether cooperate to perform certain high level
operations. Imagine a simple executable, the purpose of which is to compute the area
of a rectangle. Cince the values of the rectangle's base and height have been provided,
the computation can proceed. Even though this example is extremely simple, you
might think of structuring it in an input function, a computation function, and in an
output function.Theproceduresareall1ogicallyrelatedandcooperatetocomputethe
area of a rectangle.

Now, 1et's examine the same program developed like a DLL. h this case, the DLL
could effectively contain the three named functions, but there would be no unifying
code taking advantage of these services. Some other executable win call the input

Subclassing, Superclassing, and DLL 541

1^LJ

\-___-~\-___-~.DLL

RAMSERVICE1SERVICE2SERVICEn

.EXE

Figure 10.7 Relationship between an executable and a DLL.

function, the computation function, and the output function in order to achieve its
puapose. h practice, a DLL is a collection of services that can be called by other
appficationsduringtheirownruntime.Figure10.7illustratestherelationshipbetween
an EXE and a DLL.

How to Produce a DLL
There are no different rules for producing a DLL with respect to what we have seen
so far in the design of a PM application (Figure 10.8).

The starting point is always represented by a source code containing the functions
that are intended to be called at a later stage by some other running application. A
DLL is allowed to call other functions of OS/2's API, compiler runtime library

Figure 10.8 Production scheme for an OS/2 PM DLL.

54;2. OS/2 2.1 Wor:laplace shed progranming

functions,orotherfunctionswithinthesameDLL.hallcases,itisnecessarytoinclude
the appropriate header files. Cince the code has been written, it can be compiled. You
must indicate at the project level that you want to create a DLL rather than an EXE
(the presence of the DLL extension is, in most cases, a purely cosmetic distinction).

Onceyouhaveobtainedtheobjectmodule,youcancontinuewiththelinkingphase.
LINK386 will produce an executable module deprived of the traditional entry point.
As a matter of fact, the 777¢z.77() function will be missing altogether. This explains the
different verbiage used for a DLL: An EXE is exec#fcd, while a DLL is Zo¢ded into
memory.

h order to become fully operative, DLLs must physically be placed in some
directory specified with the L I a PATH directive in CONFIG.SYS. If this is not the case,
youwillmeetanerrormessageinformingyouaboutthesystem'sinabilitytoexecute
the file ***., where the three asterisks sequence indicates one or more DLLs associated
withtheinvolvedexecutable.Theerrormessageretumedis1804,andtheexplanation
provided by the help system does not help much.

SYS1804: The system cannot fi.nd the fi.le ***.

EXPLANATION: The fi.le does not exi.st or i.s i.n a di.fferent di.rectory.
ACTION: Check the spelli.ng of the fi.1e name and i.ts locati.on.
Retry the command.

ThedistinctionbetweenaDLLandanEXEisnotclearlymanifestduringthecoding
phase or for the nature of the file's contents @oth files are compiled and linked
modules). Rather, DLLs are to be considered portions of an executable that have been
extractedfromaprogramandparkedinthesystem'smemoryinordertoallowother
modules to access to its functions or services.

There are not special limitations on the nature of the functions inside a DLL. Often
thecallconvention_System(EXPENTRY)isusedforconsistencywiththeAPI,buteven
_Optl i. n k will operate correctly. You need only be careful about fisting in the DLL's
DEF file the names of all functions that you want to be callable from outside the DLL
(this operation is mandatory).

Advantages of DLLs
DLLs are extremely important in OS/2. The operating system is structured in layers
around the four rings of the 32-bit profccfed 777odc (Figure 10.9). The actual kemel and
thedevicedriversoperat.einring0,theonewiththehighestpriority.Theapplications
operate in ring 3, the one with the lowest priority.

Ofthefourrings,thesecondone(nurnberl)isnotusedbyos/2.Thelayerednature
of the whole system is shown in Figure 10.10. The DLLs containing the API of OS/2
areusuallyfoundinring3.Thisconfirmsthenatureof``pseudo-applicatious''ofDLLs.
h some cases DLLs can be present in ring 2. This condition is necessary if you need
to execute TOPL (I/0 privilege level) code.

The role played by DLLs in making OS/2 work is fundamental. Actually, Presen-
tation Manager is implemented as a series of DLLs that are loaded into memory

Subctassing, Saperctassing, and DI:L 54;3

0 ////` ENG 0 ENG 1 ENG 2

RING 3

Figure 10.9 The subdivision in layers of the 32-bit protected mode of the 386,
486, and Pentium in Intel's iAPX86 family of processors.

i-ediately after the initial bootup phase. Any PM applicati.on, starting with
PMSHELL.EXE, will take advantage of the services present in PMWIN.DLL in order
to act as windows on the computer's screen.

Nothing prevents the software designer from creating and adding new DLLs in
addition to the standard outfit provided by OS/2. h principle, there is no difference
between the DLLs provided by OS/2 and thos'e developed in-house. All ``home-
brewed" DLLs will contain a collection of services that can be used by one or more
applications. Knowledge about the capabilities of this new set of tools will of course
belirritedandnotuniversal,asopposedtothecaseofOS/2'sAPI,whosecapabilities
are known through the world of OS/2 developers, since it comes with the develop-
ment kit's documentation.

Anewkindof.businesshasdeveloped.thatmarketsprofessionalDLLscontaiming
useful functions (that enhance the system's API) that can ease the development and

------------------------ 3
I AppL|cATloN I I ApPLICATION I E E]----------- 2-------------- RINGE]IAppLlcATloNI EE,-1\-----------

------------.- RING1

- - = - - - - - .- .- -- - RING 0

I REENEL IIDEvlcEDRrvIR I

Figure 10.10 Layered architecture of the OS/2 operating system with respect
to the processor's protected mode.

544 0S/2 2.1 Workplace shell progranming

coding of OS/2 appHcations. Even more often, the creation of new, customized
controls within DLLs offers interesting business opportunities for software houses,
since they can be exploited even by users of macro languages, Hke the one in Lotus
1-2-3.

Prodrcing a DLL
Let's examine Listing 10.2, which shows how to create a simple PM appHcation that
candisplayawindowonthescreen.Ihthesamplecodeyoucanfindanumberofcalls
t_p_PqusppT:.vyinlndtialize(),WincreateMsgQueue(),WinRegisterclass(),Wincreatestd-
Wz.7tdozo(), and many others. During the compilation phase, the C compiler camot
know anything about the nature of these functions, and therefore handles them as
unknown objects. Consequently, it creates a table of extemal references, contaiing
thenameofthefunction,and,optionally,adescriptionofitstype.hperformingthese
actions, the compiler is unaware of the nature of the calls: They nright be calls to the
API, calls to a DLL developed by the programmer, or even an ordinary C runtime
library function call. As it does not have a complete picture of the situation (the
compilercana~ctonlyupononesourcefileatatime),itcannotcometoanyconclusion
anddelegatestothelinkerthechoreofsolvingallextemalreferencesHomputingthe
corre.ct address of the function being called from within the code.

The linker win try to resolve any extemal reference in the following ways:
• It will examine all 0BJ modules specified as the first argument in the linker's

command line
• It will seek in all libraries (LIB) explicitly indicated in the linker's command line,

or indicated automatically by the compiler
• It will read the area labeled by I M P0 RTS, if present, in the application's definition

file

If none of these three phases produce information able to resolve the extemal
reference, then the error message L2029 unresol ved external will be displayed.
Let's examine all possible situations.

Static Linking
Static linking is what happens when an external reference is identified in one of the
object modules specified during linking, or in a library like DDEx3ex.LIB. This is
typical of a segmented application, like Menu Maker (Chapter 9), where many
functions reside in various modules that make up the program. Similarly, static
linking takes place when any C runtime library function, like sprz.7tf/r), is used.

The linker will add to the original module (the first OBJ specified on the command
line) the object module associated with the extemal reference, and thereby increase
the size of the original module. Chce this phase is over, it win always be the linker
thatresolvestheproblemoftheunresolvedaddressesinsidetheprogram,bywriting
the physical address of the added function in the appropriate part of the call instruc-
tion (CALL). Figure 10.11 illustrates how static linking works.

Subctassing, Superclassing, and DLL 545

OBJECT MODULE
List of
names

not
resolved

Code

®printf,,,

L
CALL???;printfCALL???;printf

TWENY.OBJ

print() CODE

ERECUTION MODULE

HEADER

CALL OX01100000

CALL 0X01100000

printf()
code

TWENY.EXC

OX01100000

Figure 10.11 Scheme for resolving external references in static linking.

Dynandc Linking
When the unresolved reference does not refer to some service contained in a DLL, the
linker must act somewhat differently. However, it is obvious that the linker must fill
in a ``hole" in the program, the place where the address of the function to be called is
missing. h the case of dynamic linking, the linker will not add the object module
corresponding to the call, and the ``hole" is filled in differently.

Let's examine what happens when linking a generic PM application that often
resorts to calling API services. The fourth parameter of the linker is used to indicate
the library OS2386.LIB which contains all references to the API of OS/2.

Ii.nk386 machi.ne„, os2386, machi.ne.clef

Naturally, OS2386.LIB does not contain the code of au functions provided by OS/2
(several hundreds), but only references to the API. As a matter of fact, OS2386.LIB is
a library used for generating a 7'ezocofz.o7i record or even an z.77tporf Zi.Z7r¢ny. The concept
of z.777por£ Zz.Z7r¢ny is strictly related to what happens in a DEF file, corresponding to the
IMP0RTSdirective.Bydefinition,allfunctionsofthetypeEXPENTRYwhicharewritten
by a programmer in a PM application must correspond to the E X P 0 RTS directive. This
allows the linker to compute the correct address of this code portions, which are later
called by PM. The API of OS/2 is a set of services of the type EX P E NT RY, and therefore
it is reasonable to suggest that when the DLLs for OS/2 were written (like
PMWIN.DLL), the EXPORTS area of the appropriate DEF file contained a list of all
EX P ENTRY functions declared in the code. h practice, when writing a DEF file for a
DLL you must list all services that other applications (mainly EXE modules) will be

546 0S/2 2.1 Wor:Iaplace shed progranming

able to call.from within their own code. The OS2386.LIB library is a typical example
of an {.777porf Zz.br#7ty: a complete list of the API names of OS/2.

When the linker recognizes the table of external references produced by the com-
piler for the Wz.7t functions, it will find in OS2386.LIB the correct reference, and will
insert that into the executable. You can think about the contents of OS2386.LIB, and
generallyofanyimportlibrary,asaRolodex:Youmightuseittocollectbusinesscards
that you receive during meetings, business lunches, or other encounters during
e}chibitions and shows. Each business card win list information that allows you to
contact some individual, by listing all items that are important for that purpose: first
and last names, title, position, working address, phone number, fax number, and so
on. The linker will insert into the executable the data about some service contained in
an I.777por£ Zz.br#ny, and avoid error messages armouncing unresolved extemals. This
does not mean that the executable is ready to be run. Only when it is loaded will it be
possible to solve the problem and discover where in memory any specific function is
located and thus obtain its address.

h practice, the executable that contains calls to services provided by DLL win not
includetheextemalservice;itisenoughtoknowthegenericreferencerepresentedby
the name of the DLL and the name of the service. Ih the case of the I M P 0 RTS directive
in the DEF file, writing a reference to an external service takes on the following form:

®®®

IMPORTS

MIE01.Mi.eEmphasi.zeWi.ndow

M I E0 1 . M i. e C e n t e r D 1 g

®®,

The information that has to be given to the linker is: the name of the DLL and the
name of the service.

Structure of a Relocation Record
The information contained in an import library or derived by the linker on the basis
of what is specified in the IMPORTS section of a DEF file will allow the creation of a
rezocofz.o7t 7'ccord. The initial data falls into one of the following three categories:

• The extemal name, that is, the physical name of the function as it is encoded in
the application code and as published by the compiler in the table of extemal
references.

• The name of the DLL physically containing the code and the data of the function.
• The entry point of the function in the DLL. This piece of information is provided

as a simple number or as the complete name.

The linker will define the relocation record in the application only when it has all
the necessary information, whatever the source of it might be:

• The offset from the beginning of the code blockwherein the call to a DLL function
appears.

Subctassing, Saperalassing, and DI.L 54:7

• The name of the DLL containing the service.

•TheentrypointofthefunctionintheDLL,indicatedwithitsordinalvalueorwith
its name (never both). h practice, the relocation record built by the linker in the
applicationisidenticaltothatspecifiedwiththe.1MP0RTSdirectiveintheDEFfile
or the information present in an import library.

The creation of relocation records in an executable module by the linker is always
in a one-to-one relationship; for each API call there will appear only one relocation
recordeveniftheserviceiscalledseveraltimesintheprogram.Forexample,justthink
of all calls to Wz.7tse77dMsg()!

The linker will resolve each single call in the program to the same DLL service by
means of a Z£.77ked Zz.s£. Corresponding to each call to the same function present in the
code of a DLL, the linker adds the offset of the address of the next call, and terminates
thesequencewiththedum]nyvalueof0)d]FFF.Figure10.12illustrateshowthelinker
solves all external references to DLL functions.

Consequently, the EXE image produced by the linker does not correspond to the
real situation at the next application run. For each function residing in a DLL there is
a specific relocation record that will indicate the source in a linked list of references.
The values contained in the various locations are dummy values, and do not have
anything to do with the actual position in memory where the DLL service is to be

ITORT LIBRARY

Name: Myservice

DLL:MYDLL.DLL

OBJECT MODULE
List of
names

not
resolved

Code

Entry point
#3

me MyserviceMyservice,,, Na

CALL???;printfCALL???;printf

EXEctJTTON MODULE

Header

OX1283
CALL 0X0000485A; Myservice

OX4859
CALL 0XFFFFFFFF; Myservice

Relocation record

OX1284
MYDLL.DLL

3 o MYSERVICE

Figure 10.12 Scheme for resolving external references to functions residing in
a DLL.

5q8 0S/2 2.1 Workplace shed progranming

found. The discovery of all these pieces of information are delegated to the system
Zo¢der at the moment when the application is loaded and executed.

Executing a Program That Accesses a DLL
ItisnotpossibletoexecuteaDLLdirectly.Theonlyactionthatisallowedisitsloading
into memory. This operation is performed automatically by any application contain-
ing one or more specific relocation records indicating the usage of a corresponding
number of DLL services. The system loader will examine the structure of the ex-
ecutable module and search for possible relocation records. Each one of these records
will indicate the name of the DLL containing the function called in the code. If the
indicated DLL is not already present in memory, the loader will load it. hstead, if it
is present in memory, it will increment the DLL's usage count. once this is over, it is
easy for the loader to fix in the EXE all unresolved addresses representing the calls to
the services in the DLL. Although this is the general scenario, there are a number of
operations being performed at each stage, and they can have different characteristics
according to the specific situations implemented in the system. Lets examine how a
DLL can be loaded.

Loading a DLL Implicitly
When the system loader encounters a relocation record, it must first find the file
corresponding to the DLL. Generally, DLLs are parked only in the directory men-
tioned in the environment variable LIBPATH, specified in CONFIG.SYS. This set of
directories represents the search space for the system loader.

The same DLL can be present in more than one directory indicated in LIBPATH; in
this case it is the first one encountered that gets loaded. The loading operation
considers all code and data segments that make up the DLL. If the DLL were already
present in memory due to some former application, then the code segments that are
alreadypresentinmemoryarereused,sincetheyareread-ordyresources.Thecriteria
followed for data segments is different. It is possible that each instance of the DLL
loads a new set of data, or each instance can always reference the same data segment.
h the first case, data is specific to each single instance (z.77sf¢7tce d¢f¢ seg77te7tfs), while
inthesecondcasedataisglobaltoallinstances@Zob¢Zd¢£¢seg77ze7tfs).Thefirstsolution
isobviouslysimplertoimplement,aswellasthemostconvenient,althoughitismore
demanding in terms of memory consumption. Soon we will examine which tech-
niques to employ in order to implement the two different solutions.

Cince the DLL is loaded into memory, the physical address of the various functions
called in the appHcation and residing in the DLL become known. The system Zo¢der win
take care of changing the internal dummy references generated by the]inker when
creatingtheEXE,andreplacethemwiththerealvaluespresentinmemoryatthattime.

The first operation is to get the name of the service called by the application. This
information is expressed numerically or by means of the full name of the service. h
the case of a number, it is compared with the DLLs e7cfny f¢Z7Ze: That's where the
segment of the DLL containing the service is defined, together with an offset to the

Swhclassing, Saperclassing, and DLL 54!9

startingpointoftheblock.Thentheloaderonlyneedstoprovidetheapplicationwith
anappropriatepointerforaccessingthesegmentoftheDLLthathasjustbeenloaded
intomemory.Onthebasisofthisinformationandoftheoffsetvalue,itcanthenwrite
the correct address of the service. If the service in the application's relocation record
is represented by its full name, then the loader must perform another operation-re-
trieve the ordinal num.ber of the service in the DLL. To do this, it must examine the
contents of a table of names present in the DLL's header. This second solution is
therefore slower than the first one, and also requires more memory.

Loading a DLL Explicitly
hadditiontotheactionperformedbythesystemloaderwhenexecutinganexecutable
equipped with relocation records, there is another altemative where the appHcation
takescareofloadingtheDLLdirectly.Theoperationstoperformareverysimple,and
are all supported by a well-designed API. The actual loading of a DLL takes place
through the function DosLo¢dMod#Zc() :

#defi.ne INCL_DOSMODULEMGR
APIRET APIENTRY DosLoadModule(PSZ pszName,

ULONG cbName,

PSZ pszModname,

PHMODULE phmod) ;

Pawameter

pszName
cbNane
pszModname
phmod

Return Vahae
APIRET

Description
Buffer for accommodating any possible error messages
Size of the buffer for error messages
Name of the file containing the DLL
Address of the identifier containing the handle of the DLL
(module)
Description
Return code of the function

hthethirdparameteryouhavetoindicatethenameofthefilecontainingtheDLL,
including the full pathname (if necessary). h the fourth parameter the Dosl,o¢d-
Mod#Ze() function returns the handie to the DLL, a fundamental piece of information
for accessing the DLL later. The loading of a DLL, both explicit as well as implicit,
impfiestheincrementofthemodule'susagecount,whichisinitiallysettozero.When
the DLL is released, the corresponding memory is freed only when the usage count
returns to zero, by means of successive calls to DosFreeMod#Ze():

#defi.ne INCL_DOSMODULEMGR
APIRET APIENTRY DosFreeModule(HMODULE hmod) ;

Parameter
hmod
Return Value
APIRET

Description
Handle of the DLL (module)
Description
Return value of the function

550 0S/2 2.1 Workplace shdrl progranming

Each process that accesses a DLL must call DosFreeMod#Zc() in order to correctly
manage the memory used by the module. Once the DLL has been loaded, the
applicationwillwanttoknowtheaddressoftheservicescontainedtherein.Naturally,
the call cannot be by name, but only by address. The address can be found by calling
DosQueryprocAddr()..

#defi.ne INCL_DOSMODULEMGR

APIRET APIENTRY DosQueryprocAddr(HMODULE hmod,

ULONG ordi.nal ,

PSZ pszName,

PFN* ppfn) ;

Parameter
hmod
ordinal
pszName
ppfu
Return Vahae
APIRET

Description
Handie of the DLL (module)
Sequential number of the function within the DLL
Name of the function being sought
Address of the function in the DLL
Description
Return code of the function

When you know the name of the loaded DLL, it is possible to find its handle with
DosQueryModuleHandie()..

#define INCL_DOSMODULEMGR

APIRET APIENTRY

Parameter
pszModname
phmod

Return Vahae
APIRET

DosQueryModuleHandle(PSZ pszModname,
PHMODULE phmod) ;

Description
Actual name of the DLL
Address of the identifier containing the handle of the DLL
(module)
Description
Retulm value of the function

The opposite operation, that of getting to the name of a DLL starting with aL handie,
can be done through DosQ#e7ryMod#ZeN¢777e():

#defi.ne INCL_DOSMODULEMGR
APIRET APIENTRY DosoueryModuleName(HMODULE hmod,

ULONG cbName,

PCHAR pch) ;

Parameter
hmod
cbName
pch
Retun Vahae
APIRET

Description
Handle of the DLL (module)
Size of the buffer
Array of chars containing the name of the DLL
Description
Return. code of the function

Swhclassing, Superctassing, and DLL 551

The following code fragment illustrates the techniques to follow when loading a
DLL explicitly into an application:

®®

stati.c HMODULE hmod ;

®®®

swi.tch(msg)
(

case WM_CREATE:

DosLoadModule(NULL, OL, "MIE01.DLL", &hmod) ;

l.f(!hmod)

(
Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

®®®

I
®®

break ;

case WM_CLOSE:

DosFreeModule(hmod) ;
break ;

case WM_COMMAND:

i
PFN pfn ;

®®

DosoueryprocAddr(hmod, OL, "Mi.ecli.entcolor", pfn) ;
®®®

I
®®®

)
®®,

Naturally, it is necessary for the programmer to know not only the name of the
required service, but also its syntax. The call to the function will be made through its
pointer, followed by the parameter Hst:

®

(*pfn)(hwnd, ulLong) ;
®®®

The sample appfication will call a function that requires a window handle and a
parameter of type U LONG.

Coding a DLL
Theabsenceofatraditionalentrypointisworththinkingabout.OftenaDLLissimply
acollectionofunrelatedservices.However,almostinvariably,therewillbeaneedfor
some preliminary operations before loading the DLL, in addition to other cze¢7t-t{p
actions after its use. To meet these needs, the code in a DLL can be enriched with the

552. OS/2 2.1 Workplace shed programming

function _DLL_17tz.fTer777(), which is called automaticany by the system when the
library is loaded and released. The syntax of I_DLL+7tz.fTer777() requires only two
parameters:

ULONG _System _DLL_Ini.tTerm(HMODULE hmodule, ULONG ulFlag) ;

P arameter D escription
hmodule Handle of the DLL
ulFlag Flag indicating the activation (0) or deactivation (1) of the DLL
Retu:in vahae D escription
ULONG A nonzero value to indicate that either the initialization or the

termination routine has ended successfully, zero to indicate a
failure

ThebodyofaDLLisessentiallybasedontheexaminationoftheu1F1agparameter
in a s w I. t c h statement:

®,

ULONG _System _DLL_Ini.tTerm(ULONG hmodule, ULONG flag)

[
swi.tch(flag)
I

case 0: // i.ni.ti.li.ze
®,®

break ;

case 1: // termi.nate
®®

break ;
)
return lL ;

)
®,,

The call frequency of the _DLL_T77z.£Ter77t() function is controlled by directives that
can be given in the module definition file, corresponding to LI BRARY. The possible
choices are pairs I N ITI NSTANCE-I NITGL0BAL and TERMI NSTANCE-TERMGL0BAL. The

choice of a xxx I NSTANC E directive implies that the function _DLL_ha.fTer77€() is exe-
cuted at the loading/releasing of the DLL for each process that accesses the DLL. On
theotherhand,thedirectivexxxGL0BALimpliestheexecutionof_DLL+7tz.£Ter77c()only
when the DLL is physically loaded into memory for the first time`, or when the last
process using it will release it. The default combination is given by I N I TG L0BA L and
T E RM G L0 BA L.

Creating a Sample DLL
ThebestwaytounderstandthenatureofaDLListocreateonefromscratch.hFigure
10.8 you can see the general scheme; the similarities to the development of an OS/2
executable are evident.

El

Subalassing, Saperctassing, and DI.L 553

in this first sample, you will create aL DLL named MIE01.DLL, specializing in
providing some support services for applications that will be described in the next
chapters. MIE01.DLL contains a service called M£.ecozorcz€.e#f() which will color the
chient window of an appfication and then draw a thin white border around the
rectangle representing the client. The intemal logic of Mz.ecozo7'CZz.e7zf() is very similar
tomanyothersamplesofthisbook:Eachtimethewindowisresizedoracquiresfocus,
it will color itself with a different color. h Figure 10.13 you can see the output
producedbytheprogram,anditssourcecodeappearsinListing10.4.Thesourcecode
of MIEol.DLL is in Listing lo.5.

The service Mz.ecozorczz.e77f() is called in the code portion handling the WM_PAI NT
message. The syntax of this service is:

COLOR EXPENTRY Mi.ecolorcli.ent(HWND hwnd,

HPS hps,

PRECTL prc) ;

ThefirstparameteristhehandleofthecZz.erzfzoz.77dozo,followedbythehandletothe
presentationspaceretumedbyW{.71Begz.77Pflz.7t£().Thesyntaxthenrequiresapointerto
a structure of type RECTL. The return value of the function is the color currently
assigned to the application's client window.

Figure 10.13 Coloring the application's client window is delegated to a service
residing in the MIE01.DLL dynamic linking library; developed specifically
for this purpose.

554 0S/2 2.1 Workplace shell progranming

With this information, Mz.ecozoraz.e7z£() can color the client, and then display the
whiteborder,fivepixelswide,enteringfromthemaximumsizeoftheclient.Drawing
theborderisdelegatedtothefunctionWz.7tDr¢zt7Border(),whichispartofOS/2'sAPI.
hMIE01.DLLthereisalsothefunctionMz.e£77cpJz¢sz.zeBorder()whichwillemphasizea
window when the zuz.7tdozo co7tfcx£ 777c7t" is displayed, or when a dng a drop operation
is performed.

Compiling a DLL
OncethesourcecodeMIE01.Ciswritten,youcancompileit.Asanticipated,thisisan
ordinarycompilationthatsimplyreliesonsettingaflaginordertoinformthecompiler
the presence of C runtime Hbrary functions, and of the DLL nature of the source.
During the linking phase, the DLL's module definition file is also put to good use.

The DEF File of a DLL
ThemoduledefinitionfileofaDLLperformsacrucialroleintheoperationsrendered
bythelinker.Firstofall,theLI8RARYdirectivereplacestheusualNAME.WithLI8RARY

you tell the linker not to look for a 7#¢z.7£() function as the application's entry point.
Furthermore,thecodesegmentsoftheDLLwmalwaysbeofthePRELOADtype,while
the scenario gets somewhat more convoluted with respect to an ordinary PM appli-
cation as far as the DATA directive is concerned.

By definition, a DLL is a set of compiled and linked functions that can be called
simultaneously by more than one application. The presence of specific DLL Apls in
the system responds to this organization. This means that the same service can be
called from different processes, au running simultaneously, and it implies that you
have to write reentrant code. This means you must be careful about managing data
(identifiers with static storage class cannot be used), and about dynamic memory
allocationperformedbythecode.Therearetwoviablesolutionsforhandlingthedata
segment. Each single instance of a DLL can load the data segment provided that the
modules were created according to the scheme that involves multiple copies for each
instance (z.7zs£¢7tce d¢f¢); or one same data segment can be shared among all instances
@JoZ7¢Z d¢£¢). Figure 10.14 illustrates the two possibilities. Without considering the
overall memory requirements, both solutions have pros and cons.

h the first case, you must specify the option N0 N SHARED corresponding to the DATA
directiveintheDEFfile;inthesecondcase,theoptionSHARED.Thedifferentinstances
of a DLL win then, respectively, not share and share the data segment, and all values
therein contained.

Thefirstsolutionitsimplerandeasiesttoimplementwhenyou'refirstapproaching
DLL development, since it allows each single process using DLL services to maintain
a private copy of all data. For example, you could run two instances of the appHcation
listedinListingl0.8,andchangethecurrentcolor:YoucanseetheresultinFigurel0.15.

Sulctassing, Saperalassing, and DI:L 555

Figure 10.14 Instance data and global data for DLLs.

Figure 10.15 Execution of two instances that use the same services in the
MIE01.DLL DLL.

556 0S/2 2.1 Workplace shell progranming

If, instead, MIE01.DEF had the SHARED corresponding to the DATA directive, then
thedatasegmentwouldbethesameforanyinstanceoftheDLL.Toillustratethisnew
situation,runtwocopiesoftheapplication;eachinstanceincrementsitsprivateusage
count.ThesituationisrepresentedinFigure10.16whichshowsthenumericdifference
between the two colors used in the two application instances.

The activation of the window on the left side of the screen will make it color, and,
differingfromwhatisshowninFigure10.14,itwilltakeonthenextcolorwithrespect
to the previous active instance (Figure 10.17).

h addition to SHARED and NONSHARED there are also the options SINGLE and
MULTIPLE,whichallaffectthelinker'sbehaviorwhencreatingaDLL.

The option MULTI PLE forces all data segments of a DLL @oth the ¢#fo77c¢£z.c d¢f¢
seg777c7tf,aswellasanyother),tobespecificforeachinstanceoftheDLL.WithsINGLE,
ontheotherhand,the¢ctfo777¢£z.cd¢f¢seg777e7zfissharedamongallinstancesoftheDLL;
the same is true for all other data segments of the DLL. h general, the default values
for a DLL are S I NG LE and SHARED.

The ¢#fo777¢fz.c d¢f¢ seg777e7tf (ADS) is the combination of a set of logical segments,
specialized in containing certain types of data. h _DATA, for example, you will find
theso#rce¢.Zescopeidentifiers,orthosewithstaticstorageclass,while_BSswillcontain
thenoninitializedstati.cidentifiers.ForanapplicationwrittenintheClanguage,the
ADS will also contain the stack in the _STACK area. For a DLL there is no _STACK
portion, since it will use the stack of the calling application.

Figure 10.16 Execution of two instances that use the same services in
MIE01.DLL, but with a shared data segment.

Swhctassing, Saperalassing, and DI:L 557

Figure 10.17 When focus is transferred back to the first instance, the color
selected for repainting the client is the one following the one used for the
previous instance.

When implementing a simple DLL featuring a single data segment, using S I NG LE
or SHARED is irrelevant, just hike MU LTI P LE and NONSHARED. thstead, when a DLL has
severaldatasegments,youcanhavedifferentcombinationsoftheinstanceattributes
(SINGLEandMULTIPLE)andofthesharingattributes(SHAREDandNONSHARED),sothat
the DLL can have some segments of the gzoz7¢Z type, and others of the £.77sf¢77ce type.
Table 10.2 su]rm.arizes all possible cases.

To create an application with several segments, you only need to follow the
guidelines given in Chapter 9. There the subject is mainly code segments rather than
data segments, but the same approach is applicable to data, and you can resort to
segmented code-splitting the source code into several files. As we have seen in
Chapter9,thesEGMENTsdirectiveinthemoduledefinitionfileallowsyoutodiversify
thenatureofasegmentwithrespecttowhatisestablishedatamoregeneral1evelwith
CODE or DATA.

Therefore, it is possible to develop a DLL where the ADS is of the z.77sf¢7tce type,
while all other segments are gzob¢Z, or vice versa, according to your specific needs.
Consequently, the combination

DATA MULTIPLE SHARED

willforcetheDStobespecifiedforeachsingleinstanceoftheDLL(z.77sf¢7tce),andany
otherpossibledatasegmentwillbegzoz7¢Z.Naturally,thebehaviorofthe¢#fo77c¢fz.cd¢f¢

558 0S/2 2.1 Workplace shed progranming

Table 10.2 Interaction Among the Options That Control the Management of Data
Segments in a DLL, Concerning Both the Automatic Data Segment As Well As
Other Segments

Instance Sharing AD S Other segments

SINGLE
SINGLE
SINGLE
hmuTlpLE
hmuTlpLE
hmuTlpLE

S-D
NONSHAID

S-D
NONSHARED

S-D
NONSHAID

Global
Global
hstance
Global
Global
Global
hstance
Instance
hstance

Global
Global
hstance
Global
Global
hstance
hstance
Global
Instance

seg777e7tfcannotvary,norcanitsstatusbechanged,withtheSEGMENTSdirective,which
is applicable only for the remaining group of data segments.

Asanticipated,intheDEFfiletherewillbenoSTACKSIZEdirective,simplybecause
a DLL does not have any private stack, but reHes upon the stack of the ca]]ing
appfication.

The services offered by a DLL become ``visible" (extemally) by listing them after
theEXP0RTSdirectiveintheDLL'smoduledefinitionfile.htheEXP0RTSsection,there
will appear both functions of the EXPENTRY kind (like zt7z.77dozo proced#res or dz.¢Zog

proced#rcs) and procedures that resort to the _Opt 1 i. n k calling convention.
Naturally,evenaDLLcancallfunctionsresidinginotherDLLs.Services(if any)of

theEXPENTRYkindwhicharecalledbytheprogrambutresideinanotherapplication
appear after the IMPORTS directive.

ThesampleDLLinListing10.4usestheOS/2APIserviceWz.77Dr¢zoBorder(),though
it does not have an IMPORTS section in the module definition file. This absence is
justifiedbythepresenceoftheos2386.LIBz.77tpor£Zz.br#7ryonthelinker'scommandline.

Prodrcing an Import Library
Rather than writing a long fist of all services residing in various DLLs and callable
fromthesourcecode+inthisexample,theNIE01.DLLDLL-itismuchmorepracti-
cal and convenient to generate an z.777por£ Zz.br#7ty. The operation is simple and takes
advantage of the HVIPLIB.EXE utility. The command line syntax for invoking this
programrequiresyoutospecifytwoparameters,correspondingtotwofiles.Youmust
give a name to the z.77cpor£ Zz.br#7y-generally the name of the DLL followed by the
extension of LIB. The second parameter required by INILIB is the name of the DEF
file from which you wish to extract the names of the services listed in the EX PORTS

Swhctassing, Saperctassing, and DI:L 559

section. The action of IMPLIB is simply to produce an object ffle with the extension
LIB by reading what is listed in the EX P0 RTS section of a DEF file:

IMPLIB MIE01.LIB MIE01.DLL.DEF

Thentheresulting€.77cpor£Zz.Z7r¢ny-1ikeOS2386.LIB+mustalwaysbeindicatedwhen
linkinganyapplicationusingtheseIvicesofMIE01.DLL.Thecommandlineinvoking
the linker in MIE01.MAK looks like this:

li.nk386 mi.eo1„, os2386 mi.eo1, mi.eol

The tool for managing library modules within WorkFrame/2 will work correctly
evenonanimportlibrary.Therefore,itispossibletocreateakindofs#perz.77cpor£Zz.br¢ny
whichcollectsallinformationregardingseIviceslivinginvariousDLLs;thisisexactly
what has been done with OS2386.LIB. A last word of caution about writing DLLs:
Once all compilation and linking operations have been performed, remember to
transfer the DLL file into one of the library directories on the L I a PATH. You can leave
the DLL in its original directory only if that directory is histed by LIBPATH (set
LIBPATH=. ;C: \OS2\DLL: . . .).

Creating a New Control

EI

Let's now see how you can generate a new class of windows. Nothing prevents you
from registering the class directly in a DLL-rather, it is a convenient and sound
approach that even the associated window procedure be inside the sane module. h
Listing 10.6 you can see the source code of the WINDOW application that will create
awindowoftheclassTWENY.ThisclassisregisteredinMIE01.DLL,enrichedwithyet
more services in addition to the function J7ez.f Tzue7iy() for registering the class, and
Tzoe74yw#dproc(), its window procedure. Tzoe7tyw7tdproc() will catch only a limited
number of messages: Almost all of the message flow will go directly to Wz.7tDe/Wz.7t-
dozop7'oc().Theonlypeculiarityofthisclassisthatofchangingitscolorwhentheuser
clicks the left mouse button. It is not much of a feat, but it is good enough to
demoustratehowthewholeworks.Theapplication'soutputisshowninFigure10.18,
while the source code of both WINDOW as well as of MIE01.DLL is listed in Listing
10.5, while Listing 10.6 refers to an example application, WINDOW, which exploits
those services.

The class TWENY does not stand out for any special functionality, but it is a good
starting point for creating other customized applications. TWENY is visible ordy to
WINDOW, and to any other application that directly calls the function J7tz.I Tzoe7ty() to
registertheclass.Theconceptsofsubclassingandsuperclassingdescribedinthefirst
part of this chapter, together with the registration of a class inside a DLL, turn out to
be extremely useful for producing applications. The software designer can collect in
special DLLs new classes of specialized windows, capable of performing special
operations for individual programs. Imagine, for example, that you need to generate
ascreenformfordatainput.Thespecificationwantsyoutorequestthesocialsecurity
number, which is always a fixed character sequence. You could force the e7t£7tzf.ezd to

560 0S/2 2.1 Workplace shell progranming

Figure 10.18 The child window belonging to a window class registered in the
MIE01.DLL DLL.

be that number of characters long, simply by using PM Apls. However, at least for
now, PM does not offer any provision for]initing the type of characters that can be
accepted by an e77£7%¢.ezd. You could therefore use a DLL to register a new class of
window,basedonthefeaturesofaWC_ENTRYFIELD,andtheninterceptinthewindow
procedure (among many others) the messages EM_DEFI NPUT and WM_CHAR. The first
message is defined by the user as being specific to this class and defining which keys
can,beacceptedasinput.Theinformationpassedalongwillbeusefulwhenintercept-
ing the message WM_C HAR to verify that the input given by the user iis consistent with
the desired linritations.

The greatest advantage of this solution is that you can perform input vahidation
directly when it is being generated, and thereby you avoid canceling input while
cleaninguptheentryfield'scontentsonthescreenandrequestingthattheuserprovide
correct data anew. This approach also greatly simpfifies applications for inexperi-
enced users.

Creating a New Predefined Class
Let's now consider a poorly documented-at least for the time being-aspect of PM
programming, but one which is critical for building advanced PM applications. This

Subclassing, Saperclassing, and DLL 56L

way of writing code also allows a high degree of flexibility and modularity of
applications. We are speaking about the construction of new window classes within
appropriate DLLs.

PM's API features a set of predefined classes: OS/2's is typically equipped with
fifteen of them. Therefore, you can create a listbox window in your own application
withoutanyneedforregisteringtheclassorwritinganyspecialwindowprocedures,
sincebothoperationshavebeencarriedoutbeforehandbythedesignersofOS/2who
placedthevariousWC_classesintheDLLsthatareloadedwhenthesystemisbooted.
These DLLs are always present in the system while OS/2 is working, and therefore
can be accessed by any application.

ThesolutionshowninListing10.7startsbyregisteringanddefiningawindowclass
foranewclassinaDLL;butitforcestheapplicationthatneedsittohaveatminimum
a relocation record, so that it can load the DLL. When creating a customized control,
theapproachissomewhatdifferent:TheDLLmustalwaysbepresentinmemory,and
theapplicationbuildingwindowsbelongingtothenewclassdoesnothavetocallany
function present in the DLL. Figure 10.19 illustrates the scheme to follow when
registering new customized classes.

By following this approach it is possible to define new kinds of windows,
encapsulating all functionality within a DLL, and then distribute them. Other
software designers will be able to access a series of services having the same form
as those provided by the API of PM, albeit originating from a third-party source.
InListing10.10youcanseethesourcecodeofagenericapplicationcalledUSECTL
thatcreatesachildwindow,theclientwindowofwhichbelongstotheclassTWENY.

Figure 10.19 Scheme to follow when implementing new window classes
extending the standard outfit of OS/2 PM.

562 0S/2 2.1 Workplace shed progranming

i=EE
HPLaserJe`llD Miscellaneous

dfeIBMC++BetaEaT%21VfiEXERESfiEHRERE=ffi\"NIFanple-an-SNOOPEREXF.E@Templates

+-.i.. .i.~ I I..." `. :....;i...`...;..`.;;.: i.#f¥.€RE.:;i. }€:....i i.€.+'.gr;.:.5. ff

k_IIffl RERE

Figure 10.20 The client window of the child window belongs to the class
TWENY, which is registered in the MIECC.DLL DLL and loaded by OS/2
during bootup.

TheregistrationofthisnewclasstakesplaceintheMIECC.DLLDLL(Listingl0.8and
10.9),whichisloadedbyos/2duringitsinitialboot,andwhichisalwayspresentin
memory (Figure 10.20). Each application calling Wz.7tcre¢£eMsgQ#e#c() within its
own code will also be able to access the services of MIECC.DLL.

Constructing a New Window Class
h order to define a window class, as we have seen in the preceding chapters, it is
necessary to register the window class and then create an appropriate window
procedure. h the case of a customized control, all this takes place in a DLL, where the
registration is placed in a separate function with respect to the window procedure.
There are no special limitations concerning the name of the function that registers the
class. Considering that the DLLs in OS/2 2.1 always have an initialization/termina-
tion function called _DLL+7tz.fTer773() it is often convenient to place the registration
code in this function.

Inthisway,youmakesurethatPMwillcalltheTzue71yw7zdproc()functionwhenthe
DLL is loaded: This ensures that the class TWENY will be registered from the very

Swhctassing, Saperctassing, and DI:L 563

beginning and remain as long as the system is alive. Here you can see the code
fragmentthatactuallyregisterstheclassTWENY:

®,®

ULONG _System _DLL_Ini.tTerm(ULONG hmodule, ULONG flag)

i
swi.tch(flag)
I

case 0: // i.ni.ti.li.ze
1.f(!Wi.nRegi.sterclass(NULLHANDLE, "TWENY",

Twenywnd p roc ,
CS_SIZEREDRAW I CS_PUBLIC,

si.zeof(ULONG)))

Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

break ;

case 1: // termi.nate
break ;

)
return lL ;

I

In the class registration can, the flag CS_PUB LI C must be set: this is the only place
where it can be used without generating a runtime error (in Listing 10.5, although
registrationtookplaceinaDLL,itwasnotpossibletospecifythecs_PUBLIc flag).

The first parameter of Wz.7tRegisfercz¢ss() is set to NULLHANDLE since there is no
anchor block handle available. The class's window procedure, on the other hand, is
alwaysafunctionofthetypeEXPENTRYbecauseitiscaued,asusual,directlyfromPM,
anditcanhaveanynameyouplease.Thewindowproceduremustbeexportedinthe
EX P0 RTS section of the DLL's DEF file:

®®®

EXPORTS

Twenywndproc
®,®

Accesstothisfunctiondoesnoteverhappenasadirectcallbynamingitexplicitly.
This means that no application will have a relocation record referring to the DLL
contaiingthecustomcontrol.Accesstothiscodeisnonethelessgrantedbythespecial
way the DLL is loaded, as we will see shortly.

Writing the Window Procedure
Thisisnotthefirsttimeyouhavedealtwithawindowprocedure.hthiscase,though,
it takes on a special meaning, since this is a code fragment invisible to applications,
justasisthecaseofthewc_classes.Tzoe7tywtdproc()interceptsallmessagespertaining
to the new class, like a generic window procedure. However, as this is a window
procedure akin to those of the predefined classes, it must also deal with the problem

564 0S/2 2.1 Workplace shell progranming

Figure 10.21 Information management in a window class acting as a custom
control.

of interacting with the owner and parent windows of each control. Therefore, it is
necessary to devise a set of notification codes, messages, styles, and possibly other
data structures to allow programmers to use the class with the same ease with which
theycantakeadvantageofWC_MLE,WC_CONTAINER,orotherpredefinedclasses.When
writingthewindowprocedure,youmustkeepinmindthepossibleinteractionswith
theowner/parentwindow,andimplementsomemechanismbypassingtheWM_CON-
T R0 L message with specific notification codes.

Inthewindowprocedureitisnotwisetoadoptstat1.cstorageclassidentifiers.h
thiscaseeachwindowOfthisclasswouldreferencedatadirectlyassociatedwiththe
code,insteadofencapsulatingthemwiththewindowhandle.Youwouldneedtouse
manyzt7z.77dozocoords,asyoucanseeinTable7.3,onpredefinedclasses.Analternative
and/orcomplementarysolutionistokeepinafewbytesthesizeofthewindowwords,
andthenstoretheinformationassociatedwitheachwindowclassinmemoryblocks
or sub-blocks dynamically anocated. Figure 10.21 illustrates the whole setup.

h this example, a simple interaction with the window class TWENY is pressing the
left mouse button; you will change the window's color. The information contained in
the window words is constantly updated after each mouse click. The owner of TW E NY
classwindowwillbenotifiedabouttheeventthoughthemessageWM_CONTROL,which
contains the notification code TN_CHANG E, as shown in Figure 10.22.

TheapplicationsthatusetheservicesofTWENYfindoutwhatthecurrentactivecolor
isatanytimebysendingthemessageTM_OUERYC0L0R.Thismessageandtheprevious
notification code are both defined in MIECC.H.

Creating a Window of the New Class
The construction of a window of the class TW ENY follows the same standard rules we
haveseeninthepreviouschaptersforcreatinganyordinarywindow.Youcanapply

Swhctassing, Saperclassing, and DI:L 565

Figure 10.22 Scheme for sending the notification code TN_CHANGE to the
owner window of a control of the class TWENY.

aWS_style,evenifinthisparticularcaseofTWENYnospecialstylehasbeensetforthis
new class (considering the limited nulnber of operations supported).

Ifthecontrol'slookistobecustomizedthroughspecificstyleflags,youmustmake
surethatthenewdefinesgivenintheheaderfileassociatedwiththeclassareactually
placed in the lower word of the long value defining the WS_ styles. The call to
Wz.7tc7'c¢few€.7tdozu() in the following code fragment will create a control of the class
TWENY:

®®,

hwndTweny = Wi.ncreatestdwi.ndow(HWND_DESKTOP, OL,
&ul FCFrame ,

szcontrol Name ,
"Tweny control",

OL,

NU LLHAND LE ,

OL,

&hwndcli.ent) :

®®

ItisfundamentaltoremembertoassignanIDtothewindow,inordertobecertain
than any possible notification codes get passed correctly to the owner window. The
developer has to call W!.7tsefwz.7tdozt7Lrsfeo7.£() with QWS_I D as the second parameter.

P assing Imf ormation
The last parameter of the function W!.7tcrc¢fewz.7tdozu() is a pointer to a data area
allocated by the appHcation filled in with information that is specific to the class to
which the new window belongs. This information can be accessed in the class's

566 0S/2 2.1 Wor:laplace shed progranming

window procedure by responding to the message WM_C REATE, automatically gener-
atedbythefunctionthatcreatesawindow.ClassTWENYissimpleandlimited,sothere
is no need to transfer special information when an instance of this class is created. For
more complex controls, the situation is radically different: Figure 10.23 illustrates the
mechanism you need to implement for passing information specific to a predefined
class.

For each access to the function Tzue7£yw7zdproc(), both the owner window's handle
and the ID of the control are retrieved by interacting directly with the reserved
memoryareaoftheTWENYclasswindows.Thisoperationisdoneoutsideoftheswitch
statement, in order to make sure that you access the owner of each specific control:

®,

// owner handle
hwndowner = Wi.nouerywl.ndow(hwnd, QW_OWNER) ;

// wi.ndow ID
slD = Wi.nQuerywi.ndowushort(hwnd, QWS_ID) ;

®,®

Altematively,therequestoftheownercanbeplacedinthecodefragmentdealing
with the messages that need it. Both solutions are valid, and it is not easy to decide
which is best.

When the owner window (or even any other window in the application where the
TWENY class control appears) sends the message TM_QUERYCOLOR, there is not really
muchworktodo.Thewindowwordscontainthecurrentlyselectedcolorvalueused
to paint the window background. This information is passed back to the ca]]ing
function, bypassing the traditional Wz.7tDe/Wz.77dezoproc() :

Figure 10.23 Usage of the parameter pctldata in Wt.#Cre¢fewj#dozo() for
passing information specific to a predefined window class.

Swhctassing, Saperclassing, and DI:L 567

®®®

return (MRESULT)Wi.nouerywi.ndowuLong(hwnd, OL) ;
®®®

Theonlylinritstothecomplexityofacustomizedcontrol'swindowprocedureis
yourownimaginationandthespecificneedsoftheapplication.Ashasbeen.said,an
ideal combination is that of creating a new window class providing s?rvices that
augmentthosepresentinPM'sAPI.Theactionsinvolvedinsuperclassmgandthe
placementofthenewclass'sregistrationcodeinaDLLthatisautomaticallyloaded
whenbootingup,isreallyanextremelypowerfulparadigmforextendingos/2PM's
API at will.

How to Install a New Class of Controls
Thisoperationisthemostdehcatepartofdefininganewkindofcontrols.Ifloading
istotakeplaceautomaticallywhenOS/2isactivated,thenitisnecessarythatthis
informationbepresehtintheOS2.INIsystemconfigurationfile,whichyouwiufind
by default in the C:\OS2 directory.

The application USECTL win first check for the existence of a specific section,
consisting of the pair of strings SYS_DLLS and Loadperprocess, wherein the DLL
MIECC.DLL is named. The exarfuation of the contents of OS2.INI is done through
thefunctionsprefixedb}Pr/.ThefirstoperationischeckingfortheLoadentryinthe
SYS_DLLS section of OS2.INI.

#defi.ne INCL_WINSHELLDATA
B00L APIENTRY PrfQueryprofi.1esize(HINI hi.ni

PSZ pszApp,
PSZ pszKey,
PULONG pulReqLen) :

Description
Handle to an INI file
Appficationname
Key name
Address of a ULONG containing the dimension of the data of
the application/key entry
Description
Success/failure of the operation

piece of information you must use the function Pr/Q%enypro-

P,SZ pszApp,
PSZ pszKey,
PSZ pszDefault,
PV0ID pBuffer,
ULONG cchBufferMax)

Parameter
hini
pszApp
pszKey
pulReqLen

Retan Vahae
BOOL

To retrieve this
ftlestring()..

#defi.ne INCL_WINSHELLDATA
ULONG APIENTRY Prfoueryprofi.lestri.ng(HINI hi.ni.

568 0S/2 2.1 Wor:laplace shell progranming

Parameter
hini
p szApp ,
pszKey
pszDefault
pBuffer
cchBufferMax

Return Value
ULONG

Description
Handle to an INI file
Name of the application
Key name
Buffer containing any possible error condition
Buffer containing the value retrieved form the INI file
Size of the pBuffer
Description
Dimension of the string returned in pBuffer

The purpose of this function is to retrieve a text string from a profile file, like
OS2.INI. The first parameter allows you to indicate which file should be read: It can
be any file handle or any of the defines fisted in Table 10.3.

Thesecondparameter,pszApp,identifiesaharrayofCHARcontainingthenameof
theapplication.MostoftenitispreferabletoindicateNULL,asthiswmobtainalistof
allapplicationnamespresentintheprofile.hthecaseoftheSYSDLLSapplication,it
ispossibletoindicatedirectlythenameoftheentrythatyouwanttosearchfor,since
it is always SYS_DLLS.

WithpszKeyName,thethirdparameter,youcanindicatethekeynameoftheitem
to'search.Thesamerulejustdescribedstillholds;byindicatingNULLyouwiuobtain
alistofallkeynamescontainedintheprofile.ForloadingacontroldeclaredinaDLL
you must indicate the string Load.

ThethirdparameterofPr/Q#enyprof.Zesfr2.ngoisanarrayofCHARwhichisusedby
this function for containing any possible error message if the reading operation is
unsuccessful.ThelasttwoparametersareabufferforreceivingthestringandaL0NG
that defines its length. The return value of the function is the number of characters
read. Ih Listing 10.8, the whole becomes]jke this:

Table 10.3 The Constants for Reading Profiles with the PrfQ#enypro/I.Zcsfro.#g()
Function

Flag Vahae D ef tnition

HINI_PROFILE (HINI) NULL Performs the search in the user's (the
application's)profilefile,and,ifthereis
no matching entry, will continue the
search in the system's profile.

HINI_USERPROFILE (HINI) -1 L

HINI_SYSTEMPROFILE (HINI) -2L

Performs the search only in the user's
profile file.
Performsthesearchonlyinthesystem's
profile.

Swhctassing, Saperclassing, and DI:L 569

®

Prfoueryprofi.lesi.ze(HINI_PROFILE, "SYS_DLLS", KEY_NAME, &length) ;

DosAllocMem((PPV0ID)&pBuffer, ulLen,

PAG_READ I PAG_WRITE I PAG_COMMIT) ;

Prfoueryprofi.lestri.ng(HINI_PROFILE, "SYS_DLLS", KEY_NAME,
"', pBuffer, ulLen) ;

®,,

h pB uffe r you get the string PMCTLS referring to the OS/2 DLL which contains
all the predefined window classes. If this string has more than one entry they are
separatedbyablankcharacter(").Thewholestringisdividedintoitssubcomponents
and each one becomes an item in the listbox. As the user presses the Add pushbutton
what is written in the application e7t£7t/¢.ezd becomes a new entry in the DLL listbox.
Besides this external change, the pushbutton pressure triggers the update of the
Loadperprocess area in OS2.INI. Pr/Wrz.fepro¢.Zesfr{.7tg() executes the writing in this
user file:

#defi.ne INCL_WINSHELLDATA

B00L APIENTRY Prfwri.teprofi.lestri.ng(HINI hi.ni.,
PSZ pszApp,

PSZ pszKey,

PSZ pszData) ;

Parameter
hini
pszApp
pszKey
pszData
Return Vahae
ULONG

Description
Handle to a file INI
Name of the application
Name of the key
Buffer containing the value to write in INI

Description
Dimension of the string captured in pBuffer.

AftermodifyingOS2.INIyoumustshutdownandrestartthesystem.ToaddaDLL
with a custom control you must follow these two rules:

• Transfer the DLL in \OS2\DLL
• Modify OS2.INI, section SYS_DLLSLLoadperprocess

Considering that you are not allowed either to erase or to copy a custom control
DLLwhenproperlyinstalled(thefileisinusebythesystem),thedevelopmentphase
is quite long and cumbersome. To shorten the development process it is advisable to
implementaDLLwithoutaddingittoSYS_DLLSLLoadperprocess,insteadloading
itexplicitlywithDosLo¢dMod%Zeo(temporarilyremovingthecs_PUBLIcflagfromthe
registrationcall).CincetheDLLlogichasprovenitsefficiency,youcaneasilyconvert
itbackrestoringtheCS_PU8LICstyle.

570 0S/2 2.1 Workplace shell progranming

Some Considerations
Since the definition of a new window class always accessible to any application
implies the modification of the contents of OS2.INI, it is important to perform the
operationcarefully;anymistakesinthisfilecouldactuallypreventsuccessivebootups
from the hard disk. To avoid this unpleasant situation, keep in mind the following
rules:

• Before making any change to OS2.INI, create a backup copy of this file. The boot
drivealwayscontainsinthe\OS2directoryafilenamedINI.RC,akindofbackup
copy of OS2.INI which is handled automatically by the system. Cince this file is
securely saved, you can use the MAKEINI utility to generate a new copy of
OS2.INI(therealsoexistsafilenamedINISYS.RCcorrespondingtoOS2INI.SYS).

[C:\]MAKEINI INI.RC

• Always keep handy the original installation disk of OS/2; without this floppy
you're in trouble! Any change or replacement of OS2.INI can be done only if
bootinghasbeendonefromsomesourceotherthantheharddiskcontainingthe
file. The installation floppy comes to your rescue here.

Here's the correct, complete order of operations:
• After booting from the floppy, go into \OS2 and make a copy of OS2.INI on

another floppy.
•RebootthesystemdirectlyfromthediskandaddtheentryLoadperprocessinthe

SYS_DLLS section of OS2.INI, specifying the name MIECC or any other DLL of
your own.

• Reboot the system and check that MIECC has actuany been loaded correctly (a
simplepMprogramcallingwz.77Q#enycz¢ssJ77/a()isgoodenoughfortestingforthe
presence of the new class).

hthecaseofproblems,bootingfromthefloppyandthenrestoringtheoldOS2.INI
are the only viable solutions. All these rules are even more important if you have
installed the HPFS file system; with the old FAT you can bypass the problem with a
simple bootup from a floppy or with the dual boot, if supported.

Data Sharing T`echtiques:
Clipboard and DDE
Cine of the most interesting aspects of the user interface of OS/2 is its data sharing
capabELtiesamongseveralappficatious.Passingofinformationamongprogramswritten
bydifferentsoftwarehousesmakestheuser'slifealoteasier,andreducestheimportance
of the so-called integrated software packages. Each single appfication in PM specia]jzes
in.performingasetofveryspecificfunctious(LotusAmiProisasuperbwordprocessor,
while 1-2-3 can handle and display numeric data very easily). The transfer of data
processedbyoneprogramsimplymeansthatyoucantakebetteradvantageofthesystem
asawholeandachieveasignificantincreaseinpersonalproductivity.

hOS/2,therearetwotoolsthatallowforinformationsharingamongappficatious:
theClipboardandtheDDE(DynamicDataExchange)protocol.Thetwomechanisms
have some points in common, but differ substantially at the design level. The Clip-
board is a data-sharing tool that is completely user driven, while DDE depends
essentially on the design logic of an application (application-driven).

The Clipboard
h OS/2, there is a block of memory handled by the system's memory manager that
is able to contain the information to be shared among different appfications. This part
of the memory manager is known as the Clipboard. Hence, the CHpboard is not a
program, but a way of handling the problem of data sharing. Nothing prevents the
name Clipboard from being assigned to some application whose only puapose is that
ofdisplayingthecontentsofthatmemoryarea.Asamatteroffact,intheProductivity
folder you will find the Clipboard viewer application.

ThesharingofinformationthroughtheClipboardistotallyundertheuser'scontrol.
Thefirstoperationtobeperformedisselectingthedatawithinanapplicationandthen
transferring it to the Clipboard. This operation is the equivalent of ``publishing" the
set of information by putting it in the special memory area. It is always the user's
responsibility,thewithinsameappHcationorinanyotherapplication,tomakealocal
copy of the data.

571

572. OS/2 2.1 Worlof ace shell progranming

Table 11.1 Clipboard Operations

Op er ation D es cription

Transfers the selected object from the application to the Clipboard.
Performs a copy of the selected object toward the Clipboard.
Retrieves, from the Clipboard, a copy of the object and pastes it into
the current application.
Destroys the selected object without affecting the contents of the
Clipboard.

According to this example, when all manual operations are done, the system will
contain three copies of the same object: the original one, the one contained in the
Chipboard, and the one generated by the local copy operation.

The terminology used by PM to describe the typical phases involved in using the
Clipboard is universal. The process is known as c#£ a z7¢sfe, while the single actions
are described in Table 11.1.

According to the CUA specifications, the actions described in Table 11.1 are associ-
atedwithspecificacceleratorkeys,aslistedinTablell.2andillustratedinFigure11.1.

hFigurell.2youcanseethelogicgovemingtheoperationsofcopyingandpasting
an object to/from the Clipboard.

CttpboardManagemeut
There are well-defined rules that govern the use of the Clipboard in OS/2 systems.
First, the user may transfer into the Clipboard only one object at a time. Thus, this
memory area contains only one graph, image, or text block at a time. The insertion of
new data into the Clipboard will automatically destroy what was previously there.

The object transferred into the CHpboard is classified according to various formats,
called cZ£.pZ7o¢rd d¢£¢ /or777¢£s. OS/2 supports three standard data` formats for repre-
senting information in the Clipboard: text, bitmap, and metafile. in addition to these,
whichareadequateformostsituations,itispossibletodefineattheAPIlevelyetother
formats better suited for the special needs of applications.

Table 11.2 Accelerator Key Combinations Associated with the Cut & Paste Opera-
tions Supported by the Clipboard

Acceler ator Action

Ctrl+hs C op y
Shift+hs P a ste
Shift+ D el C ut
Del Delete

Data sharing Techniques.. chipboard and DDE 573

Figure 11.1 The look of a typical Edit menu in a PM application supporting
the Clipboard conventions.

Clipboard

Copies selected data
i-n the Clipboard c::Si:isTnet#wbj:arodw

Task 8

-ap- _ '± "Eu ,9.

Figure 11.2 Object transfer to and from the Clipboard.

574 0S/2 2.1 Wor:laplace shell progranming

Inserting Data into the Cttpboard
The first operation to perform when transferring information into the Clipboard is
openingit.Thisisdonewiththefunctionwz.7tape7tcz¢brd()whichdoesnotretumany
value until the current thread is not allowed to access the Clipboard. This does not
mean,however,thattheapplicationtryingtoaccesstheClipboardwillremainlocked
up. The possible presence of pending messages in its own message queue is detected
by the Wz.7tapc7tczz.pZ7rd() function that will allow them to be handled. The syntax of
wz.7tape7iczz.pznd() is the following:

#defi.ne INCL_WINCLIPB0ARD
B00L APIENTRY Wi.nopencli.pbrd(HAB hab) ;

P arameter D escription
hab Handle of the anchor block
Retu:in value D escription
BOOL Success or failure of the operation

Neithertheretumvalue,northesoleparalnetertothisfunctionwillgivetheappfication
ahandieforaccessingtheclipboard.Cinlythesuccessoftheca]lwi]lsignalthatyouhave
accesstotheClipboard.Cincethisphaseisover,youwi]lhavetoemptytheClipboardof
its previous contents by calling Wz.7t£77tpftyczz.pZ7rd(). h that way, you make sure that any
formatdescribinganyobjectpreviouslycontainedintheClipboardisreset.

#defi.ne INCL_WINCLIPB0ARD
B00L Wi.nEmptycli.pbrd(HAB nab) ;

P ar ameter D e s cription
hab Handle of the anchor block
Retunii vahae D escription
BOOL Success or failure of the operation

ThetransferofanobjecttotheClipboardisobtainedbycallingWz.7tse£CZz.pZ7rdD¢£¢()
and indicating the data format employed.

#defi.ne INCL_WINCLIPB0ARD
B00L APIENTRY Wi.nsetcli.pbrdData(HAB nab,

ULONG ulData,

ULONG fmt,

ULONG rgfFmtlnfo) ;

Parameter
hab
ulData

fmt
rgffmtlhfo

Description
Handle of the anchor block
Handle, or pointer to the object being transferred to the Chip-
board
Clipboard format
Data type: any value in Table 11.4

Data sharing Techniques.. cupboard and DDE 575

Table 11.3 The Standard Formats Used in Describing the Nature 'of the Object
Transferred into the Clipboard

Flag Vahae D escription

CF_TEXT
CF BITh4AP
CF DSPTEXT
CF_DSPBITMAP
CF_METAFILE
CF_DSPMETAFILE
CF_PALETTE

The object is in text format.
The object is a bitmap.
The object is text but with custom format.
The object is a bitmap but with custom format.
The object is in metaffle format.
The object is in metafile custom format.
The object is in palette format.

Retu:rn vahae D e s cription
BOOL Success or failure of the operation

The first parameter of this function is the handle of the application's anchor block,
as originally returned by the call to Wz.7rf7z€.fz.¢Zz.zc(). With the second parameter,
W{.7tse£CZz.pbrdD¢£¢() passes to the Clipboard a reference to the object being copied.
Most often, this will be a handle or a pointer to some memory area containing the
object. The formats supported by Wz.7tse£CZz.pbrdD¢£¢() are Hsted in Table 11.3.

The last parameter informs Wz.7?Sc£Czt.pbrdD¢f¢() as to the type of the second one:
The available altematives are: C F I_HAN D LE or C F I_P0 I NT E R for memory models, and
CFI_OWNERDISPLAY and CFI_OWNERFREE for the information contained in the Clip-
board (Table 11.4).

It is also possible to indicate NULLHANDLE as the second parameter of Wz.7tse£-
az.pbrdDflf¢() to implement a delayed rendering of the information that qualifies the

Table 11.4 The Standard Formats Supported for Transferring an Object into the
Clipboard

Flag Val;ue D escription

CFI OWNEREREE 0xOool The owner of the object transferred to the clip-
board must take care of freeing the handle.

CFI_OWNERDISPLAY Ox0002 The format of the object is definedby the owner
of the Clipboard.

CFI Pon\ITER 0x0400 The second parameter of wz.7tsefaz.pbrdD¢f¢() is
a pointer to a block of memory containing the
informationtobetransferredintotheClipboard.

CFI_IIANDLE 0x0200 The second parameter of wz.7tse£CZz.pbrdD¢f¢() is
a handle to a memory area containing the infor-
mation to be transferred into the Clipboard.

576 0S/2 2.1 Workplace shell progranndng

object.Thissolutionisparticularlyusefulwhenthedescriptionofthedatatransferred
into the Clipboard is application proprietary. Using N U L LHAN D L E in place of a handle
or a pointer also implies that the application becomes the owner of the Clipboard
through the function Wz.7tse£CZz.pbrdozo7ter() :

#defi.ne INCL_WINCLIPB0ARD

B00L APIENTRY Wi.nsetcli.pbrdowner(HAB hab, HWND hwnd) ;

P arameter D e s cription
hab Handle of the anchor block
hwnd Handle of the window owing the clipboard
Return vahae D escription
BOOL Success or failure of the operation

The system will allow the operation only one window at a time, simply because it
relates the window with the object that is theoretically present in the Clipboard Out
sinceyouindicatedNULLHANDLE,thechipboardcontainsnodata).Theneedtobecome
owner of the Clipboard is flagged by the receipt of the message WM_RENDERFMT any
time an application attempts retrieving the object that is theoretically present in the
Chipboard. Chiy at this time win the transfer to the Chipboard of the handle or of the
pointer to the object actuany take place, by calling Wz.7tsc£CZz.pbrdD¢f¢(). Once the
writingofdataintotheClipboardhasbeendone,itisnecessarytoreleaseitbymeans
of W.7tczoseczz.pbrd() in order to allow other applications to access it.

#defi.ne INCL_WINCLIPB0ARD

B00L APIENTRY Wi.nclosecli.pbrd(HAB hab) ;

P ar ameter D escription
hab Handle of the anchor block

Return value D e scription
BOOL Success or failure of the operation

Transferring an Obj eat
The main function of the Clipboard is making an object public: This implies that the
information contained therein should be accessible to any apphication. Therefore, it is
necessary that the information reference a shared memory block or the applications
accessing the Clipboard will not be able to build a valid reference for getting to the
data. To this end, it is necessary to distinguish between passing a handle and passing
a pointer. Ih the first case, the Clipboard itself will be responsible for sharing the
passed bitmap or metafile handie. The application providing the handie loses com-
pletely any reference to the object, because the Clipboard will become its sole owner.
h the case of a pointer, the allocation of the memory block must be achieved through
DosAZZocsfe¢redMe77c(),settingtheflag08J_GIVEA8LE.

Data sharing Techniques.. chipboard and DDE 577

Retrieving the Ctipbo ard' s Couteuts
ch application interacting with the Clipboard will first open it in order to make sure
that no other program will interfere in the operation. When this condition is met, the
application must determine which formats are currently employed by the Clipboard
in representing the object.

The application cans the function Wc.7tQ#e7tyczz.pbrdF77€fJ7t/a() to deterndne if the
format of the object in the Clipboard corresponds to the supported standard. The
adoption of this function is appropriate here, since it does not imply the former
opening of the Clipboard, as you can infer from its syntax:

#defi.ne INCL_WINCLIPB0ARD
B00L APIENTRY Wi.nQuerycli.pbrdFmtlnfo(HAB hab,

ULONG fmt,

PULONG prgfFmtlnfo) ;

P ar aneter D e s cription
hab Handle of the anchor block
fmt Data format
Prgffmt]hfo ?ege:::ie°fd:t::=e::Xtaie:hce°:tH?p¥agrihe formats used to rep-

Return value Description
ULONG Handle to the data retrieved from the clipboard

h addition to the handle to the anchor block-which can be replaced by a simple
NULLHANDLE-thesyntaxrequiresthattheuserindicatewhatformatisexpected,and
theaddressofauLONGwhereinthefunctioncanretumtheinformationqualifyingthe
typeofdescriptionoftheobjectpresentintheclipboard(CFI_P0INTERorcFI_HAN-
D L E, for instance).

With Wz.7tQ#enyczz.pbrdD¢£¢() the program can ask the Clipboard if a particular
format is available at any given moment.

#defi.ne INCL_WINCLIPB0ARD
ULONG Wi.nQuerycli.pbrdData(HAB hab, ULONG fmt) ;

P arameter Description
hab Handie to the anchor block
fmt Data format
Retunii vahae Description
ULONG Handie of data retrieved by the clipboard

The return value of this function is a handle to the data expressed in the required
format (or a pointer), or NU L LHAN D LE if the request cannot be honored. For text.-the
simplest data sharing format.-the value returned by Wz.7?Q#e7t/CZz.pZ7rdD¢f¢() is a
pointertothememoryareacontainingdata.Itisnecessarythatwhateveriscontained
in the Clipboard also be copied to some local memory area in order to allow the
application to access it even after that the Clipboard is closed. h fact, once the

578 0S/2 2.1 Workplace shell progranming

Chipboard is closed, the application is not allowed to access any object contained
therein while it is the full owner of the local copy.

Examining the Couteuts of the Cttpboard

EI

All 0S/2 systems are equipped with the Clipboard viewer application, the purpose
of which is to display in a window the conten_ts of the Clipboard. Writing a similar
application is a simple task that only requires the implementation of the procedures
for reading the contents of the Clipboard.

PM's API offers the pair of functions Wi.7eQ#e7tyczz.pZ7rdvz.czt7er() and Wz.77Sc£-
CZz.pZ7rdvz.ezt7er(),respectively,forgettingandsettingthewindowthatwillexaminethe
contents of the Clipboard. Any task can access the Clipboard by means of Wz.7tape7c-
CZ€¢Z7rd() and then examine its contents. The action performed by Wz.7tse£-
CZz.pbrdvz.ewer()isdifferentbecausethecodereceivesthemessagewM_DRAWCLIPB0ARD
whenever the contents of the Clipboard are changed. This solution also auows other
appHcations to interact with the Clipboard without interfering with the standard
mechanism for inserting data.

Only one window in the whole system can operate as a CZz.pbo¢rd z7z.ezoer, but it does
nothavetobetheowneroftheClipboard.Inthecodehandlingthemes.s.ageWM_DRAW-
C LI P BOARD, the Clipboard viewer will interface with the Clipboard in a way similar
to any other application supporting c#£ a p¢sfe operations. The examples in Listings
11.1 and 11.2 refer to the development of two distinct applications that, respectively,
transfer information to the Clipboard, and read from the Clipboard. Transforming
CLIPSHOW, the program that reads the contents of the Clipboard, into a Clipboard
viewer is a simple operation.

CLIPPUT and CLIPSHOW
To clarify the rules for interacting with the Clipboard, 1et's examine two simple
applications, CLIPPUT and CLIPSHOW. CLIPPUT will transfer into the Clipboard a
text string typed into a WC_MLE class window, while CLIPSHOW will display that
string in its client, after appropriate menu item interactions (Figure 11.3). Actually,
the WC_M LE class has some specific messages to {handie cut & paste operations. I did
not use them to illustrate a more generic way to interact with the Clipboard.

In CLIPPUT, the Copy option of the Edit menu is renabled only if the 777Ze acting as
the application's client window truly contains some text. To verify this condition, the
application intercepts the notification code M LN_CHANG E generated by all windows
belonging to the WC_MLE class, and conveyed by a WM_CONTRO L message. It is also a

goodpracticetocheckifthecontentsofthetextwindowarenon-blank.Theusermight
have pressed some keys and then undone that input with the backspace key. This
solution, however, is not efficient. The search for the M LN_CHANG E notification code
inevitably slows down the whole program without offering a correct view over the
input provided by the user.

It is much better to intercept the message WM_I N ITMENU generated by the system
whenever the focus is transferred to a top level menu of the menu bar. This allows for

Data sharing Techniques: cupboard and DDE 579

Figure 11.3 The look of CLIPPUT and CLIPSHOW is bare just for exemplify-
ing the interaction rules between the application and the Clipboard.

easierhandlingofthedynamicchangeofstateofthemenuitemsCopy,Paste,Delete,
and Cut. A left mouse button-click over the menu bar or the pressing of the ALT key
triggers this message.

h the WM_I N I TM ENU ca s e branch, the presence of text in the 77tze is checked for by
Wz.7tQ#e7tywz.7tdozuTexf(). The buffer filled in by the function will contain a true copy
of whatever the user typed into the input window. The dynamic change of the Copy
menu item in the Edit menu is obtained simply by sending the message
MM_SETITEMATTR with the right combination of flags (initially, Copy is always dis-
abled). Figure 11.4 shows that Edit:Copy is enabled when the 777Ze contains some text.

h order to transfer to another application whatever object has been produced and
copied to the Clipboard with CLIPPUT, no special program is needed. For example,
the system editor, E.EXE, can prove that the criteria followed by CLIPPUT for
interfacing with the Clipboard is correct (Figure 11.5). Let's examine the logic govern-
ing this operation by analyzing the code of CLIPSHOW.

CLIPSHOW does not perform any operation other than that of displaying the
contentsoftheClipboard,provideditisintheCF_TEXT format.inthemenutemplate
of the resource file, the Paste menu item under Edit is disabled, due to the attribute

580 0S/2 2.1 Wor:Iaplace shell progranming

Figure 11.4 The Copy menu item is enabled when text is typed into the
mle®

Figure 11.5 The system editor will display the text typed into the fflze of
CLIPPUT.

Data sharing Techniques: cupboard and DDE 581

M IA_D I SAB LED. Even in this case, the possible interaction with the Clipboard takes

placewhenthemessageWM_INITMENUisreceived.
On the basis of the information obtained with Wz.77Q#e7tyczz.pbrdF77zf (), CLIPSHOW

takescareofmodifyingtheattributesofthepastemenuitemunderEdit(Figurell.6).
The retrieval of the Clipboard's contents is delayed until the message generated by
the selection of Paste is actually received.

The text retrieved from the Chipboard appears in the 77cze of CLIPSHOW. The
sequence of operations performed consists of:

• Opening the Clipboard
• Retrieving a pointer to the area containing the text

The text present in the Clipboard is then copied to a local buffer, an array of CHAR
specifically declared in the program. Once this phase is over, you can close the
Clipboard and release the shared memory area with DosFreeMe77t(). The operation is
more truly that of decrementing a usage count: The system will then take care of the
actual disposal.

The logic governing the output of the text is concentrated in the code handling the
message WM_PA I NT, in order to refresh the window at any moment (Figure 11.7).

`n-..€T~h±is{+I:.uto±Sap-Pl?...!f,:Xt+l`.i;i-,ij!,i=
L-

-1 t --1 - =

Te#es EEEERE sh#er HPLBetiiD BEA

Figure 11.6 In the Clipboard, there is an object described by the format
CF TEXT: CLIPSHOW that can enable its own Paste menu item.

5&2. OS/2 2.1 Wor:laplace shell progranndng

Figure 11.7 The actual text string displayed with E.EXE in Figure 11.5 now
appears at the center of the client window of CLIPSHOW.

Dynamic Data Exchange
DDE, just like the CHpboard, is a tool for transferring data between applications.
Different from the Clipboard where the user initiates and controls the passing of
informationbetweenapplicationsthroughc#f8p¢sfeoperations,aDDEconversation
istotallytransparenttotheuser.Generally,therewillalwaysbesomeuserinteraction
that sets up the initial mechanism of a DDE conversation, like a direct user action or
an indirect program event: It might be a menu item selection or a specific time of the
day. h other words, DDE allows applications to send and receive data on an asyn-
chronous real-time basis. The essential difference between the Chipboard and DDE is
found in the main actor performing the exchange of information. h the first case, the
sharing mechanism is dependent on the user, while in the second case it depends on
the behavior coded into the applications.

TheDDEprotocolhasbeendevelopedbymanycompanies,althoughMicrosoftwas
the first to implement it in MS Windows, during the mid-1980s. DDE is a public-do-
main communication protocol implemented according to a set of rules that involves
sendingandreceivingspecificmessages.Tablell.5summarizesthetenmessagesthat
characterize DDE for PM.

Data sharing Techniques: Clipboard and DDE 583

Table 11.5 The Messages That Characterize the DDE Communication Protocol

Mess age Vahae D e scription

WM_DDE_INITIATE
WM_DDE_INITIATEACK

WM_DDE_REQUEST
" DDE POKE
WM_DDE_ADVISE

WM_DDE_UNADVISE

"_DDE_DATA
"_DDE_ACK

wM_DDE_EXEcurE

OxOOA0 Issued to initiate a DDE conversation.
OxOOA9 Issued to acknowledge initiation of a DDE

conversation.
OxOOAI Issued to request data.
OxOOA6 Issuedtopassdata.
OxOOA4 Issue to set up a permanent link on a

specific item
OxOOA5 Issued to terminate a permanent link on a

specific item
OxOOA3 Issued to transfer data.
OxOOA2 Issued to acknowledge receipt and com-

prehension of a message by the receiving
application.

OxOOA7 Issued to execute some actioninthe receiv-
ing application.

WM_DDE_TERMINATE 0xOOA8 Issued to terminate a DDE conversation.

h order to understand how to use the DDE messages, 1et's imagine a typical
scenario: A PM communication program retrieves some stock quotations from an
information service bureau.

By means of a DDE conversation initiated by Lotus 1-2-3 2.0, the communication
programsendstoaworksheettheclosingpriceoftheselectedstocks.Theworksheet
employsthedataintwoways:toupdatethecellsofaworksheetcontainingtheprofile
of an investment portfolio and to change a graph built on that data. Changes in the
work sheet cells will trigger DDE transactions in a second DDE conversation. The
worksheettransfersthecontentsofasetofcellstoaPMwordprocessorthatwinplace
the updated data in a client portfofio appearing in a table of a financial report. The
finaloutcomepresentstotheuserareal-timeimageofthestockportfoliothroughthe
graph, while the work sheet maintains the most recent quotations and the financial
report document is always up to date.

Consequently, DDE operates like a bridge between different applications by pro-
viding a well-defined mechanism for transferring data, and constitutes yet another
level of integration. DDE opens the way for a set of appHcations developed by third
parties that are capable of being integrated with existing ones, and that enhance the
overall productivity of the user.

Programs supporting DDE must operate in the PM screen group. PM applications
are distinguished from OS/2 applications at the ker7tez level, mainly because of the
presenceofamessagequeue.ThemessagesaregeneratedbyPMinresponsetoevents
that happen in the system. PM applications differ in architecture from those at the

584 0S/2 2.1 Workplace shell progranming

kemel level also because they do not use the three subsystems Vio, Kbd, and Mou in
ordertohandleinputoroutput.hstead,theyreceivemessagesfromPMthatindicate
when the user presses a certain key or the mouse button. Therefore, they also send a
message to PM whenever they need to display data on the screen. The same applies
to PM applications that support DDE, since all DDE activities are performed by
sending and posting PM messages to other applications. When a program transfers
datatoanotherbymeansofDDE,itwillactuallypassareferencetoasharedmemory
block as one of the message components.

A DDE Conversation
DDE is a tool for transferring data among applications. Since most of the DDE
activities are under the control of the program (and not under the user's control, as
with Clipboard), this is a protocol that governs how and when data are to be passed
among applications. It is not a public memory handler like the Clipboard.

ThemainsubjectofDDEistheco7tz7ers¢fz.o7t:EachtimeaprogramresortstoDDE,it
startsaconversationconsistingofoneormoreDDEtransactions.Theapplicationthat
initiates the conversation is known as the DDE cZz.e7?f, while the application that
provides the data is called the DDE serz)cr. h a single conversation, a client requests
dataofaseIver.Anapplicationcanalsobeengagedinmorethanoneconversationat
atime.Sinceitwillalwaysbetheclientthatinitiatesaconversation,aDDEserverthat
requests data from another application must, in turn, initiate another conversation
wherein it plays the role of a client. Therefore, an application can be both a client and
a server at the same time, though in two different conversations.

Designing a DDE Coaversation
A DDE conversation always takes place between two PM windows, one for each
program (it would not make sense to implement a DDE application within one
application, although it is feasible). Each window is identified ky its handle, which is
also one of the components of the DDE message. The code handling a DDE message
is placed in the window procedure of the program's main window, even though it is
much more convenient to create an invisible window of a different class for each DDE
conversation. This way the flow of messages is separated from the origin. The DDE
conversation relies on a three level hierarchy for identifying a conversation.

• The application name (¢ppJz.cofz.o7z)

• The topic name (fopz.c)
• The item nane (z.fe77t)

The client specifies the name of an application when the conversation is initiated.
Sometimes it omits it and invites any other program to engage in the communication.
The topic name provides a logical context for each conversation. If omitted by the
client, the conversation may cover ¢7ty topic. Finally, each item must have a unique
name. The three defines (application, topic, and item) have a specific meaning within

Data sharing Techiques.. chipboard and DDE 595

aspreadsheet.Lotus1-2-3istheappHcation,theworksheetSHEET.WG2isthetopic,
and the cell range A1:83 is the item.

OftenthedevelopmentofaDDEserverorclientsoftwareisrequiredtosupportany
application and any item. On the other hand, when you implement vertical applica-
tions, the interaction between client and server is focused on a specific item.

The purpose of a DDE conversation is to provide the client with a series of
information on the basis of specific requests. The conversation that takes place
between the client and a server, after its activation, consists of fr¢71s¢cfz.o77s. The basic
requirementissettingupaconversation,whichmustthenbefollowedbyoneormore
transactions. There are six different kinds of fundamental transactions: DDE: RE-
QUEST,ADVISE,UNADVISE,POKE,EXECUTE,andTERMINATE,eachonehaving
a corresponding message.

Features of a Transaction
A DDE client requests the server for data at any given moment. The message
WM_DDE_REQUEST performs this operation. Furthermore, the client also posts a
WM_D D E_ADV I S E to establish a link with the server on a certain item (for instance, the
contents of a cell in a spreadsheet).

ThetransactionprodticedbywM_DDE_ADVISEhastwodistinctvariatious,knownin
jargonasfeo£-Z£.7ikorzu¢r%Z£.#k.inbothcases,theclientandtheserversetupaper#c¢72e7tf
Zz.77kpertainingtosomez.feroofconversation.Thetwovariationsaredistinguishedonly
as far as the physical passing of information between the server and the client is
concerned. h the warm-link the server notifies the client that a change has occurred
in the value of the item involved in the permanent link. h a hot-link the new data is
actually transferred. h both cases, the interaction between the server and the client
takesplacebysendingthemessageWM_DDE_DATA.

To interrupt this kind of relationship between the client and the server, the client
must send a termination request (WM_DD E_U NADV I S E), as illustrated in Figure 11.8.

Furthermore,theclientpoststotheserver(WM_DDE_POKE)anypieceofdata,when-
ever it is appropriate to do so. With such a solution, you can avoid activating a new
conversation between two applications with inverted roles.

With the WM_DDE_EXECUTE message, the client passes to the server a text string
corresponding to a set of executable commands for the receiving application. There
are application specific actions, like opening a document, displaying an image, and
so on. The termination of a DDE conversation can be brought about both by the client
as well as the server, by sending the message WM_DDE_TERMI NATE. The transaction
must be performed by both parts; all other transactions must be performed by the
client only. If an application acting as the server needs to receive data from another
application,andthusbehavelikeaclient,itneedstoinitiateanewDDEconversation.
Figure 11.9 shows the direction of message flow in the DDE protocol.

586 0S/2 2.1 Workplace shell progranming

Figure 11.8 The establishment of a permanent link between a client and a
server.

Initiating a DDE Conversation
In order to initiate a conversation, the would-be client has to call the function
Wz.7tDdeJ7tz.fz.¢£e(). The ``would-be" in the previous sentence is justified by the fact that
there is no absolute certainty that the application calling Wz.7tDdeJ7e€.£z.¢£e() will effec-
tively find a server.

#defi.ne INCL_WINDDE
B00L APIENTRY Wi.nDdelni.ti.ate(HWND hwndcli.ent,

PSZ pszAppName,
PSZ pszTopi.cName,
PCONVCONTEXT pcctxt) ;

Ctierit Mess age

+
"_DDE_INITIATE
WM_DDE_INITIATEACK
WM_DDE_REQUEST
VVM DDE POKE
i/Vh4 DDE ADVISE
WM_DDE_UNADVISE
VVM DDE DATA
"_DDE_ACK
WM_DDE_EXECUTE
i/vn4 DDE TERMINATE

Serveri

Figure 11.9 Direction of messages in a DDE conversation.

Data sharing Techniques: Clipboard and DDE 5t57

P ar ameter D es cription

hwndclient Handle of the window that will act as the client in the conver-
sation

pszAppName Name of the application sought for as a server
pszTopicName Name of the topic desired for this conversation
pcctxt Address of a CONVCONTEXT structure
Retan value D escription

BOOL Success or failure of the operation

The handle refers to the issuing window, while the two text strings correspond to
the name of the application being sought, and the conversation's topic, respectively.
h the fourth parameter, the application has to indicate additional information, like
thecodepageused(sothattheconversationbetweenclientandserverisnotaffected
by problems deriving from system settings).

The DDE protocol not only has a set of specific messages, but also involves some
highlyspecializedfunctions.W£.7tDdeJ7t£.fz.¢£e()playsacrucialroleinDDE,sinceitwill
seek potential serv'ers for a potential client. The action performed by this function is
sendingthemessageWM_DDE_INITIATEtoallwindowsofWC_FRAMEclasspresentin
PM at that very moment (the¢#77ce then passes it to its client). This means that this
function does not return any kind of value to the application until ¢ZZ windows have
been explored in currently executing applications in PM. Figure 11.10 summarizes
this situation.

Despite the rather different syntax with respect to that of Wz.7tsc77dMsg(), there are
a number of sinrilarities between these two functions. The entrance in the target
window procedure requires the traditional data: the window's handle, the message
WM_DDE_INITIATE, 77zpl containing the handle of the issuing window, and 77tp2
containing the address of a D D E I N I T structure:

typedef struct _DDEINIT
I // ddel.

ULONG cb ;

PSZ pszAppName ;

PSZ pszTopi.c ;

) DDEINIT ;

The three members of DOE I N IT should be self-explanatory. The first one defines
the size, the second and the third are the corresponding parameters in Wz.7tDdez7i£.f€.-
¢fe().TheDDEINITstructureisaccommodatedinamemoryareaspecificallyallocated
by Wz.#DdeJ7tz.fz.¢fe() itself; actually, this is the first action performed. Then, Wz.7tDde-
J7tz.£z.¢fe() issues the message WM_DDE_INITIATE to all frame windows having
HWND_DESKTOP as their parent. The following code fragment comes from a server
window procedure:

588 0S/2 2.1 Wor:laplace shell progranming

Figure 11.10 Scheme of action performed by Wz.7!DdeJ7tz.fz.¢fe() du'ring the
initiation phase of a DDE conversation.

®,,

case WM_DDE_INITIATE:

I
PDDEINIT pddei. ;

// get the dde poi.nter

Data sharing Techniques: Chipboard and DDE 589

pddei. = (PDDEINIT)mp2 ;

// store the cli.ent HWND
i.f(!strcmpi.(pddei. -> pszAppName, PMSERVER) && !hwndcli.ent)

hwndcli.ent = HWNDFROMMP(mpl) ;

)
break ;

®®®

It is impossible to predict the outcome of the search. All window procedures that
have a ca s e WM_DD E_I N I T I ATE branch are all candidate servers. The first obstacle to
overcome is checking the contents of the D D E I N I T structure about the application and
topic requested. The code of the potential server must therefore look carefully at the
members pszAppName and pszTopl. c in order to be certain that it is the application
beingsought,andthatitiscapableofsupportingtherequiredconversationtopic.Only
if both conditions are met will the potential server notify the client through the
messageWM_DDE_INITIATEACK.TheoperationisperformedbythefunctionW€.7tDde-
Respond()..

#defi.ne INCL_WINDDE
MRESULT APIENTRY Wi.nDdeRespond(HWND hwndcli.ent,

HWND hwndserver,

PSZ pszAppName,
PSZ pszTopi.cName,
PCONVCONTEXT pcctxt) ;

Parameter
hundcHent

hwndseIver

pszAppNane
pszTopicName
pcctxt
Retunvalue
BOOL

Description
Handle of the window that will act as the client in the conver-
sation
Handle of the window that will act as the server in the conver-
sation
Name of the application being sought for as the server
Name of the desired conversation topic
Address of a CONVCONTEXT structure
Description
Success or failure of the operation

The required information includes the handle of the receiving window as well as
that of the sender, in addition to the text strings described previously for W€.7¢DdeJ7z-
itiate().

DuringthisphaseofthesettlementofaDDEconversation,manydifferentscenarios
are possbile. If the client seeks a specific server and a specific topic, then the values in
pszAppName and pszTopl. cName must be precisely what was passed by the client
through Wz.7cDdeJ7tz.£z.¢£e(). At the opposite extreme, it is possible to hypothesize that
the client is willing to converse with any other appfication about any topic; then both
text strings were originally set to N U L L. The server being contacted notifies the client

590 0S/2 2.1 Workplace shedprogrquming

about which topics it is ``proficient" in by generating aL number of calls to W!.77DdeRe-
spo7td() equal to the number of known topics. In the first case, the client receives the
WM_DDE_INITIATEACKmessageonly.Ihthesecondcase,itreceivesasmanymessages
astherewere'callstoWz.7tDdeRcspo7td().AccordingtotheDDEspecifications,theclient
musthandleeachwM_DDE_INITIATEACKbyrespondingwithawM_ODE_TERMINATE for
all conversation topics which are irrelevant.

®®®

case WM_DDE_INITIATE:

[
PDDEINIT pddei. ;

CONVCONTEXT conv ;

conv.cb = si.zeof(CONVCONTEXT) ;

conv.fscontext = DDECTXT_CASESENSITIVE ;
conv.i.dcountry = 39 ;
conv.uscodepage = 437 ;
conv.usLanglD =
conv . ussubLangl

// ski.p i.f we are already connected
i.f(hwndcli.ent)

break ; L

// get the dde poi.nter
pddei. = (PDDEINIT)mp2 ;

// store the cli.ent HWND
i.f(!strcmpi.(pddei. -> pszAppName, PMSERVER) && !hwndcli.ent)

hwndcli.ent = HWNDFROMMP(mpl) ;

// start the conversati.on
Wi.nDdeRespond(hwndcli.ent, hwnd, PMCLIENT,

pddei. -> pszTopi.c, &conv) ;
)
break ;

®,®

For the sake of simplicity, 1et's examine the case of a conversation between a client
and a predetermined server about a specific topic known to both of them. Only when
the client receives the message WM_DDE_INITIATEACK is it possible to state with
certainty that the two applications are engaged in a DDE conversation. Figure 11.11
illustrates the relationship between the two applications during this phase of the
estabHshment of a DDE conversation.

RequestingData
After the cHent window has settled a DDE conversati'on, it can ask its server to provide
data.Thismighihappenimmediatelyorminuteslater.Thepreliminaryacfronsbetween
the cHent and the server have been rendered through the functions Wz.7tDdeJ7t!.£!.¢fe() and

Data sharing Techniques: chipboard and DDE 591

WM_DDE_INITIATE

POTEP`ITIAL CLIENT POTENTIIAL SERVER

Wndproc(...) \- Wndproc(...)

((

WinDdelnitiate(hwnd,...);,,,caseWM_DDE_INITIATEACK: case WM _ DDE_ INITIATE:

hwndclient = HWNDPROMMP(mpl);

WinDdeRespond(hwndclient,hwnd,...):-DE_lNITIA

break;,,,

WM- EACK

Figure 11.11 Definition of the relationship between a client and its server in
a DDE conversation.

Wz.7?DdeRespo71d(),whichproduceasasideeffectbro¢dcosfz.#gandse7tdz.7tgthemessages
WM_DDE_INITIATE and WM_DOE_INITIATEACK, respectively. For all ensuing opera-
tiousofaDDEconversation,youmustusethefunctionWz.7tDdepos£Msg().Asitsname
suggests, the function Wz.7zDdcpos£Msg() will post a WM_D D E_ message into the target
application's queue rather than directly accessing its window procedure.

#defi.ne INCL_WINDDE

B00L APIENTRY Wi.nDdepostMsg(HWND hwndTo,

HWND hwndFrom,

ULONG win,

PDDESTRUCT pddest,

ULONG fl0pti.ons) ;

Parameter
hundTo
hrmdFrom
van
pddest
floptions

Return Vahae
BOOL

Descriptiori
Handle of the window receiving the message
Handle of the window sending the message
DDE message to be conveyed
Address of the passed data structure
Options pertaining to the repetition of the insertion of the mes-
sage into the target application's queue (DDEPM_RETRY), and
totherulesdealingwiththedisposalofmemory(DDEPM_NO-
FREE)

Description
Success or failure of the operation

592. OS/2 2.1 Workplace shed progranming

As for Wz.7tDdeRcspo7td(), you must indicate both the handle of the target window
aswellasthatoftheissuingwindow,inadditiontotheappropriateWM_DDE_message.
This ensures that either a client or a server engaged in multiple conversations at the
same time can always distinguish them. Wz.77PosfDdeMsg() is used to transport any of
the last eight messages listed in Table 11.3. Th.e fourth parameter is a pointer to a
DDESTRUCTstructure,whichisneededtosolvesomeproblemsininformationpassing
between the client and the server.

typedef struct _DDESTRUCT

(
ULONG cbData ; x

USHORT fsstatus ;

USHORT usFormat ;

USHORT offszltemName :

USHORT offabData ;

} DDESTRUCT ;

The members of D D EST RU CT are used mainly to describe the variable portion of the
dataareasharedbetweentheclientandtheserver,ratherthancontainingtransaction-
specific information. Table 11.61ists the values that can be assigned to the fsstatus
member of DDESTRUCT.

Forsomemessages,thevalueofoffszltemNameandthatofoffabDatamustbeset
to 0 to indicate that no information should be exchanged between the client and the
server. h this case, it is sufficient for the target appfication to receive a WM_DDE
message to understand what has taken place.

Table 11.6 Values That Can Be Assigned to the fsstatus Member in the
DDESTRUCT Structure

Fl ag Value D es cription

DDE FACK
DDE FBUSY
DDE FNODATA

DDE_FACREQ

DDE FRESPONSE

OxOool Acknowledge response message.
T

0x0002 The applicationisbusy.
Ox0004 Data transfer is not to be performed with

WM_DDE_DATA.
OxOOO8 Requires that an acknowledge message be

issued to confirm an action.
OxOO10 Response to a request message.

PDE NOTPROCESSED 0x0020 Themessageisnotsupported.
DDE FRESERVED 0xOOC0 Reserved: must be zero.
DDE FAPPSTATUS 0xFF00 The eighthighbits are reserved for application

specific data. `

Data sharing Techniques: cupboard and DDE 593

TheallocationofamemoryblockcontainingtheDDESTRUCTstructureandtheactual
data is handled by the application. Naturally, this must be a shared memory area, in
order to allow the receiver to dereference any appropriate pointer. The receiver of a
posted WM_DD E_ message must take care of the disposal of the data area passed to it
bycallingDosFrceMe77c().Theapplicationthatallocatesthememoryblockwillgethold
of the PID of the receiving process by calling Wz.7tQ#e7t/Wz.77dozt7Proccss(), described in
the following paragraph. Figure 11.12 illustrates the structure of the memory block
associated with the D D ESTRUCT structure.

A client process issues a WM_DDE_REQUEST message to request some data. The
D D E ST RU CT contains the name of the item it is requesting, in addition to the transfer
format(generallyDDEFMT_TEXT).Inadditiontothenativeformats,aprocessmight
also define customized formats, although they must be registered in the system
through the global atom table so that they become accessible to all applications
present in the system. Finally, the client posts the message WM_DDE_REQUEST and
the shared block to all servers by calling Wz.7¢DdeposfMsg(). Then it frees the
memory block with DosF7`ceMe77t(). The samples in Listings 11.3 and 11.4, which
you will find on the disk that comes with this book, illustrate in detail all the steps
necessary to implement the DDE protocol.

Providing Data to the Client
Once the request WM_D D E_REQ U EST has been received, the server sends the requested
data to the client, or it responds with a denial message if it is not able to satisfy the
request. h both cases, the server follows the approach described for the creation of
the D D EST RU CT block. If the server is able to fulfill the request in the specified format,
it places the D D ESTRU CT structure and its data in a shared block. It then indicates it in
a WM_D D E_DATA message posted to the client through Wz.7tDdepos£Msg().

cbData

DDESTRUCTfsstatus UsFormat

offszltemName offabData

szltemName

DATA T

Figure 11.12 The memory block used for passing information between the
server and the client.

594 0S/2 2.1 Wor.kplace shell progranming

®®,

case WM_DDE_REQUEST:

I
PSZ p, pszstri.ng ;
ULONG ulsi.ze ;

PDDESTRUCT pddes ;

// retri.eve the stock names from the resource fi.le
i.f(DosGetResource(NULLHANDLE, RS_STOCKS, ID_STOCKS,

(PPV0ID)&pszStri.ng))

Wi.nAlarm(HWND_DESKTOP, WA_ERROR) ;

// get the si.ze
ulsi.ze = strlen(pszstri.ng) ;

// extract the pddes poi.nter
pddes = (PDDESTRUCT)mp2 ;

// extract the poi.nter to the i.ten name
p = DDES_PSZITEMNAME(pddes) ;

// check i.f we have requested the handle to the atom table
i.f(strcmpi.("stocks", p) --= 0 && pddes ->

usFormat ± DDEFMT_TEXT)

I
// prepare the memory block to be sent to the cli.ent
pddes = AllocDdeBlock(hwndcli.ent, "stocks",

0, DDEFMT_TEXT.

pszstri.ng, ulsi.ze) ;

// post the handle to the cli.ent
Wi.nDdepostMsg(hwndcli.ent, hwnd, WM_DDE_DATA, pddes, TRUE) ;

DosFreeMem(pddes) ;

DosFreeResource(pszstri.ng) ;
)

I
break ;

®,®

When the client receives the message, it processes the data and frees the memory
block. A denial message from the server simply means it is not able to fulfill the
WM_DDE_REQUEST. For this purpose, it sets the DDE_NOTPROCESSED status bit in the
fsstatus member of the DDESTRUCT structure, and it will post a WM_DDE_ACK to the
client by means of Wz.7iDdepos£Msg().

When the server application is busy, it sets the DDE_FBUSY bit. If the server needs
theclienttoconfirmthereceiptofthemessage(whatevertypeofresponseisproduced
by the server), it must also set the DD E_FAG KREQ status bit.

Data sharing Techniques.. cupboard and DDE 595

A client receiving a negative response from the server repeats the request for that
datausingadifferentformat.Generally,thefirstrequestisinthemostcomplex format,
while further requests will employ simpler and simpler formats.

Estabushing a Peniiiianent ltnk
Aclientoftenestablishesapermanentlinkwiththeserverwithreferencetoaspecific
data item. After setting up the relationship, the server notifies the client that the data
has changed, or it will transmit them directly. The data link remains active until it is
not explicitly cleared.

To set up a per77t¢7te7t£ Z£.7zk, the client posts a WM_DDE_ADVISE message, with the
DDESTRUCT structure containing the name of the data set. The permanent link is
establishedattwolevels:notificationfromtheseIverofthechangeofvalueofthedata
or actual transfer of the changed values to the client. In order to receive a notification
about changes in data, the client must set the DDE_FNODATA bit when it sends the
WM_DDE_ADVISEmessage.Aserverabletofulfilltherequest(itcanaccessthedataand
use the required format) stores it in an intemal table, and posts an acknowledge
message to the client (a WM_DOE_ACK with the status bit DDE_NOTPROCESSED cleared,
and the bit D D E_F RES P0 N S E set). From this moment, any time that a change occurs in
the data the server posts a WM_DDE_DATA message with the ODE_FNODATA bit set. The
client can ignore the notification or request an updated copy of the data through an
ordinarytransactionbasedonwM_DDE_REQUEST.

Thesecondkindofpermanentlinkinvolvestheactualtransferofthechangeddata,
andissetupbytheclientthroughtheWM_ODE_ADVISE,withoutsettingtheDDE_FN0-
DATAbitintheDDESTRUCTstructure.Theserverisobligedtoincludetheupdateddata
inanyensuingWM_ODE._DATAmessage.hbothcases,iftheserverisnotabletofulfill
the request expressed with WM_DDE_ADV ISE, then it must respond with a negative
message.

TheserversetstheDDE_FACKbitiftheclientistoretumeitherapositiveornegative
messageafterreceivingthedata.ThisapproachcanactuallyimpactonbothappHca-
tiousperformance,especialyifthetimeinteIvalbetweenanytwosuccessivechanges
to the data set involved in the permanent link is short. However, this constant
exchangeofmessagesalsograntsagreaterlevelofsecurityinhandlingthedata.

To terminate a]jck established through WM_DDE_ADVISE, the client posts a
WM_DDE_UNADV ISE. Then it is up to the server to figure out which clients still have
activepermanentlinksbyexaminingtheintemaltableandremovingtheappropriate
entry from it (Figure 11.13).

Ter`iirrinating a DDE Coaversation
A window can termina]te a DDE conversation at any time by posting a WM_D D E_T E R -
MINATE.ThisistheonlyDDEtransactionthatcanbegeneratedindifferentlybyboth
the client or the server. The message WM_DD E_TERM I NATE immediately breaks off all
transactionsinaconversation.Thewindowshouldnotpostanyothermessageinthat

596 0S/2 2.1 Workplace shell programming

CLIENT

WM_DDE_ADVISE

set up a permanent link on: US S i
WM_DDE_DATA

SERVER

Wndproc(...)

(

case WM_DDE_ADVISE:

PERMANH\IT LINKS

HOT WABM

USS

new values of the S US
DDESTPUCT allocates

WinDdepostMsg(...);

Figure 11.13 Passing data to the client.

conversation.However,thereisanexception:WhenthetargetreceivesawM_DDE_TER-
MINATE,itmustimmediatelypostthesamemessage.Consequently,thewindowthat
initiated the termination sequence for the conversation with a WM_DD E_TERM I NATE
must be ready to receive the same message from its partner. Only then is it possible
to destroy the window involved in the DDE. Figure 11.14 illustrates the termination
sequence of a DDE conversation.

Invisible Windows
The most interesting aspect in the implementation of the DDE communication
protocol is using invisible windows, children to HW N D_0 BJ ECT, within a conversa-
tion. Although the message handling in a DDE conversation might be handled in
the window procedure of the main window, this solution produces a rather
complicated window procedure, especially because the same program can play
different roles (both client and server), or be engaged in several conversations at
the same time. In some cases, though, the situation will break. The best approach
is to create two new kinds of classes (window procedures) for processing the
message flow pertaining to the roles of client and server in the DDE conversation.
To make this solution even more efficient, it is best to assign to each new window
type a message queue of their own, and thereby place them in distinct threads. The
situation is illustrated in Figure 11.15.

Data sharing Techniques.. Clipboard and DDE 597

WM_DDE_TEFtMINATE:

CLHNT WM -DDE-TERMINATE: SERVER
\

Wndproc(...)

---,,E:

Wndproc(...)

((

case WM_CLOSE:

®,®case WM_CLOSE:

if the conversation is active if the conversation is active

®,,case WM_DDE_TERMINATE:
case WM_DDE_TEPIMINATE:

if hwndserver is valid

TIthiNIhirvNIkyrvckyri:ri:eit:its_:arNI+

hwndserver = NULLHANDLE;,,,

/
INATE:

WM_DDE_TERMINAT

WM_DDE_TERM

Figure 11.14 Termination sequence of a DDE conversation.

Figure 11.15 Handling a DDE conversation through an invisible window.

598 0S/2 2.1 Workplace shell progranming

Uses of DDE
A typical example of a DDE conversation is that of a server application that retrieves
data about stock quotations and passes them to another application that will further
process it.

In Listings 11.3 and 11.4 we will pretend that a PM server accesses some theoretical
financialdataandsendsitperiodicallytoarequestingclient.Writingtwoapplications
with well-defined roles, as in this case, be careful with the client's ``1ook and feel." Th.e
seIvercanoperatelikeaniconoreveninvisibly;itisitsintemal1ogicthatisinteresting,
not its extemal look.

Defining the Project
To illustrate the DDE communication protocol, we implement an application capable
of accessing a server named PMSERVER which supports three topics. Let's call them
NASDAQ, AMEX, and NYSE, corresponding to the names of the three major stock
exchangesinNewYork.Thefirstoperationoftheclient,CLIENT.EXE,isselectingthe
desiredserver.ThecLIENTapplicationwillhaveatoplevelmenu,Market(seeFigure
11.16), containing three menu items for selecting the intended financial market.

The execution of this operation involves the receipt of the message WM_COMMAN D in
the window procedure of the application's client window. The ID MN_NAS DAQ corre-
sponds to this menu item in the appropriate menu template in the resource file. The
firstoperationisseekingaseIverwiththenameNASDAQbycallingwz.7tDdeJ77z.£z.¢fe().
This function will broadcast the message WM_D D E_I N I T I AT E to all top level windows
present in pM and will return only after having explored all window procedures. The
entire operation is synchronous in nature. We might safely expect that the presence
of the NASDAQ topic will respond with the message WM_D D E_I N I T I ATEAC K to Wz.7t-
DdeJ7tz.£z.¢fe(). When the flow of execution returns from this function, the client appli-
cation knows if there is a server capable of satisfying its needs.

The action taken by the SERVER application when it receives the message
WM_D D E_I N I T I AT E is very simple. The program checks that the name of the required
server matches its own name, and then returns to CLIENT the same data it received,
by means of a WM_D D E_I N I T I AT EAC K passed with Wz.7£DdeRespo7td(). The name of the
seIverapplicationbeingsoughtisalwaysPMSERVER,whilethetopicofconversation
can be NASDAQ, AMEX, or NYSE, according to the user's choice.

Figure 11.16 CLIENT allows you to select a server providing financial data
from NASDAQ, NYSE, and AMEX.

Data sharing Techniques.. Clipboard and DDE 599

h designing these appHcations, we let the server notify the client about the whole
set of shares used by the client to perform either a search or an analysis. Often, this
phasetakesplacedirectlywhenthemessagewM_DDE_INITIATEisreceived,and forces
the server to respond with as many WM_DDE_INITIATEACK messages as there are
supportedconversationtopics.hthisapproachtotheproblem,weprefertofollowa
slightlydifferentroute.AsyoucanseeinFigurell.17,theconversationtopicisalways
the name of the stock market, while the single stock titles are the conversation items.

This choice will make it easier to implement the termination condition of the DDE
conversation. According to the DDE specifications, in response to each WM_DD E_I N -
ITIATEACKissuedbytheseIvertonotifytheclientaboutthesupportedconversation
topics, the client should issue a WM_DDE_TERMI NATE for each ilfelevant topic, thus
indicating the stock title covered. The definition of the conversation topic as the
NASDAQstockexchangeallowsustopasstotheclientthesetofstockssupportedby
the server directly when the conversation is estabhished. An additional advantage of
thisapproachisaconsiderablememorysaving.Duringtheinitialactivationphaseof
aDDEconversation,itisuptoPMtodefineandfreeanymemoryareasharedamong
different applications by calling DosAZZocsfe¢redMe77z() with the flag 0 BJ_G I V FAB LE.
Maintaininganunberofopenconversationscouldcausesomeproblemsorper form-
ance degradation, especially if the system is short of memory.

Once the initial phase of the DDE conversation is over, the client has an e>chaustive
list of all stock titles supported by the server. Then it is up to the user to determine
whichsharestouse.hcLIENT,themenuitemQueryNASDAQwillbeactive(Figure
11.18) so as to allow the user to make his selection.

Theselectionofthisoptioninvolvestheappearanceofadialogwindowcontaining
in a listbox the names of the listed shares currently supported by the server. The user
selects the one to examine. The outcome is the form.ation of a link between the cfient
and the server on the selected topic. Then, the user has two altematives: request the
currentexchangequotationsofthestockonacontinuousbasis(per777¢7te7tfZz.7tk)orjust
when it is deemed necessary (o77e-fz.777e Zz.77k).

Thefirstsolutionisaestheticallymoreappealing,sinceitwillmakealistboxappear
in the left portion of the program's cHent window, where the data passed from the
server is continuously updated (Figure 11.19).

The transfer of data will go on for an unlimited time, even if it would be useful to
perform some statistical analysis on the information received (Figure 11.20). That's
whythereisaStatisticsmenuitemintheQuerytoplevel.Thiswillcomputethemean,

Application PMSERVER
Top ic NASDAQ
Item AST, MSFT, ...

Figure 11.17 The DDE conversation items between CLIEP`IT and SERVER.

600 0S/2 2.1 Workplace shed progranming

g¥v!..i`i!. ... I.i. ,=RERERERE.``..... .. i... '!.. . ..' I I. '. . . `.. . . . I '... .i..I . . I..i.. i:. .-. 'g#--,...i..`.......-..-.--.-!-,--.§.,---..----v-.-..---.....---..-..........-.-.-.-.,w

•!L. -i.. i.. . . H

ffip,e [` ,rf i # RE- S+`',S

fbg#.gig-¥i-f.,ii:t:>:>~..,::h.-`:iffl&ffgg¥trrsSxichutS&`

Figure 11.18 Activation of the menu Query NASDAQ after selecting the
corresponding stock market.

Figure 11.19 CLIENT in action after permanent link has been activated
for displaying the ongoing changes to a stock quotation.

Data sharing Techniques: Clipboard and DDE 601

Figure 11.20 Presentation of a set of statistical values on the data received by
CLIENT from SERVER.

the standard deviation, the minimum, and the maximum value, and present these
values in a window to the side of the menu bar.

At the very moment when the data is received, the user can get some additional
information, with respect to what is displayed numerically or graphically by the
application.Adoubleclickonanyiteminthelistboxwillcauseanotherwindowof
facts to appear in the lower part of the screen; this window will indicate, in addition
to the selected value, its minimum and maximum during the day (Figure 11.21).

The Server
The duty of the server is to satisfy the requests of the client who is querying it. h
general, a DDE server must be extremely flexible in supporting a high number of
transactions in different formats. h the specific case of the SERVER application, the
interactionwiththeCLm\ITisbasically]imitedtotwooperations:passingthenames
of au stocks supported when the conversation is established, and then sending data
about a stock item after a per#z¢7te71£ Zz.7tk has been set up by CLIENT.

Naturally,sinceinthisexampleitisnotpossibletoaccessarealsourceofinforma-
tion, the sample server application win invent both the stock names as well as their

602 0S/2 2.1 Wor:laplace shell progranming

Figure 11.21 A double-click on any listbox item will display another informa-
tion window.

values.ThecompletelistofavaflablestocksforeachseIverislimitedtoafew,alltaken
fromtheW¢ZZSfree£/o#7'7t¢Z£#rope.Thesimplestsolutionisatraditionalsetofstrings
insertedintheSTRINGTABLE,thenloadedwithWz.77Lo¢dsfrz.7tg().hsteadoffollowing
this standard approach, here we use the function DosGe£Rcso#rce(), which should
consume less memory and perform faster. With DosGe£Rcso#rce() it is possible to
accessablockofmemoryinread-onlymodecontainingthespecificresourcefile.The
ASCII file used to list the supported stock titles (STOCKS.DOC) looks like this:

ast ,1. bin , appl e , msft , compaq , al dus , i. ntel ,1 otus ,

The file VALUES.DOC is used by the server to define the range of fluctuation of
eachtitle.Thesevaluescorrespondtotheminimumandmaximumregisteredduring
the last 52 weeks of dealing.

20-30 , 90-140 , 50-60 , 90-120 , 30-70 , 40-50 , 40-60 ,16-40 ,

The portion of the resource file involved in this operation is the following one:

®®,

RESOURCE RS_STOCKS ID_STOCKS stocks'.doc
RESOURCE RS_VALUES ID_VALUES values.doc

®®

Data sharing Techniques.. Chipboard and DEN 603

Thisoperationimpliestheallocationofablockofsharedmemorypassedfromthe
server to the client (it would be impossible to act from the client through a pointer
providedbyDosGe£Reso%7.ceobecausetheoperationwouldaffectamemoryareanot
belonging to the application). Therefore, it is the client's responsibility to read the
stocknamessupportedbytheserverassoonasitreceivesthemessageWM_DDE_DATA.

The establishment of a per77c¢7te7tf Z£.71k between the client and the server requires
thatthemessageWM_ODE_ADVISEbeissued.Inthiscase,theclientnotifiestheserver
about the stock name it is interested in by passing a numerical ID (converted to a
string)ratherthantheactualstocknamebecausetheserver,onceithascompleted
the tasks involved with the initial WM_DD E_REOU EST message from the client (imme-
diatelyaftertheestablishmentoftheconversation),getsridoftheresourceretrieved
throughDosGefReso#7'ce(),andwillnolongerknowstocktitlesitcanaccess.

W'.henpassingwM_DOE_messagesbymeansofwe.#Ddepos£Msg(),itisnecessaryfor
theapplicationtoallocateablockofmemorylargeenoughtocontainaDDESTRUCT
structureplussomeotheradditionaldata.Theallocationofadataareadependsboth
onthesizeoftheDDESTRUCTstructureaswellasonthepresenceofatextstringand
dataitemsthatadditionallyquaurythenatureofthetransaction.Thememoryblock
iscreatedwithDosAZZocsfe¢redMe77£Obyspecifyingtheflag0BJ_GIVEABLE.Further-
more, the sender has to be able to get to a valid pointer in the receiver's process. To
maketheallocatedmemoryblocksharableandaccessible,itisnecessarytoknowthe
PID of the receiving process, which is a parameter of the DosGftJesfe¢redMe7%O
function. This piece of information can be retrieved in the OS/2 kemel only from
within processes that are strictly related-parent and child, for instance-while in
PMthereisaspecificfunction,W{.7tQ%enyw£.7£dozoprocesso,thatallowstheusertofind
both the PID as weu as the TID of the process to which any given window belongs.
The syntax of this function is the following:

#defi.ne INCL_WINMESSAGEMGR

B00L Wi.nouerywi.ndowprocess(HWND hwndDest,

PPID ppl.d,

PTID Ptl'd) ;

P ar ameter D e s cription
hwndDest Handle of the window belonging to the process being queried for

PP±d figdrweff ;: #ri£::tifier of the type PID, wherein the process's

ptid Address, of an identifier of the type TID, wherein the process's
TTD will be written

Retun vahae Description
BOOL Success or failure of the operation

Both CLIENT and SERVER refer to the function AZZocDdeBZock() that allocates a
sharedmemoryblockappropriateforaDDEconversation.Oncethereceivingprocess's
PIDisavailable,itispossibletodeterminethepointerbycallingDosGi.uesfe¢7`edMe77e():

604 0S/2 2.1 Workplace shell progranming

~~~,

//   determi.ne  the   cli.ent   PID
Wi.nQuerywi.ndowprocess(    hwndDest,    &pi.d,    &ti.d)    ;
DosGi.vesharedMem(    (PV0ID)pddes,    pi.d,    PAG_READ    I    PAG_WRITE)     ;

WhenprocessingthemessageWM_DDE_ADVISE,theserverperformstwoactions.It
retrieves from the resource file the fluctuation range for the involved stock title, and
then activates a timer to make sure that a WM_DDE_DATA message will be sent to its
client at a preset rate (once a second).

The action of reading the contents of the new memory block retrieved with Dos-
GefRcso#rce()an`dretreivingthefluctuationrangeisbasedontheIDprovidedbythe

fit:bn:#sh::Leu£::.E:epfo:,:s:LtiyoenTss;re:::aTeffi:ed:fcHTe:tH:t£:::t:Fper:e±;ti:::®

block of memory provided by the server, and stored by means of the LM_SETITEM-
HAN D L E message into the four bytes available for each item in the histbox.

WhenprocessingthemessageWM_TIMER,theseIvergeneratesarandomfloatvalue
correspondingtothefictitiousdailyquotationofthestocktitle.hadditiontothisdata,
a percentage  of reduction and increase is  also  computed in order to  define the
fluctuation range during the day. All three values constitute the set of data that the
server transfers to the client.

The Cliett±
hteractions  come  from  the  server  through  the  messages:  WM_DDE_INITIATEACK,
WM_DDE_ACK,   WM_DDE_DATA,   and   WM_DOE_TERMINATE.   Processing   WM_DDE_INITI -

ATEAC K impHes the creation of a shared memory area to ask the server the names of
available shares. Processing the message WM_DDE_DATA involves a test to check the
source of the message. This could be the initial response to the request for listing an
sharessupportedbytheseIver,oneofthemanyupdatesregardingapermanentlink,
or even the transfer of data asked for through a direct request.

ThemessageWM_DDE_ACKreachestheclientasthepositivereplyoftheseIverafter
arequestfortheestablishmentofapermanentlink.Whentheuserpressesthebutton
StopLink,thelinkwiththeseIverwillautomaticallybebroken,andcausethemessage
WM_DDE_UNADV I S E to be issued. The statistical computation performed by the client
on the data present in the fistbox is an excellent example of dynamic interaction with
this window. After determining the number of items present, the code can proceed
with the computation of the mean and the standard deviation with no performance
penalty and with only a limited nulnber of statements.

The Cheat Interface
The client process encompasses the totality of activities that pertain to the interaction
withtheuser.Althoughtheterminologyemployed(client-server)fortheDDEcommu-
rication protocol inpHes rules and concepts very different from that which happens



Data sharing Techiques.. Clipboard and DDE     605

inanapplicationdevelopedforaclient-servernetworkarchitecture,theroleplayed
bytheDDEclientisfundamentauysimflartothatofafrontendinanetwork.Precisely
for this reason it is necessary to be very careful with the application's user interface
details,inordertomakeitsimpleandeasyfortheusertointeractwiththeapplication.

Asyoucanseeinthepreviousfigures,inCLIENTtherewiuappearafistbox,and
if the user requests, two windows of the class WC_STAT I C positioned directly in the
client window, while the menu bar contains a pushbutton and a static window. This
seemingbreakingoftherulesofthetraditionalinterfaceofaPMapplicationactually
demonstrates the flexibhity of the PM API.

Placingapushbuttonand/orastaticwindowinthemenubarinPMiseasy,thanks
to the development model underlying the whole environment. The function W£.7t-
Cre¢few£.7tdozuo allows the user to specify the owner as well as the parent of a PM
window. For the pushbutton and the window that shows the chosen stock market
name and the stock title, the parent is the menu bar, while the owner is the applica-
tion's client window. This solution provides that the program will operate correctly
asfarasthehandlingofscreenpixelsisconcemed-asthistaskisactuallydelegated
tothemenuwindow-andthehandlingofthemessagesgeneratedwiththepushbut-
ton, which is dealt with by the cfient window. The only thing to be careful about is
thattheflagWS_CLIPCHILDRENmustbesetinthemenubar.Thisattributeisdeclared
withthevalueof0x2000000inthefflePMWIN.H,andisabsentinauordinarymenu
bars.

AddingthisattributetothosethatarealreadysetforthiswindowisverysFple.
First,youneedtoretrievewithW.#Qttenywc.#dozouLongothesetofstylebitsassigned
byPMwhenthewindowwascreatedonthebasisoftheinformationpresentinthe
menutemplateintheresourcefile.ThevalueretumedisthenaddedtoflagWS_CLIP-
CHILDREN,andthenW£.7tse£W{.7£dozuLrLo7190iscalledtoassignthenewattributesetto
the window. You can also use W£.fflse£W€.7idozuB£.fso. There is even a simpler solution
to this problem: just write WS_CLI PCHI LDREN in the menu template of the CLIENT
application!

The choice of acting directly on the contents of the reserved memory of a window
hasbeenappliedeventothepushbuttonpresentinthemenubar.Pressingawindow
oftheclasswc_BUTTONwiththestyleBS_PUSHBUTTONwillcausethemessagewM_COM-
MAND  to be sent to its owner, exactly as with an ordinary menu item. When the
pushbuttonshowsthestringStartLink,thevaluegeneratedbythebuttonpressureis
equaltoMN_STARTLINK.Immediatelyafterthat,theapplicationchangesthelDofthis
windowbycallingW£.#Sefw£.7idozoLrs7£orfoandassigningitthedefineMN_ST0PLINK.
The same pushbutton action produces two different values according to the time of
the reahization.

We will not examine the logic governing the generation of the graph of the title,
since the Gpi. API is used in a very primitive way in this example. However, it is
interestingtolookatthemecharismusedinregisteringinthelistboxthedataitems
received from the server. The information coming from the server is stored in the
sharedmemoryblock,whichisthendestroyedbytheclientassoonasithasbeenread.
Theplacementofeachsingledataiteminthelistboxwarrantsthatthedataseriescan



606     0S/2 2.1 Workplace shell programndng

be accessed with a high degree of flexibility. The computation of some statistical
valuesdemoustratesthis.Furthermore,thefourbytesavailableforeachitemwinstore
thedecreaseandincreasepercentageswithrespecttofixingthequotationinorderto
be able to compute a fictitious minimum and maximum value recorded during the
day. According to this scheme, these data items are encapsulated with respect to the
datatowhichtheyrefer--thevalueofthequotation-andoccupyonly50percentof
the memory (two shorts instead of two floats).

Some Considerations
The rules to follow in the implementation of a DDE conversation are simple and
limited in number. Their implementation is somewhat less simple, since it requires
handlinganddebuggingtwoprogramssimultaneously.Itisimportanttoremember
to free the pointer regarding the data segment received by the action performed by
Wc.7tDdepos£Msg() in order to avoid overcrowding the memory, and, above all, dead-
lock situations when operating with ITMD.

Furthermore,itisnecessarytodiscriminatebetweentheinplementationofaclient
and a server in a DDE link, as in the proposed sample, and an application that can
interact with third party products both as the chent as well as the  server.  The
implementation rules of the DDE protocol can be adapted and manipulated to your
own advantage.in the first instance, because you are certain to know precisely what
set of messages will show up in the conversation.



Drag & Drop
At this point we can deepen our knowledge about PM programming by exploring
some new features of the development model introduced with version 2.x. The first
and most evident one is that of operations generally known as drag a drop. The
possibilityofdragginganddroppinganyobjectinsideWPSbyconsistentlyapplying
thesamesetofoperatiousisabigadvantagefortheuser.InMSWindows3.1,selecting
anddraggingiconscanhaveastheirtargetanyopenandactivewindow,providedit
supports drag & drop events. The source of information is always File Manager. h
OS/2 2.x the user can transfer any kind of object from any folder to any other folder,
without bothering about the nature of the target. This method win often obviate the
needfortheusertoresorttotheoptionsofthemenubar,andmakesthePCalotmore
intuitive.

The software designer must plan for support for drag & drop actions. tine of the
advantagesofdrag&dropisthat,onceyouhavelearneditsimplementationrules,it
can be appHed to a multitude of situations. Furthermore, once you appreciate the
advantages of drag & drop, you will be able to extend this way of working to any.
objectpresentinWPS,andwillbeperplexedifyouaren'tabletodosowithallyour
applications.

So,evenifyounrightbeskepticalaboutthesubject,youshould,however,beaware
of its importance. Let's now examine the API involved in the direct manipulation of
Objects.

The Drag & Drop API
The functions of drag & drop are all introduced by the prefix Drg, and add up to as
many as 33 factions (OS/2 2.1). Their prototypes are contained in the header file
PMSTDDLG.H, while the API itself resides in the PMDRAG.DLL module. An alpha-
betical list with a brief description of these functions appears in Table 12.1.

The implementation of drag & drop is not that complex an operation. First of all,
youneedtoidentifythe``characters"ofadrag&drop,wheretomovethemfrom,and
in what position to drop them. This scheme is ideal for the task of transferring a file
from one folder to another to fulffl the need of some move or copy operation. A user
of an OS/2 2.1  system will perform this kind of activity often, especially when

607



Table 12.1  List of Functions Involved in a Drag & Drop Process

Drag & Drop Funchons                    Description

DrgAcceptDroppedFiles

DrgAccessDraginfo

DrgAddstrHandle
DrgAllocDraginfo

DrgAllocDragtransfer

DrgDeleteDraginfostrHandles

DrgDeletestrHandle
Dr8Drag
DrgDragFiles

DrgFreeDraginfo

DrgFreeDragtrausfer

DrgGetps

DrgpostTransferMsg

DrgpushDraginfo

DrgQueryDragitem
DrgQueryDragitemcount

DrgQueryDragitemptr
DrgQueryNativeRE

DrgQueryNativeRELen

DrgQuerystrName

DrgQuerystrNameLen
DrgQueryTrueType

Handles  the  operations  involved in receiving  a
group of files.
Allows access to the memory segment allocated
when a drag & drop operation occurs.
Returns a handle to a text string.
Allocates a memory area containing the informa-
tion of the DRAGINFO structure.
Allocatesamemoryblockforcontainingstructures
of the DRAGTRANSFER type.
Deletes the text strings associated with the handles
in a DRAGINFO structure.
Selectively deletes a text string through its handle.
Activates a drag operation.
hitiates the operations of direct manipulation of
one or more files.
Frees the memory associated with a DRAGINFO
structure.
Frees the memory associated with a DRAGTRAN-
SFER structure.
Returns a handle to the presentation space of the
target window and emphasizes it.
Posts a message to the other window involved in a
drag & drop operation.
Allows even a process that is not directly involved
in a drag & drop operation to access a DRAGINFO
structure.
Copies the information of a DRAGITEM structure.
Returns  the  number  of  DRAGITEM  structures
associated with a DRAGINFO structure.
Returns a pointer to a DRAGITEM structure.
Returns the rendering mechanism/format of the
dragging.
Returns the length of the rendering mechanism
/format of the dragging.
Returns the text string associated with a handle to
a string.
Returns the length of a string identified by handie.
Returns the native type of an object.

(coutirmed)

608



Drag&Drop     609

Table 12.1  (Co#fi.##ed)

Drag & Drop Funchons                    Description

DrgQueryTrueTypeLen

DrgReleaseps

DrgsendTransferMsg

DrgsetDraghage

DrgsetDragitem

DrgsetDragpointer

DrgverifyNativeRE

DrgverifyRMF

DrgverifyTrueType
DrgverifyType
DrgverifyTypeset

Retumsthelengthofastringrelativetothetypeof
an object.
Releases the PS used for emphasizing the target
window.
Sends a message to an application involved in a
drag & drop operation.
Sets the image associated with the cursor in the
dragging phase.
Stores the information pertaining to one or more
DRAGITEM structures.
Changes the cursor's shape during the dragging
operation.
Verifiesthenativerenderingmechanism/formatof
an object.
Verifies the rendering mechanism/format pair of
an object.
Verifies the native type of an object.
Verifies the type of an object.
Verifies several types simultaneously and returns
in a string the possible matching type.

orgarizingapersonaldesktop.hthisscenario,theactionisperformedonobjectsthat
arepresentdirectlyinthedesktopofWPS,orinsomeopenfolders.Theprogrammer
doesnothavetodoanythinginthisphase,becauseitwillbethesystemitself(WPS)
that will take care of au details. However, apart from the actual meaning of the
operationsperformedbytheuser,itwillalwaysbepossibletodistinguishatleasttwo
main characters involved in the drag & drop: the source window and the target
window. The first one corresponds to the place where the user selects and drags off
the one or more objects; the second is the destination surface of those objects. The
sourceandtargetwindowcanevenbethesame;itwillbetheprogrammersdutyto
definethemeaningoftheoperation(notwitchcraft!)andthecodesupportingit.This
is exactly what happens in WPS.

Having to deal with two windows (the source and the target) is somewhat similar
totheoperativeschemeoftheDDEcommunicationprotocolexaminedinChapterll.
Actually, as we win see in depth later, even a drag & drop  can be used as in
inteaprocess commulcation tool, especially when the target window belongs to a
module that is different than the one holding the source window.



6L0     0S/2 2.1 Workplace shed progranming

The physical action of a drag & drop is therefore strongly related to the windows
of PM, while the writing of code of implementing selection and release is less so. In
the case of DDE, for instance, once the conversation has been established, there will
be a constant exchange of information between the two processes by sending mes-
sages.Adrag&drop,instead,canbeastand-aloneoperationhandiedinspecificways
within a single application; it does not have to involve other programs. One purpose
in this could be that of simphij7ing interactions between the user and the application
by extending the drag & drop paradigm to simple and frequent operations. For
instance, the creation of a new document could be assigned to some C7.e¢£e ¢7toffeer
option present in the window context menu, or it could be the outcome of dragging
thetitlebariconintotheapplication'sclientwindow.EPM.EXE,theadvancedsystem
editor of OS/2, follows this approach.

The programmer must cater to the code dealing with the initiation of a drag as well
as the code accepting a drop if that is what the application design demands; then the
programmermustdefinedifferentbehaviorsaccordingtothelevelofvisualemphasis
that will be delivered as feedback to the user.

The Logic of Drag & Drop
Themouseistheprincipaltoolinexecutingadrag&drop.Bydefault,therightmouse
button (2) will select an object, and possibly drag it, provided the user keeps it
depressed. Let's try a quick experiment. h the desktop of WPS there will always be
severalobjects.Selectanyoneofthemandkeeptherightmousebuttonpressed.What
happens? Usually, absolutely nothing. WPS does not change the object's look, and
doesnotdisplaytheroundedbordertoemphasizetheobject.Trytomovethemouse,
even just a fraction of an inch, in any direction. Now you can see some changes! The
object will be  enclosed by a rounded rectangle,  and also by a second rectangle
(Figure 12.1). Furthermore, the cursor icon will take on a different look. h addition to
the slanted arrow pointing northwest, you will see an interdiction sign. AIl these
changes will show the user that a drflg operation has been initiated.

Thisiswhatisperceivedbytheuser.Let'sdiscoverwhathappensintheapplication
at the message flow level. Pressing the right mouse button will cause the message
WM_BUTTON2DOWNtoappearintheapplication'smessagequeue(itisaposfcdmessage).
Sofar,nothingnew.ThenthewindowwillreceivethemessageWM_BUTT0N2MOTI0N-
START and then WM_BEGI NDRAG. Both messages pass by in the application's queue.
When the right mouse button is released, the message pair WM_BUTTON2MOTI0NEND
andWM_ENDDRAG,precededbyaWM_BUTT0N2UP,willappearinthequeue.Su]rm.ariz-
ing, messages appear in the following order:

WM_BUTTON2DOWN

WM_BUTTON2MOTI0NSTART

WM_BEGINDRAG

®®,

WM    BUTTON2UP

WM_BUTTON2MOTI0NEND

WM     ENDDRAG



Drag&Drop     611

Figure12.1WPSwilldemontratethatadragoperationisunderwaybychang-
ing the look of the mouse cursor and enclosing in a rectangle the object
holding the hot spot.

Theellipsisindicatethepresence(inmostsituations)ofothermessagesinbetween
thestartandtheendofthedrag&drop.Itisinterestingtonotehowthewholething
happensinanaturalwayasitishandledbythesystem.Tobetterunderstandthis,try
another quick experiment using the example in Listing 4.1, an application that does
notutilizedrag&drop.Figure12.2showsthemessageflowreceivedbytheapplica-
tion's client window after pressing the right mouse button, moving the mouse, and
releasing the mouse button.

Thefirstfivemessagesarecausedbythetransferoffocusandtheactivationofthe
applicationwithrespecttoPMSPY.EXE.Therefore,whenyouwanttoactivateadrag
&dropoperationinyourownprograms,youwmonlyneedtoprepareappropriate
caseconditiousinthewindowprocedureoftheclasstowhichtheinvolvedwindow
belongs. h implementing a drag & drop, you do not need to catch the WM_BUT-
TON2DOWN and WM_BUTTON2U P messages, since they basically correspond to physical
actionsperformedwiththerightmousebutton.Theremairingfourmessagesaretruly
involved in the implementation of a drag & drop. The syntaxes of WM_BUTTON2MO-
TI0NSTARTandwM_BUTTON2MOTI0NENDareidentical:



6L2.     OS/2 2.1 Workplace shdl progranming

00E50|5E':0'00@000-0
0dD4'01 EE  o-oo`06oooi

OOI)4016E   O`OOO0t)008

i:;-I##:#5p8:;':,,':iii:Ii,i-:,,:,::S#::3::::%
I,

*r

i:#E3~ItNng:-¥:~:I:\8¥::LF,::i:::£#:,I:::i::::~
i-,

qu_BUTTonIDoiliN H I    . I ]„jt     OOE5Oi5E.  OO`OOOOOO

IIJM_BUTTON2HOT I 0NSTffiT. I  00E50| 5E  000000~0`0
r                                                                       i            I                    I          w                                                     ,      '           A                 ..

qu_BEGINra4G    pr~r~     .   i,-

i!#[3#:%#E"jok'E€N;D:!;:£'::

:_       _-a.Qri:I        I-__-_`.      _I_I_-,.                  a

i#    iE     E
Shredder    HPLaserJetllD        or.rue,\

Figure 12.2  Interception of the message flow in the application's client win-
dow simulating the actions involved in a drag & drop operation.

WM_BUTTON2MOTI0NSTART

mpl
mp2
Retrrm Value

WM_BUTTON2MOTI0NEND

mpl
mp2
Return Value

Ox0414

Reserved
USHORTfshittestres
BOOL fResult

Ox0415

Reserved
USHORTfshittestres
BOOL fResult

Description

Result of the hit-test
Success or failure

Description

Result of the hit-test
Success or failure

Actually, mp 1 win contain exactly the same information that you would find in the
WM_BUTTON2DOWNandwM_BUTTON2UP,whichprecedeandfollowintheoveraumessage
sequence. h practice, the contents of mpl and mp2 are almost useless and most often
simplyignored.However,itcanbeproductivetointerceptthesetwomessagesbecause
theycorrespondexactlywiththeinitiationandterminationofadrag&dropoperation.
You could accommodate in these two case branches code fragments with statements
toemphasizeevenmorethestartandtheendoftheoperation.Therearemanychoices,
from emitting a simple beep to playing back a complete sound arrangement in a



Drag&Drop     613

multimediaapplication.Theappearanceoftheframingrectanglearoundawpsobject
oranobjectinafolderwillhappennaturally,anddoesnotrequireyoutowriteany
special code. h other cases, as when dragging the titlebar icon, it is not necessary to
adhere to this model, as we will see shortly.

WM_BEGINDRAG

mpl

mp2

Return Value

WM_ENDDRAG

mpl

mp2

Ox0420

POINTSptspointeapos

USHORTuspointer

BOOL fResult

Ox0421

POINTSptspointerpos

USHORTuspointer

Return value          BOOL fResult

Description
Mouse  pointer's  position  in  the  in-
volved window's coordinate system
TRUE if the message originates from a
mouse  action,  FALSE  if it originates
from the keyboard
Success or failure of the operation

Description
Mouse  porfuer's  position  in  the  in-
volved window's coordinate system
TRUE if the message originates from a
mouse  action,  FALSE  if it  originates
from the keyboard
Success or failure of the operation

Even in this case, the contents of mp 1 and mp 2 are not very useful in implementing
the code handling a drag & drop operation. h general, knowing the position of the
mouse in the window is useful only if there are many different objects, as is the case
forafolder(co#f¢£.7£er).If,ontheotherhand,thedrag&dropconcemsthetitlebaricon,
orwindowscontainingonlyoneobject,youmightjustasweucompletelyignorethe
position of the mouse.

Rather, the message  WM_BEGINDRAG  can be exploited to implement all the code
necessary to prepare the object associated with the mouse pointer during the drag
operation;itisatthistimethatthespecificdrag&dropAPIfunctionscomeintoplay.

Selecting Obj eats
The implementation of a drag & drop requires you to allocate a memory block of
varying sizes, inside of which you win keep information regarding the selected
objects.ThememoryallocationandhandlingprocessistotallydelegatedtoOS/2by
means of the API functions introduced by the Drg prefix. The software designer will
onlyhavetofi]lintheseareasappropriately,sothateventhirdpartyapplicationswill
be able to access and interpret them correctly. In Figure 12.3 you can see a scheme of
the memory area allocated for implementing a drag & drop.

hthecodefragmentdealingwiththeWM_BEGINDRAGmessage,youhavetodeclare
a number of pointers so as to accomplish what is shown in Figure 12.3. The memory
block'sheadercorrespondstoaDRAGINFOstructure,whiletheinformationregarding
each single object is represented by a D RAG I TEM structure.



614     0S/2 2.1 Workplace shell progranming

;-..\,-,i.,::...I.:,.,`.,,,\,.:

Figure12.3Theinitialmemoryblockcorrespondstotheheader,whichisthen
followed by the specific information pertaining to each selected object.

typedef   struct  _DRAGINFO
I    //  dl.nfo

ULONG   cbDragi.nfo    ;
USHORT   cbDragi.ten    ;
USHORT   usoperati.on    ;
HWND    hwndsource    ;
SHORT   xDrop    ;
SHORT   yDrop    ;
USHORT   cdi.ten    ;
USHORT   usReserved    ;

I    DRAGINFO     ;

typedef   DRAGINFO   *PDRAGINFO    ;

A D RAG I N F0 structure takes up 20 bytes. Each D RAG I T EM will need 36 bytes. Cia the
basis of the selections performed by the user, the application will have to allocate a
memory area that is large enough to contain a D RAG I N F0 structure and a number of
D RAG I TEM structures matching the objects selected. The operation is not performed
explicitly by calling DosAZZocMe7#(); it will require you to call DrgAZJocDrgz.7t/a().

#defi.ne    INCL_WINSTDDRAG
PDRAGINF0   APIENTR-Y    DrgAllocDragi.nfo(    ULONG   cdi.tern)     ;

P arameter              D escription
cditem                     Number of DRAGITEM structures
Retu:in vahae          D escription
PDRAGINFO         Pointer to a DRAGINFO structure

The  function  DrgAZZocDr¢gz.7e/o()  requires  as  its  sole  parameter  the number  of
D RAG I TEM structures that will follow the D RAG I N F0 structure-the number of objects



Drag&Drop     615

thatwillbedraggedbytheuseronthebasisofthecurrentselection.Theretumvalue
is a pointer to a memory area beginning with a DRAGI N F0 structure. Before calling
DrgAZZocDngz.7z/a(), it is necessary to know how many objects have been selected by
the user, so that the allocated memory area will be large enough to contain all the
information.  The  members  of the  DRAGINF0  structure  will  contain  data  that  are
automatically assigned by DrgAZZocDr¢g{.7t/a() and only partially changeable by the
application. Ih the case of single-object dragging, the overall size of the allocated
memoryblockisequalto56bytes-20fortheDRAGINF0and36£ortheDRAGITEM.The
membercbDragi.nfowilltakeonthevalueof56,whilethesecondone,cbDragi.tern,
winbe36.TheinformationoftheDRAGINF0endofDRAGITEMispackedonenexttothe
other. Cince you have obtained a pointer to the starting memory block, you will be
able to find the starting position of all remaining sub-blocks regarding the single
D RAG I T EM structures. The commencement of a drag & drop inside the WM_B E G I N D RAG
message handling code will look like this:

®®

case    WM_BEGINDRAG:

[
PDRAGINF0   pdrgi.nfo    ;

®

pdrgi.nfo   =   DrgAllocDragi.nfo(    1L)    ;
®®®

)
break   ;

®®

Thememberus0perati.onwillcontainthevalueDO_DEFAULT,butitcanbechanged
into any of those listed in Table 12.2.

Dragging a document previously produced by a fe77tpz¢fe data file is perceived by
the target window as a DO_DEFAU LT. The flag DO_CREATE, instead, is the outcome of
the dragging of a fe77tpz¢fe, an operation that corresponds to the creation of a new
instance of that object. The examination of the DO_ flag becomes vital when writing
codedealingwiththeacceptanceofanobject,aswewillseelater.Whentheinforma-
tionintheDRAGINF0structureisbeingcreated,youcanchangewhatisdefinedbythe
DrgAZZocDngz.7t/o()functionbysettingtheusoperati.onwiththeappropriateflag.To
indicate that you want to move the selected object, for instance, you need to set the
DO_MOVEflag:

®,®

pdrgi.nfo   =   DrgAllocDragi.nfo(   1L)    ;
//   l.t   |.s   a   move
pdrgi.nfo   ->   usoperati.on   =   DO_MOVE    ;
®®®

It is often convenient to also specify the handle of the source window, thereby
overwriting the default data:



616     0S/2 2.1 Workplace shell programming

Table 12.2  Values of the Member usoperation in the DRAGINF0 Structure

Drag op erat4on               Value                D escription

DO  DEFAULT
DO_tINENOWN

DO_COPY
DO_MOVE
DO_LINK

DO_CREATE

OxBFFE
0xBFFF

0xOO10

0x0020
0xOO18

0x0040

Default operation.
Qperationdefinedbytheapplicationinitiated
by pressing nonstandard keys.
Copy operation, the CTRL key is depressed.
Move operation.
Linkingoperation,theCTRL+SIHFTkeycom-
bination is depressed.
Creation.

®®®

pdrgi.nfo   =   DrgAllocDragi.nfo(    1L)    ;
//   l.t   l's   a   move
pdrgi.nfo   ->   usoperati.on   =   DO_MOVE    ;
//   source  wi.ndow

pdrgi.nfo   ->   hwndsource  =   hwndcli.ent   ;
®,®

The choices you make when defining the standard operation with respect to that
particulardrag&dropoperationwillaffectthevisualaspectofthedraggedicon.If it
is a DO_MOV E applied on a Data File, for instance, the icon that looks like a dog-eared
sheet will appear at its normal resolution. If it was a DO_COPY, then the icon would
show up in low intensity, a typical feature of the copy operation of a WPS object.

ThemembersxDropandyDropcontainthecoordinates,expressedindesktopurits,
of the object's position when the right mouse button is released. These two values are
updated automatically by the system during the drag, and are therefore read-only
information for the appHcation (window)  over which the right mouse button is
released. The cd i. t em member contains the number of D RAG I T EM structures involved,
i.e., the parameter of the DrgAZZocDrngz.7t/a() function.

Oncethisfirstphaseisover,youmustfillinthemembersoftheDRAGITEMstructure,
then register the information in the memory area allocated by DrgAZJocDng2.7t/a() for
each selected object. The standard solution is to declare an identifier of the D RAG I TEM
type, then call the function Drgse£Dr¢gz.£e777().

typedef   struct  _DRAGITEM
I    //   dl.tern

HWND    hwndltem    ;

ULONG    ulltemlD    ;

HSTR   hstrType   ;

HSTR   hstrRMF    ;

HSTR   hstrcontai.nerName   ;

HSTR   hstrsourceName   ;



Drag&Drop     6L7

HSTR   hstrTargetName   ;

SHORT   cxoffset   ;

SHORT   cyoffset   ;

USHORT   fscontrol    ;

USHORT   fssupportedops    :

}    DRAGITEM     ;

typedef   DRAGITEM   *PDRAGITEM    ;

The  11 members of the  DRAGITEM  structure describe in great detail each object
selected by the user. First comes the handle of the window in which the dragging
operationisstarted,thenanIDyoucanassignasyouplease.Thisvalueisespecially
usefulfordistingulshingamongdifferentobjectsinthecaseofamultipletransfer.The
next five members are all of the same type: a handle to a text string. This solution
auowstheusertolimitthesizeofinformationpassedbetweenprocessesandallocated
in the systems shared memory area. To obtain a handle to a string you can use the
rfuchon DrgAddstrHandie( ) ..

#defi.ne    INCL_WINSTDDRAG

HSTR   APIENTRY   DrgAddstrHandle(    PSZ   psz)    ;

P ar ameter              D e s cription

psz                           One or more of the defines listed in Table 12.3
Return value         D escription
HSTR                      Handle of the specified string

TheonlyparameterofDrgAddsfrH¢7?dze()isatextstringcontainingoneormoreof
thedefineslistedinTable12.3,separatedbycommas.ThehstrTypememberisused
toindicateoneormoredefinescharacterizedbytheprefixDRTandlistedinTable12.3.

Ifyouhaveashapeye,youwillnoticethatthevaluesofthedefinesinTable12.3
correspondtothegenericfilessupportedbyOS/2andfistedintheTypelistboxofthe
Include page of the Settings notebook of any folder. The following code fragment
illustrates how to obtain a string handle:

®,

case   WM_BEGINDRAG:

I
PDRAGINF0   pdrgi.nfo    ;

DRAGITEM   drgi.tern    ;

®®

drgi.tern.hstrType  =   DrgAddstrHandle(   DRT_TEXT)    :

®®®

)
break   ;

®,



618     0S/2 2.1 Wor:laplace shell progranming

Table 12.3  The Defines to Be Specified in the hstrType Member of the DRAGITEM
Structure

D efine                                                V ahae

DRT_ASM
DRT  BASIC
DRT_BINDATA
DRT_BITMAP
DRTC
DRT_COBOL
DRT  DLL
DRT_DOSCMD
DRT  EXE
DRT_FORTEN
DRT_ICON
DRT  LIB
DRT  METAFILE
DRT_OS2CMD
DRT  PASCAL
DRT_RESOURCE
DRT  TEXT
DRT_tJNENOVIN

``Assembler Code"
``BASIC Code"
"Binary Data"
``Bitmap„

C Code„'``COBOL Code"
``Dynamic Link Library"
``DOS Command File"
"Executable"
``FORTRAN Code"

Icon„
``Library"

Metafile"
``OS/2 Command File"
``Pascal Code"
``Resource File"

Plain Text"
``Uhknoun''

With the member h s t r RM F you can set the rendering mechanism and format to be
used.Thismeansdefininghowinformationwfllbepassedtothetargetwindow.Even
in this case it is a text string that can contain different mechanism/format pairs, the
first one of which sets the best possible combination. Table 12.4 lists all rendering
mechanisms, while Table 12.5 lists the different formats.

Data is passed as a file  (DRM_OS2FI LE)  or through the DDE protocol (DRM_DDE).
DRM_PRINTinteractswiththeprinter,whileDRM_OBJECTpertainstoWPSobjects.

Inthetextstring,themechanism/formatpairmustbeenclosedbyapairofangled
brackets, as in the following example:

drgi.tern.hstrRMF   =   DrgAddstrHandle(    "<DRM_OS2FILE,DRF_TEXT>")    ;

®®,

Thethreeremainingstringhandlesrefertothepathnameandthenameoftheobject
inthesourcecontainer,andthenameitisgivenonceitisdroppedintothedestination
container.



Drag&Drop     6T9

Table 12.4  Defines for Rendering Mechanisms Employed by Drag & Drop
Operations

DRM_DDE
DRE_OBJECT
DRE_OS2FILE
DRE_PRNI

®®®

drgi.tern.hstrcontai.nerName  =  DrgAddstrHandle(   "C:\\Desktop")    ;
drgi.tern.hstrsourceName  =  DrgAddstrHandle(   "tweny.doc")   ;
drgi.ten.hstrTargetName  a   DrgAddstrHandle("F:\\Desktop\\   TWENY.DOC")    :
®,®

ThenextpairofsHORTidentifythedisplacementoftheimagedisplayedduringthe
dragging operation, with respect to the cursor's hot-spot. Values different from zero
areusefulonlyifyouintendtostretchtheimage.Otherwiseitisadvisable,togenerate
acompactcombinationmousepointer/draggedimagetoeasethedraggingoperation.

The f s Cont rol member defines the characteristics of the selected objects. It can be
one or more flags introduced by the prefix DC+ and listed in Table 12.6.

The last member, fssupportedops, defines which operations are supported by the
sourceobject:Tablel2.7summarizesallpossiblevalues.Whentheappficationexamines

Table 12.5  Defines for Rendering Formats Employed by Drag & Drop Operations

DRT_BITMAP
DRT_DIB
DRT DIF
DRT_DSPBITMAP
DRT_RETAFILE
DRT_OEMTEXT
DRT_OWNERDISPLAY
DRT_PRTPICT
DRT_RTF
DRT_SYLK
DRT_TEXT
DRT_TITF
DRT UNENOVIN



62J0     0S/2 2.1 Worlaplace shell progranming

Table 12.6  Values of the fscontrol Member of the DRAGITEh4 Structure

Option                                             Value             D es cription

DC  OPEN
DC  REF
DC  GROUP
DC  CONTAINER
DC  PREPARE

OxOOO1

0x0002
0x0004
0xOOO8

0xOO10

DC  REMOVEABLEMEDIA        0x0020

The object is open.
A reference to another object.
A group of objects.
A container with other objects.
The source must receive the message
DM  RENDERPREPARE before it can
pass-datatothetarget.
The object is on a removable media.

'
the memory area associated with an object being dragged, it will often find the three
flags of Table 12.7 added together. This is what happens, for instance, when dragging
a PJ¢z.7t Text object (a document produced with the system editor).

Once you have filled in all members of the D RAG I T EM structure, you need to insert
them in the memory area allocated with DrgAZZocDrg£.7t/a(). PM's API provides the
Drgse£Dr¢gz.fe77t() function to perform this task:           `

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY    DrgsetDragi.tern(       PDRAGINFO   pdi.nfo,

PDRAGITEM   pdi.tern,
ULONG   cbBuffer,
ULONG    i.Item)     :

Parameter
pdinfo
pditem
cbBuffer
iltem
Return Vahae
BOOL

Description
Pointer to the memory area allocated by DrgAllocDrginfo()
Address of a DRAGITEM structure
Size of the DRAGITEM structures
Number of DRAGITEM structures
Description
Success or failure of the operation

Summarizing, the code handling the WM_B EG I N D RAG message will first call DrgAZ-
ZocDr¢gz.7t/o(), then it will fill in a number of D RAG I T EM structures equal to the number

Table 12.7 Operations Supported by the Source Object

Supp orted op erations           Vahae                D escription

DO  COPYABLE
DO  MOVEABLE
Do LnunBLE

OxOool              Supports DO_COPY
0x0002             Supports DO_MOVE
0x0004             Supports DO_LINK



Drag&Dropi     621

of selected objects, and finally it will call Drgse£Dr¢g#e77c() to store this data in the
memory block that was allocated.

®®®

case   WM_BEGINDRAG:

I
PDRAGINF0   pdrgi.nfo    ;
DRAGITEM   drgi.tern    ;

®,®

pdrgi.nfo   =   DrgAllocDragi.nfo(   1L)    ;
®,

//   fi.lli.ng   in   DRAGITEM   structures
drgi.tern.hwndltem  =   hwndcli.ent   ;
®,®

i.f(    !DrgsetDragi.tern(    pdrgi.nfo,
&dr91.tern,
si.zeof(    DRAGITEM),                                                                          `

1L))

(
Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)

®,®

)
)

break   ;
®®

h this example, only one DRAGITEM structure is involved. For more structures, it
rfughtbeconvenienttodeclareanarrayofDRAGITEMstructures,andthencallDrgsef-
Dng€.fe77e() only once. Actually, the task performed by Drgse£Dr#gr.fe77c() is that of a
simple memory move, from the identifier drgi. tern declared in the WM_BEGI NDRAG
message handling code, to the memory area allocated by DrgAZZocDr¢gz.7t/o(). Have a
look at Figure 12.4.

hstead of declaring one or more DRAGITEM identifiers, and then calling Drgse£-
Dngz.fe77z() to copy their contents, it is possible to obtain a pointer of the PDRAG ITEM
type,pointingtotheappropriatepositioninthememoryblock,andtheninitializing
the  DRAGITEM  directly  in  the  final  destination  area  of  all  information.  The  first
PDRAGITEMpointercanbeobtainedinthefollowingway:

WM_BEGINDRAG:

{
PDRAGINF0   pdrgi.nfo    ;
PDRAGITEM   pdrgl.tern    ;                                                                                                             .
®®®

pdrgi.nfo  =   DrgAllocDragi.nfo(   3L)    ;
pdrgi.tern  =   (PDRGITEM)(    pdrgi.nfo   +   1)    ;
®®,

)

while the following ones are the r-esult of a direct increment of the pd r g i. t em pointer.



6Z2.     OS/2 2.1 Workplace shell progranming

pdrginfo = DrgAllocDrginfo (1 L);

fill in the DPAGINFO structure

pdrgitem = (PDF}GITEM)(pdrgin

fill in the DF}AGITEM structure

fo +  1 );~

DPAGINFO

DPAGITEM

Figure 12.4  The constituent parts of the memory block allocated by
DrgAIlocDraginfo().

Prep aring the Image
Animportantaspectofdrag&dropoperationsisthedefinitionoftheimagethatwill
bedisplayedalongwiththemousecursortomakeitclearthattheoperatiomistaking
place. For this purpose, the system provides you with the D RAG I MAG E structure:

typedef   struct  _DRAGIMAGE
I     //   dl.mg

USHORT    cb    ;

USHORT   cptl     ;
LHANDLE    hlmage    ;

SIZEL   si.zlstretch   ;
ULONG    fl      ;                  `

SHORT   cxoffset   ;
SHORT   cyoffset   ;

}    DRAGIMAGE     :

typedef   DRAGIMAGE   *PDRAGIMAGE    ;

The first member contains the size of the structure expressed in bytes. The second
one indicates the number of points that make up the image if the field f l contains the
value D RG_P0 LY G0 N. If you employ a different flag, the value is set to zero. The third

1

membercontainsthehandleoftheimagethatwillbeusedduringthedragoperation.
This can be a bitmap, an icon, or even a set of points giving rise to a polygonal line.
The graphical representation identified by the h I rna g e handle can be scaled, and the
S I ZEL member defines its size in the two directions. In general, it is best to use an
image in a 1:1 scale factor, especiany when dealing with direct manipulation of WPS
objects.  This is the case, for instance, with folders. If, on the other hand, you're
implementing another kind of dragging (like the titlebar icon, or an item from a
listbox), it is useful to reduce the image in order to enlarge the user's visual field and
help in making precise movements. In the f l member there will appear one or more
flags that describe the nature of the information specified as the image handle. The
choice can be made among the values Hsted in Table 12.8.



Drag&Drop     62;3

Table 12.8  Flags and Modifiers Regarding the Image Displayed During Dragging

Fl ag                                         Value                      D e scription

DRG_ICON
DRG_BIT-
DRG_POLYGON
DRG_STRETCH
DRG  TRANSPARENT
DRG_CLOSED

OxOOOOOoolL

0xOOO00002L

0xOOO00004L
0xOOOOOOO8L

0xOOOOOO10L

0xOO000020L

Icon.
Bitmap.
Polygon.
The image is stretched.
The outline of the icon is drawn.
If DRG_CLOSED is set, then a closed
polygon is drawn.

TheDRAGIMAGEstructureiscompletedbyapairofSH0RTthatindicatethedisplace-
ment between the cursor's hot spot and the image displayed during dragging. The
number of D RAG I MAG E structures is unrelated to the number of objects actually being
dragged (D RAG I TEN structures). The relationship can be one-to-one or even one-to-
many:  one  DRAGIMAGE  structure  for  each  DRAGITEM,  or  one  DRAGIMAGE  for  many
D RAG I T EMs. h between those two extremes, there are several valid combinations.

Executing the Drag               .
Oncethispreparatoryphaseisover,theapplicationisreadytoallowtheusertocarry

#c#oen:#:Lfr[a#Ttieo#:e¥Ci'ot°:edfgfyd;:LPu:S:=faremuesderbr¥ie¥:epLgeprri"gg£{
®

mouse button or presses the ESC key to indicate the end of dragging.

#defi.ne    INCL_WINSTDDRAG
HWND   APIENTRY    DrgDrag(       HWND    hwndsource,

PDRAGINF0   pdi.nfo,
PDRAGIMAGE    pdi.mg,

ULONG    cdi.mg,

LONG   vkTermi.mate,
PV0ID   pRsvd)     ;

Parameter
hundsource
pdinfo
pdimg
cdimg
vkTerminate

pRIvd
Return Vahae
EHiHHRE

Description
Handle of the source window from which dragging is initiated
Address of a DRAGINFO structure
Address of the first DRAGIMAGE structure
Number of DRAGIMAGE structures
Value of the virtual key that must be released to terminate
dragging
Reserved
Description
Handie of the window over which the user released the right
mouse button



62:4     0S/2 2.1 Workplace shell progranming

The association of the information indicated in the D RAG I MAG E structure(s) with
the other data needed for dragging takes place directly inside DrgDrng(). The first
parameter corresponds to the handle of the window where the dragging operation
is first initiated, followed by the address of the memory block allocated with
DrgAZZocDr¢gz.7?/a(). The handle of the starting window needs not be the same as
the actual source of dragging. In a PM window dragging can even originate from
thetitlebarmenuicon(asituationwewillexaminelater).Eveninthiscase,though,
it is more convenient to define the starting handle as that of the frame window or
oftheclientwindow.Sinceallinformationishandledinternallybytheapplication,
there will be no abnormal behavior, and you can choose the window you deem
most appropriate.

The pointer to the first D RAG I MAG E structure, and the num.ber of such structures are
the next two parameters. The function's syntax is then completed by the virtual key
code corresponding to the mouse button that, when released, will signal the end of
the dragging; finally, there is a reserved pointer. By default, the termination button
willbethemouse'sright(2)buttonandtheESCkey.Anapplicationcanchangethese
values at the system level with Wz.77Sc£Sysv¢J#e(), or indicate directly in the fifth
parameter DrgDr¢g() the define of a different virtual key (the V K_ defines are listed in
PMVVIN.H).

For the whole duration of the dragging phase, it is the DrgDrng() function that
handles all operations with respect to the objects being passed over. More pre-
cisely, DrgDr¢g() will keep on seeking a window where it can ``deliver" its burden.
WPS contains several windows belonging to the WC_CONTAI N ER class, and there-
fore, in this case, you will have the visual feedback that dragging involves objects
rather than windows. It is simply a consequence of the nature and implementation
of folders.

Thelasttaskperformedbythesourceapplicationwherealldatahasbeensetupfor
dragging, is freeing the memory area previously allocated by DrgFreeDr¢gz.7t/a(). At
this point the dragging process is complete.

#defi.ne    INCL_WINSTDDRAG

B00L   APIENTRY   DrgFreeDragi.nfo(    PDRAGINF0   pdi.nfo)    ;

P ar ameter              D es cription

pdinfo                     Address of a DRAGINFO structure
Return vahae          D escription
BOOL                       Success or failure of

The execution of DrgFrceDr¢gz.7t/a() will tak
the right mouse button over any window
allocated data is, in practical terms, the last

operation

lace only after the user has released
e  screen.  The  destruction of the

dragging process. Let's
now examine the other half of the game, that is, dropping.



Drag&Drop     62:5

Preparing Objects for Dropping
Draggingoneormoreobjectsisanoperationthatisperformedcompletelyunderthe
user's control. hside the system, a thread will be used for executing the DrgDr¢g()
thatwehaveseenintheprecedingparagraph.Theimerworkingsofthisfunctionare
very complex, and mostly unknown. However, we can evaluate the results it pro-
duces.Forinstance,duringdragging,therewillappearsomevariationsinthelookof
the cursor and of the objects over which it passes displaying an outline border.
Sometimes, an interdiction sign win be displayed; at other times, it is the user that
changes the look by acting on some keys like CTRL and SHFT. How does au this
happen?Whoseresponsibilityistomakethechangestothewindowsoverwhichthe
mousecursorpasses?Asyoumightexpect,thejobisdividedbetweentheDrgDr¢g()
and the window over which the mouse's hot spot passes.

The irmer workings of DrgDr#g() will send some messages with the DM_ prefix
directly to the window underlying the mouse's hot spot. The window will catch the
DM_messagesinthewindowprocedureoftheclasstowhichitbelongs,oritwillpass
it to the default window procedure. th each case, the underlying window gives the
applicationengagedinthedraggingsomevaluablefeedback.

Thefirstareaofthedrag&dropAPIthatwewiuexploreisthatregardingmessages
(Table 12.9).

Thefirstmessagereceivedbythewindowunderlyingthemouse'shotspotduring
a dragging is DM_DRAGOVER. The same window where the selection of objects origi-
nated can receive one or more DM_DRAGOVER messages. It is for this reason that the
data structure allocated by DrgAZZocDngz.7t/o() will, in several instances, contain the
handle of the source window. This value is useful in order to prevent a simple 777oz7e
operation within the same window. This, however, does not mean that draggipg an
object in the same window is a senseless operation (just think of making copies or
implementing some application-specific functionality that might be different from
whatisofferedbythefoldersofWPS).Let'shavealookattheinformationconveyed
by DM_DRAGOVER.

DM_DRAGOVER                0x032E

mp 1                         PDRAGINFO
pdrginfo

mp2                         SHORT sxDrop
SHORT syDrop

Return value         USHORT usDrop

USHORT usDefaultop

Description
Pointer to the DRAGINFO structure
allocated during the set up phase of
dragging
Position of the mouse's cursor (x, y),
expressed in desktop coordinates
hdicates   acceptance/rejection   of
the objects
Default operation supported by the
appHcation

When an application (window) receives the DM_DRAGOVER message it will be
able to:



Table 12.9  The Messages Involved in Drag & Drop Operations

Mes s age                                         Vahae          D es cription

DM DROP

DM_DRAGOVER

DM_DRAGLEAVE

DM_DROPHELP

Ox032f        Received in the window procedure of the
window  that  formerly  responded  with
DOR_DROP to the message DM_DRAG-
OVER.

Ox032e        Sent to the window underlying the mouse's
hot spot.

Ox032d       Sent to the window underlying the mouse's
hotspotwhenthecursorisabouttoleavethe
window.

Ox032c        Sent to the window underlying the mouse's
hotspotwhentheuserpressesthe"keyF1.

DM_ENDCONIRSATION   0x032b       Sent from the target to indicate the termi-
nation of a drag & drop operation.

DM_PRINT                                 0x032a        Sent to execute a print.

DM RENDER                            0x0329        Sent to the source to request a specific ob-
jectinthepredefinedrenderingformatand
mechanism.

DM_RENDERCOMPLETE       0x0328        Posted from the source to indicate the ter-
mination of re7tderz.7tg operations.

DM_RENDERPREPARE          0x0327       Sent to the source to cause it to set up the
re7tderz.7tg of an object.

DM_DRAGFILECOMPLETE   0x0326        Sent atthe end of the manipulation ofa file
in aL drag & drop operation.

DM_EMPRASIZETARGET

DM DRAGEREOR

DM  FILERENDERED

DM  RENDEREILE

DM DRAGOVERNOTIFY

DM_PENTOBTECT

DM_DISCARDOBTECT

Ox0325        Sentto the target applicationto indicate the
activation or removal of emphasis.

Ox0324        Sent to signal an error in the execution of
DrgDragFtles() or DrgAcceptDroppedFtles().

Ox0323        Sent atthe end of a file rendering.

Ox0322        Sent to ask for a file.

Ox0321        Sent to the source immediately after rec-
eiving a message.

Ox0320        Sent to an application supporting the DR-
M_PINT format.

Ox031f        Sent  to  a  source  supporting  DRM_DIS-
CARD.

626



Drag&Drop     62:7

1.  Ichow the nature of what it is being dragged over.
2.  Change the look of the cursor appropriately.
3.  Activate emphasizing elements of its own surface provided it is able to accept

the dragged items.
4.  Notify the application (window) that originated the dragging about its consent

or denial of the dragged items.
5.  Notify the application (window) that originated the dragging about the default

operations that it supports.
To implement the first point, it is necessary to transform the value present in mp 1

intoapointerofthePDRAGINF0type;butthatisnotall.Theapplicationmustcallthe
DrgAccessDngz.#/a()functioninordertoobtainpermissiontoaccessthatmemoryarea
that was allocated in the process that originated the dragging. Behind the scenes of a
drag&dropthereisaz.7tfe777rocessco7#77ttJ7zz.c¢fz.oro(IPC)mechanismthatisfoundedon
a shared memory area that is managed through a usage count in order to release it
once the operations are terminated.

#defi.ne    INCL_WINSTDDRAG

B00L   APIENTRY   DrgAccessDragi.nfo(    PDRAGINF0   pdi.nfo)     ;

P arameter              Description

pdinfo                     Address of a DRAGINFO structure
Retw:r'n v ahae          D e s cription
BOOL                       Success or failure of the operation

Theparametero£DrgAccessDr¢gz.77/a()ismp1,or,asinthefollowingcodefragment,
a P D RAG I N F0 pointer.

®®®

case    DM_DRAGOVER:

[
PDRAGINF0   pdrgi.nfo    ;

®®®

pdrgi.nfo   =   (PDRAGINFO)mpl    ;
i.f(    !DrgAccessDragi.nfo(   pdrgi.nfo))

I
Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;

®®®

I
®®®

//   decrease  the   usage   counter
DrgFreeDragi.nfo(   pdrgi.nfo)    ;

®,

)
®®®



62:8     0S/2 2.1 Wor:laplace shed programming

By accessing the information of the dragging's data structure, the receiver is able to
understand in an exact way which objects are being dragged over it. The D RAG I N F0
structure contains three interesting pieces of information:

•Thekindofoperationsupported(USHORTusoperati.on)

•  Thehandle of the source window (HWND hwndsou rce)

•  The number of associated DRAGITEM structures (USHORT cdi. tern)

Code handling of the DM_D RAGOV ER message involves a swi. tch statement causing
the usoperati. on member to distinguish the various kinds of supported operations
(DO_COPY,  DO_LI NK, and the other operations listed in Table 12.2). The handle of the
source window can be used to compare it to its  own,  and then undertake any
appropriate action. Finally, to know the number of objects being dragged, you only
need to examine the cd i. tern member. Altematively, PM's API offers the DrgQ#cny-
Dragitemcount( ) funcf ion.

#defi.ne    INCL_WINSTDDRAG

ULONG   APIENTRY   DrgQueryDragi.temcount(    PDRAGINF0   pdi.nfo)    ;

P arameter              D escription
pdinfo                     Address of a DRAGINFO structure
Retunii vahae          D e s criptiori
ULONG                  Number of DRAGITEM structures present in the memory area

pointed at by the pd i. n f o pointer
Thekindofinteractionwiththeobjectsisindicatedinthereturnvalueensuingthe

DM_DRAGOVERmessage.TheresponseisformulatedonthebasisofthesupportedD0
operation.  In some  cases,  though, it is necessary to  examine more  carefully the
informationathandtoevaluatethecontentsofanysubsequentDRAGITEMstructures.
The retrieval of a pointer to the first DRAGITEM structure takes place by caning the
DrgQ#cnyDr¢gz.fe777Pfr() function or by acting directly on the P D RAG I N F0 pointer.

#defi.ne    INCL_WINSTDDRAG

PDRAGITEM   APIENTRY    DrgoueryDragi.temptr(    PDRAGINF0   pdi.nfo,    ULONG   i.)     ;

P arameter              D escription

pdinfo                     Address of a DRAGINFO structure
i                               hdex of the DRAGITEM structure to be examined, count starts

from OL

Return vahae          D escription
PDRAGITEM         Address of the i-th DRAGITEM structure

As you might guess, the first parameter of DrgQ#enyDr¢gr.£e777Pfr() ,is the starting
address of the memory block (the PDRAGI N F0 pointer) followed by the index of the
D RAG I TEM structure, where the first one is identified by the value of 0 L. The function
returns a pointer of the type P D RAG I T EM.



Drag&Drop     62:9

The target window of the DM_DRAGOV ER message now knows about the nature of
the object it will receive (h s t rType member), the kind of proposed re77derz.7cg mecha-
nism and format (hstrRMF member), yet more features  of the object (fscontrol
member),andthesupportedoperations(fssupportedops).

The verification of the object type is conducted by retrieving the string and then
checkingit,ordelegathgthechecktotheDrgvcrzJgivTr#eType()function.Thefirstsolution
recTrfue=aLcditoDrgQuerystringNane(),andposstbkyDrgQuerystringNaneLen().

#defi.ne    INCL_WINSTDDRAG
ULONG   APIENTRY   DrgQuerystrNameLen(    HSTR   hstr)    ;

P araneter              D escription
hstr                         Handie of a text string
Retu:rn vahae          D e scription
ULONG                  Length of the string indicated by the handle hstr

This function is rather limited, since the buffers containing text strings pertaining
to the type and the rendering mechanism/format will usually be oversized and
declared in the program's code as an array of CHAR.

#defi.ne    INCL_WINSTDDRAG
ULONG   APIENTRY   DrgQuerystrName(        HSTR   hstr,

ULONG   cbBuffer,
PSZ   pBuffer)    ;

Parameter
hstr
cbBuffer
pBuffer
Return Vahae
ULONG

Description
Handle of a text string
Size of the array of chars declared as the third parameter
Array of chars for containing the text string
Description
Nulnber of characters actually read

TheuseofDrgQ#e7tysfrM7#e()isparticularlyindicatedforexaminingthemembers
hstrcontai. nersource, hstrsourceName, and hstrTargetName.

TheverificationofthetypeisgovemedbythethreefunctionsDrgverz}givT71/eType(),
DrgverzftyType(),andDrgverzJgivTypcse£().Thefirstfunctionchecksthetypeofanobject
(DRT_  define)  against  the  first  DRT_  define  present  in  the  string  referenced  by
hstrType.  With Drgverz}givType(),  instead,  the  comparison is  for  any  DRT_ define.
Drgverz7givTypese£() is used if you need to check for several types at the same time and
obtain the text strings corresponding to D RT_ actually found.

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY   Drgveri.fyTrueType(    PDRAGITEM   pdi.tern,    PSZ   pszType)    ;

Parameter
pditem
pszType

Description
Pointer to a DRAGITEM structure
String containing one  or more DRT_ defines,  separated by
CO-as



630     0S/2 2.1 Workplace shdl progranming

Retwm vahae          D escription
BOOL                       Success or failure of the operation

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY   Drgveri.fyType(    PDRAGITEM   pdi.tern,    PSZ   pszType)    ;

P arameter              D escription
pditem                    Pointer to a DRAGITEM structure
pszType                  String containing one or more DRT_ defines, separated by com-

mas
Return value         D escription
BOOL                      Success or failure of the operation

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY   Drgveri.fyTypeset(        PDRAGITEM   pdi.tern,

PSZ   pszType,
ULONG    cbMatch,

PSZ   pszMatch)    ;

Parameter
pditem
pszType

cbMatch

pszMatch
Return Vahae
BOOL

The compatibility

Description
Pointer to a DRAGITEM structure
String containing one or more DRT_ defines, separated by com-
mas
Size of the array of chars that will contain the string to be
checked against
Array of chars containing the string to be checked against
Description
Success or failure of the operation

check is a fundamental test in order to establish the return value
generatedbyprocessingtheDM_DRAG0VERmessage.

®,®

case    DM_DRAGOVER:

I
PDRAGITEM   pdrgi.tern    ;

®,®

i.f(    !Drgveri.fyTrueType(   pdrgi.tern,    DRT_TEXT))
I

Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;

®®

)

)
®®®

For h s t r RM F it is much more convenient to use Drgverz:fyRMF() and Drgverz:fy-
NativeRMF().



Drag&Drop     631

#defi.ne    INCL_WINSTDDRAG

B00L   APIENTRY    Drgveri.fyRMF(      PDRAGITEM   pdi.tern
PSZ   pszMech,

PSZ   pszFmt)    ;

Parameter
pditem
pszMech
pszFmt
Return Vahae
BOOL

Description
Pointer to a DRAGITEM structure
Text string containing the rendering mechanism
Text string containing the rendering format
Description
Success or failure of the operation

hthetwotextstrings,therewillbeamechanism/formatpairthatwillbecompared
tothecontentsofthetextstringindicatedbythehandlehstrRMFofthedraggedobject.
Thelattercanpresentseveralmechanism/formatpairs,alltobeexaminedbyDrgver£.-
fyRMF(). With Drgver3ftyN¢fl.z7eRMF(), instead, you consider only the first mecha-
nism/format pair, which is generally known as the native one.

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY    Drgveri.fyNati.veRMF(    PDRAGITEM   pdi.tern,    PSZ   pszRMF)    ;

P ar ameter              D es cription

5r:tfumF               :::tgerc::taa=PAgGa[fT#ast7=CeT=einsm pair for rendering
Retw:r'n v ahae          D es cription
BOOL                      Success or failure of the operation

An application that needs to interact with the user through a drag & drop mecha-
nism win have to intercept the DM_D RAGOV ER message. The information contained in
DRAGINF0andintheassociatedDRAGITEMstructurescanoriginatedirectlyfromaWPS
object, or from some other third party program. Whatever the source, the receiver
mustfirstdecidethenatureoftheobjectsassociatedwiththemousepointer.Thenthe
code needs to examine in detail the kind, format, and mechanism of rendering. Only
when all these tests have been passed successfully will it be possible to concentrate
on the operation being performed: copying, shadowing, moving, creating, or even
somethingelse(DO_UNKNOWN).Itisduringthisphaseofprocessingthattheapplication
willhavetopreparetheinformationfortheretumvalueoftheDM_DRAG0VERmessage.

Changing the Cursor's Look
When  preparing  data  before  calling  DrgDr¢g()  you  will  have  to  examine  the
DRAGI MAGE structure to establish what image will be displayed during dragging. A
window  that received  the  DM_DRAGOVER  is  allowed  to  entirely  change  the  image
associated with the cursor, and it will be able to do so by filling in the members of a
DRAGIMAGE structure, then calling the Drgse£DngJ777nge() function to activate the
new information.



632     0S/2 2.1 Workplace shed progranming

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY   DrgsetDraglmage(       PDRAGINF0   pdi.nfo,

PDRAGIMAGE    pdi.mg,

ULONG    cdi.mg,

PV0ID   pRsvd)     ;

P arameter              D escription
pdinfo                     Pointer to a DRAGINFO structure
pdimg                     Pointer to a DRAGIMAGE structure
cdimg                      Number of DRAGIMAGE structures
pRsvd                      Reserve d
Retu:in vahae          D escription
BOOL                       Success or failure of the operation

When the mouse's cursor moves over a new window, the returned image will
always be the one originally planned for when calling DrgDrng(), except for the
possible changes that can be forced by calling DrgsefDngJ777nge(). h general, it will
not be necessary to change the appearance of the images associated with the mouse's
cursor, at least when the application's dragging operation is performed with respect
toWPSorotherprograms.However,draggingcanbeveryconvenientandproductive
even within your own appfication, usually for the sake of simplifying operations. In
this case, you are free to inteapret the standard rules in whatever way you deem
appropriate.

To change the mouse's pointer (not the associated image) you will have to resort to
the DrgsefDr¢gpoz.77fer() function. Almost invariably, the images used in this case are
the standard ones listed in Table 4.5 of Chapter 4.

#defi.ne    INCL_WINSTDDRAG
B00L   APIENTRY   DrgsetDragpoi.nter(    PDRAGINF0   pdi.nfo,    HP0INTER   hptr)    ;

P arameter              D escription
pdinfo                     Pointer to a DRAGINFO structure
hptr                        Handle to the mouse's pointer
Rctu:rn vahae          D escription
BOOL                       Success or failure of the operation

DrgsefDr¢gpoz.7ifer() will rely upon the services of Wz.7tQ#e7tysyspoz.7tfer(), as in the
followingcodefragmentconcendngawindowthatwillnotbeabletoreceivedragged
Objects:

®®,

DrgsetDragpoi.nter(    pdrgi.nfo,    Wi.nQuerysyspoi.nter(    HWND_DESKTOP,
SPTR_ILLEGAL,    FALSE))     ;

®®,

Resorting to DrgsetDragpointer() in the code dealing with the DM_D RAGOV ER mes-
sageisnecessaryifyouwanttodisplayanonstandardcursor.DrgDr4zg()wflltakecare
of displaying a low intensity arrow, or the arrow/interdiction pair sign according to



Drag&Drop     633

the values returned by the processing of the DM_DRAGOVER message. h writing the
code supporting the acceptance of objects originating from WPS through dragging,
you must use the standard intemal icons of PM.

Acceptance Feedb ack
Oneofthetaskswhenprocessing.theDM_DRAGOVERmessageismakingitcleartothe
userwherethedraggedobjectmaybedroppedatanygivenmoment.Atthepresent
stage,inWPS,averysimpleruleisfollowed.Apartfromtheactualacceptanceornot
of the contents of the dragged object, the window underlying the mouse pointer is
emphasized by a thin outline border. It will only be the shape of the mouse's cursor
thatwingiveanycluesatauregardingthepossibleinteractions(Figure12.5).

Analternatesolution,preferableinsomesituations,istodisplaytheoutlineborder
o#Zyiftherecanbeatotalacceptanceofthecontentsofthedraggedobject.Whatever
solution is implemented (i.e., following the behavior of WPS when implementing a
drag&dropthatinvolvesinteractionsoutsidetheoriginatingapplication),theopera-
tions that must be performed are few and simple. It will be necessary, first of all, to
obtain a handle to the presentation space through DrgGefps().

a:„"zi
Miscellaneous

E@
Templates

ffi]
osre System

£Lat...u=B:_`th®LJ±,9Ets!m........,_._             -

•!.,i....,*¥        -I!i1

0      RE       EE      ©
Informal'on    EEEEEEEffi   w#nLm#eedwer    StartHe'e

'RE!

shEer  EHEEEERE    BEA

Figure12.5InWPSthereceivingobjectinadrag&dropoperationwillalways
have an emphasizing outline border, even if there are incompatible types
involved in the operation.



634     0S/2 2.1 Worlcplace shell progranming

#defi.ne    INCL_WINSTDDRAG

HPS   APIENTRY    DrgGetps(    HWND    hwnd)     ;

P arameter              D escription
hwnd                      Handle of the window underlying the mouse's hot spot
Retunii vahae          D escription
HPS                         Handle to the presentation space or NULLHANDLE in case of

error

The syntax of DrgGe£PS() is the same as that of Wz.7tGe£PS(), which was examined in
Chapter  3.  Similarly,  the  same  considerations  made  for  Wz.7tRezc¢seps()  apply  to
DrgRezc¢scPS(). Displaying an emphasizing outline border is a simple matter, once
you have a handle to a presentation space.

#defi.ne    INCL_WINSTDDRAG

B00L   APIENTRY   DrgReleaseps(    HPS    hps)     ;

P arameter              D esoription
hps                          Handle to a presentation space
Retunii vahae          D escription
BOOL                      Success or failure of the operation

The objects of WPS will present a thin outline border near the border of the client
area of a folder, or around an icon (object). The appearance of a connecting line
between the mouse pointer and the starting object when creating a shadow, is an
operation assigned to DrgDr#g(), and does not interact in any way with the activity
painting performed in the target window.

The  emphasizing  of the  target will take place  corresponding not  only to  the
DM_DRAGOVERmessage;evenDM_DROpandDM_DRAGLEAVEareconcemedinthisopera-
tion. The message  DM_DROP will be issued when the user terminates the dragging
operation.AfterretrievingalltheinformationfromDRAGINF0andfromtheassociated
DRAG ITEM structures, you will also have to remove the emphasizing border, which
will still be present in this situation, whatever approach was followed in making it
appear. The DM_DRAGLEAVE message reaches the window as soon as the mouse has
exited it. It is always the DrgDrng() function that issues this message when it detects
that the handle of the window underlying the hot spot is different from the one
obtainedfromthemostrecentwM_MOUSEMOVE.Therefore,thisisalsotheidealsituation
for removing the emphasizing border and restoring the original look of the window.

Return Value of DM_DRAGOVER
Cincethetestontheobjecttypeandontherenderingmechanism/formatpairhasbeeLi
completed  with  respect  to  the  kind  of  supported  operation,  processing  of  the
DM_DRAGOVER message  can be  terminated by building  a return value  of the type
M R ES U LT, starting from a couple of U S H 0 RT. h the first one you will need to enter one
of the defines listed in Table 12.10.



Drag&Drop     635

Table  12.10  Values  in  the  First  USHORT  to  Be  Sent  in  Response  to  the
DM_DRAGOVER Message

Co de                                    Vahae          D escription

DOR_NODROP           0X000°      ±eiercot;:;e°rbaj£:tis:::nin£:san#eerr=ddda¥tiToigra::

supported,simplybecausethecurrentpositionis
not correct.

DOR_DROP                    0xOool        Accepts the object(s) being transferred in the drag
& drop operation.

DOR_NODROPOP        0x0002       The object(s) are supported,butnot the involved
operation.

DOR_NEVERDROP      0X0003      :eie::Swthheas°ij::tr(::ef±:redanthTdDeMTEeRA=e6#£

message  for  subsequent mouse  movements.  It
wmreceivethemagainwhenthemousere-enters
the window's space (after having exited earlier).

The second USHORT encodes the operation (DO_ define) supported by the window
for  that  specific  object.  The  return value  is  constructed  resorting  to  the  macro
MRFROM2SHORT.

®®®

case    DM_DRAGOVER:

i
®®

return    MRFROM2SHORT(    DOR_DROP,    DO_COPY)     ;

)
®®®

Thiscodefragmenthasbeenpresentedhereforthepuaposeofillustration.hfact,
it is quite unhikely that MRESULT will ever be built starting with a pair of defines.
hetead,theD0R_andD0_definesaretwoidentifiersgivenappropriatevalueswithin
thecodedealingwithDM_DRAG0VER,consideringthetypeofoperationimpliedbythe
draggingandthekindofinteractionsupportedbytheprogram.Theprogrammercan
playaprominentroleherebydecidinghowtointeractwiththeobjectassociatedwith
the mouse.

Let's examine what happens when the user drags a D¢ffl Fz7e object produced by a
datafiletemplateoveranapplicationthatiscapableofinteractingwithadrag&drop.
hthememberus0perationofDRAGINF0youwillfindthevalueDO_DEFAULT.WPS
win then indicate that dragging a document will be handled like a default operation.
The default operation will change according to the final receiver and other specific
conditions. For instance, the default operation for a file that is dragged over an object



636     0S/2 2.1 Workplace shell progranming

like a Drz.z7e means a 777oz7e if it is within the same disk; the same operation means capy
when two different drives are involved.

TheD0R_definetoberetumedisthusadirectconsequenceofthelevelofinteraction
between an appfication and the dragged objects. The define D0 R_N EV ERDROP can be
calledonlyifyouareabsolutelycertainthatthewindowbeingdraggedoverwillnever
beabletoacceptanything.IssuingofaD0R_NEVERDR0Pwillpreventthereceiptofany
subsequent DM_DRAGOV ER messages, even if the user presses the keys CTRL and/or
SHIFT to modify the operation. If an operation is to support drag & drop, then it will
issue  DOR_NEVERDROP  only when the type, format, and mechanism of rendering is
totally incompatible with its own capabilities.

DOR_NODROPopisthecorrectchoicewhenincompatibilityislimitedtotheoperation
indicated at that specific moment. Issuing DOR_NODRO PO P will not preclude issuing
DM_D RAGOV E R after pressing some other keys,like CTRL and/or SHFT. D0 R_N0 D R0 P
can be used when all compatibility tests have been successfully met but the current
mouse position does not identify an area that is capable of accepting the involved
objects. The message DM_D RAGOV E R win continue to be issued after any movement of
the mouse or any key presses.

Needless to say, D0 R_D R0 P must be used only when everything is just right!

Framel Client and Dragging
A PM window is actually a collection of several windows. This is no novelty, but this
feature affects even drag & drop operations. When the mouse passes over the border
of a window during a drag & drop operation, it sends the message DM_D RAGOV E R and
then DM_D RAG L EAV E to the¢¢777e zuz.7tdoztl The latter is not always subclassed, and thus
thewholecontrolofthemessageflowwillresideinthewindowprocedureoftheclass
WC_FRAM E. The practical consequence is the passing of the two messages to the cZz.e7zf
zoz.77dozu. It is unlikely that you will ever even think of implementing drag & drop
operations on the¢#777e. If the messages are not caught in the frame procedure, then
theprocessingemployedbytheclientprocedurealsobecomestheoneadoptedbythe
frame. If the client supports that specific kind of dragging, the frame will adapt-at
leastfromavisualpointofview.WPSfollowspreciselythisapproachasfarasfolders
are concerned. In practice the sequence of messages that reaches the client's window
procedure when the mouse enters is like this:

DM_DRAGOVER          sent   to   the   frame

DM_DRAGLEAVE       sent   to   the   frame

DM_DRAGOVER          sent   to   the   cli.ent

while when the mouse exits the message flow becomes:

DM_DRAGLEAVE       sent   to   the   cli.ent

DM   DRAGOVER          sent   to   the   frame

DM_DRAGLEAVE       sent   to   the   frame



Drag&Drop     637

The main disadvantage of processing these DM_ messages twice is the flickering Qf

the emphasizing border, which is removed first by DM_D RAG LEAV E, and then appearsImmediately  after  the  first  DM_DRAGOVER  addressed  to  the  cZz.e7tf.  By  preventing
DM_D RAGOV ER and DM_DRAG LEAV E from passing from the frame to the cHent you cah
avoidanyduplicateeffortsintheappfication.Youwiuhavetosubclasstheframe,and
then make sure t.hat the two messages don't ever reach the processing implemented
in the window procedure of the wc_FRAME class. Here's the code:                                   ,

®,,

case    DM    DRAGOVER:

case    DM_DRAGLEAVE:

return   OL   :

®®®

h this way, the frame will always respond negatively to a drag & drop operation.
.Naturally, it does not make sense to perform subclassing for these two lines of code
alone. h WPS objects (like folders) the dragging of an object is intercepted twice, by
the frame first and then the cHent.

Receiving Obj ects
When the user releases the right mouse button over a window that has previously
indicated it is capable of accepting an object, the message DM_D R0 P will be issued.

DM_D RO P                         0x032 F                                Descr£.pfi.o#

mpl                         PDRAGINFO             Pointer to a DRAGINFO structure
mp2                         ULONG                      Reserve d
Return value          ULONG                     Reserved

The code handling the DM_D RO P message will first of all transform the contents of
mp 1 into P D RAG I N F0 pointer.

case    DM    DROP:

I
PDRAGINF0   pdrgi.nfo   =    (PDRAGINFO)mpl;

®,

i

ThepointertotheDRAGINF0structureisthebasisforthesubsequentprocessingthat
willreadthecontentsofthemanyassociatedDRAGITEMstructures(inourexample
thereisjustone).However,transformingthecontentsofmplintoapDRAGINF0pointer.
is not the only operation that is needed. You will also need to obtain permission to.
access this memory area. h fact, dragging will often occur between different proc-
esses, all having a private address space of their own, which carmot by definition be
shared. Fortunately, you are not confined to using the Dos memory management
functions, and you can simply call DrgAccessDngJ77/o() :



638     0S/2 2.1 Workplace shell progranming

®

PDRAGITEM   pdrgi.tern    ;

i.f(    !DrgAccessDragi.nfo(   pdrgl.nfo))
(

Wi.nAlarm(    HWND_DESKTOP,    WA_NOTE)     ;

break   ;
i
®®,

The count of associated DRAGITEM structures, and the access to the first one of
theseistheresoltofthacaLITstoDrgQueryDragitemcount()andDrgQueryDragitemptr()..

®,

//   #   of   DRAGITEM   structures
ulltem  =   DrgQueryDragi.temcount(   pdrgi.nfo)    ;
pdrgi.ten  =   DrgQueryDragi.temptr(   pdrgi.nfo,   OL)    ;

®®

From this point on, the behavior caused by processing the DM_D R0 P message is not
standardized and changes according to the specific needs of the program. Neverthe-
less, the basis of the subsequent operations consists of accessing all information
directlyavailableintheDRAGITEMstructureorthetextstringsindicatedbythespecial
handles.

The code block handling DM_D R0 P is then terminated by a call to DrgFreeDr¢gr.7t/a()
for decreasing the usage count of the memory area allocated at the beginning of the
drag & drop operation.

®®®

//  free  the  i.nfo   block
DrgFreeDragi.nfo(   pdrgl.nfo)    ;
®,®

Dragging the Titlebar Icon
A thorough knowledge  of the rules  governing drag  & drop is fundamental for
implementing applications that integrate well with the world of WPS. h Chapter 13
wewillputtogetherallpiecesofthepuzzleandimplementsomereal-worldexamples.
For the moment, though, we still need to gain more experience with the single
components of the API. For instance,1et's examine the titlebar icon. h the WPS model
it is an image that qualifies the kind of object with which the user is interacting, and
isnotjustastandardizedmeaninglessbitmap.Someapplicationsthattrytomatchthe
development model of WPS, use the titlebar icon for still other purposes. This is the
case, for example, of EPM.EXE, the advance system editor of OS/2. If you keep the
right mouse button pressed over the titlebar icon, and then move the mouse, you will
see a typical drag & drop effect. The dragged icon is exactly the one appearing on the
titlebar, and corresponds to a stylish document (Figure 12.6).

This behavior is defined as titlebar dragging, and is fundamental for implemendng
manykindsofinteractionbetweentheuserandaWPS-compHantappHcation.Releasing



Drag&Drop     639

H
Templates

//  Stefano  Maruzzl   1993

#def lne   lNCLJillN
#def ine   lNCL_GPICONTROL

#lnclude  <os2.h>

//  function  prototypes
int  maln[  void)   ;
MRESULT  EXPENTRY   Cl  ientlllndprocl {   miIND  h`.ind,   ULONG   msg,   MPARAM   mpl ,   M
MRESULT  EXPENTRY   CI  Ientwndproc2{   H`iIND   h`ilnd,   ULONG  msg.   MPARAM   mpl ,   M

int  main{   void)
(

HAB  nab  ;
CHAF!  szclassoi./ner[]   =   "PARENT..
CHAR  szTitleowner[]   =  "Parent"
CllAR  szclasso`.ined[]   =   "SON"   ;
CHAR  szTitleoi.ined[]   =   "Son"   ;

Figure 12.6  Dragging the titlebar icon in EPM.EXE.

therightmousebuttonoverthedesktoporoveranyothercontainerwillcauseacopy
of the file being edited to appear there (Figure 12.7).

Let'sseehowwecanbuildthiskindofbehaviorinourapplications.Forthispurpose
we win build two sample applications, DRAG and DROP, that enclose respectively
the logic for initiating dr¢gg£.77g and for receiving droppz.7tg.

DRAG: Preparing Data
First of all, 1et's thick about what happens when the user presses the right mouse
buttonoverthetitlebaricon.Usually,thiswillinvolvetheappearanceoftheassociated
drop-downmenu.Sowewillhavetomakesurethisdoesnothappeniftheuserkeeps
thebuttondepressed.Theoperationwillinevitablyinvolves#bcz¢ssz.7tgthewindowin
ordertobeabletointerceptinafunctionofyourownthemessageflowgeneratedby
the user. For this action, the sequence of messages is the following one:

WM_BUTTON2DOWN

WM_BUTTON2UP

WM_BUTTON2CLICK

WM_CONTEXTMENU



6qo     OS/2 2.1 Wor:laplace shell progranming

E@
Miscelloneous

E@
Templates

//  function  prototypes
int  main(   void)   ;
MRESULT  EXPENTRY   CI  ientlindprocl (   HlilND   hiiind,   ULONG  msg,   HPARAM   mpl ,   M
MRESULT  EXPENTRY   Cl  ientliJndproc2(   in.JND   h`Iind,    ULONG  msg,   MPARAM  mpl ,   M

Int  main(   void)
(

NAB  nab   ;
CHAR  szclassoi.mer[]   =   "PARENT"   ;
CHAR  szTlt|eoiiiner[]   =  "Parent"  ;
CHAR  szclassoi.ined[]   =   "SON"   ;

szTltleolIJned[]   =  ''Son"  ;

Figure 12.7  Dragging the titlebar icon and then releasing the mouse button
over the desktop have generated a new object.

The display of the drop-down menu will happen immediately after this, with the
sending of the message MM_STARTMENUMODE. This will happen even in DRAG; but if
thebuttonisnotreleased,andthemouseismovedjustafractionofaninch,youwin
findyourselfdealingwithaseriesofeventsthatindeedqualifytheactionasdragging.
h this case, the messages are:

WM_BUTTON2DOWN

WM_BUTTON2MOTI0NSTART

WM_B EG I N D RAG

WM_BUTTON2MOTI0NEND

WM_ENDDRAG

Theonlycommonmessageisthefirstone.Thecorrespondingactionisactivathgthe
appHcation's titlebar. That event is simulated inside the code block handJing WM_B UT -
TON2DOWN,andtherebypreventingthemessagefrombeingsubjecttodefaultprocessing.

®,,

case    WM_BUTTON2DOWN:

i.f(    Wi.noueryActi.vewi.ndow(    HWND_DESKTOP)    !=   PAPA(    hwnd))

Wi.nsetActi.vewi.ndow(    HWND_DESKTOP,    PAPA(    hwnd))     ;
return    (MPARAM)OL    ;

®,,



EI

Drag&Drop     641

Theobjectiveofthissolutionisactivatingthetitlebar(thewindow)evenwhenthe
user is about to drag the titlebar icon. This is essentially all that needs to be done to
activate the dragging of the icon. We still need to define the various details that will
preparetheactualdragginginsidethecodehandlingtheWM_BEGINDRAGmessage.

The DRAG application provides a window of the class WC_M LE, overlapping the
client window. As a result of dragging the titlebar we will allow the user to save in a
file whatever text has been typed in. Listing 12.1 presents the code of DRAG, the
sample listing specifically devised for illustrating this first part of drag &  drop
techniques and the interaction with WPS.

Initiauy, focus is on the 77tze precisely for inviting the user to type in some text.
Dragging the titlebar icon when the 77tze is empty will not produce any effect. This
behavior corresponds to the rationale of not allowing the user to generate any new
files unless there is some text to save.

h order to check the contents of the 77£Ze, we resort to a specific function called
S¢z7eTexf (), which will also generate a temporary file in the current directory. The
S¢z7eTexf () functions will accept as their parameter the 77cze's handle and the name to
give to the file. The computation of the size of the text present in the 77cze is required
throughtheMLM_QUERYTEXTLENGTHmessage,whichwillretumthenumberofchar-
acters present in the window. This value, though, will have to be increased by the
number of new lines that are present. In fact, the line termination sequence involves
the pair of characters  \n\ r. The message MLM_QUERYTEXTLENGTH  does not take this
aspect into account. The text's size is thus corrected with the value produced by
sendingtheMLM_QUERYLINECOUNTmessage:

®®

//   get  document   si.ze
ulLi.nes    =    (ULONG)Wi.nsendMsg(      hwndMLE,    MLM_OUERYLINECOUNT,

OL,     OL)      ;

i.f(    !ulLi.nes)
break   ;

ulBuffersi.ze   =    (ULONG)Wi.nsendMsg(     hwndMLE,    MLM_QUERYTEXTLENGTH,
OL,     OL)      ;

ulBuffersi.ze  +  =   ulLi.nes   -1   ;
ulsl.ze  =  ulBuffersi.ze   ;
®,®

S¢z7eTex£() will return immediately and signal an error if the mle is empty. Any
attempt to drag win thereby be prevented. If this test is met, we can proceed by
allocating one or more memory pages, and transferring the contents of the 77tze there
duringtheexportphase,whichiscontrolledbythemessageMLM_EXPORT.

®®

//   allocati.ng   memory
i.f(    DosAllocMem(    (PPV0ID)&pBuffer,    ulBuffersi.ze,

PAG_WRITE     I     PAG_COMMIT))

I
Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;



642     0S/2 2.1 Workplace shell progranming

return   FALSE    ;

)

//  defi.ne  export  buffer
Wi.nsendMsg(     hwndMLE,    MLM_SETIMPORTEXPORT,

MPFROMP(    pBuffer),    MPFROMLONG(    ulsi.ze))     ;

//  export  text
ulExport   =    (ULONG)Wi.nsendMsg(       hwndMLE,    MLM_EXPORT,

MPFROMP(    (PIPT)&10ffset),

MPFROMP(    &ulsi.ze))     ;

®,®

WhenusingthemessageMLM_EXP0RTyoumustbecarefulwiththetwoparameters
mp 1 and mp 2. h mp 1 there must appear the address of an identifier initiahized to 0 L for
indicating the starting position of the copy of the contents of the 777Ze. In the second
MPARAM,instead,youmustindicatethesizeofthebuffertocopy.Herecomesthetrap!
SendingtheMLM_EXP0RTmessageimpliesthatmp2willcontainthenum.berofcharac-
ters to be exported decreased by the number of characters actually exported. The net
result is the loss of ul Si. ze from the size of the text transferred from the 777Ze to the
auxiliary buffer. This information will subsequently be used in writing the data to a
file with DosW7`z.fe(), and thus explains the presence of u 18 u f f e rs 1. ze containing the
overall file dimension, unchanged from the initial assignment.

Drag & drop operations are essentially based on files. in the case of DRAG, the
information present in the 77tze is not stored on a disk in the system. Before the actual
draggingstarts,youwillhavetotransfertothediskthecontentsofthememorybuffer
inordertogenerateatemporaryfile.Whenwritingthecodeforopeningthetemporary
file that will be the foundation for the titlebar dragging operation, you must be
extremely careful about the flags you use:

®®®

i.f(    rc   =   Dosopen(       pszFullFi.le,   &hfi.le,
&u1Act1.on,

u18ufferSi.ze,
FILE_NORMAL,

OPEN_ACTION_CREATE_IF_NEW    I

OPEN_ACTION_REPLACE    IF    EXISTS,

OPEN_ACCESS_WRITEONLY     I   -OPE-N_SHARE_DENYWRITE    I

OPEN_FLAGS_SEQUENTIAL,

NULL)  )

®®®

In fact, although the preliminary operations of this kind of drag & drop initially
involve the DRAG application, it is almost certain that dropping will involve some
other WPS  object,  or  even the  desktop  window.  The presence  of the  attributes
OPEN_ACTION_CREATE_I F_NEwandopEN_ACTION_REPLACE   I F   EXISTSwillallowfor
thecreationofanewfileifitdoesnotalreadyexistinthetargetobject,orwfllpresent
a dialog asking the user what should be done if there already exists an object with the
same name.



Drag&Drop     643

TheS¢z7eTex£()functioncompletesitsworkbywritingtothetemporaryfilethetext
retrievedfromthe77cze,andthenclosingthefflebycallingDosaose()(andtherebyalso
destroying the allocated memory area). Only at this point can the true dragging
operationstart,byffllinginappropriateinformationintheDRAGINFO,DRAGITEM,and
DRAGI MAGE structures. The default operation will be the default (DO_DEFAU LT). The
drag&dropsupportedbyOS/2alwaysreferstoafile,referencestofiles(sfe¢dozo),or
a pointer to a file (the objects in the Sysfeffl Se£%p folder, for instance). That's why in
the titlebar dragging example you are first forced to create a temporary file that you
winthendeleteoncetheoperationisfinished.Thefinaloutcomeisspectacular,asyou
can see in Figure 12.8.

hFigure12.9youcanseehowthedocumentcreatedonthedesktopisthesameas
the text typed into the 77tze of the DRAG application.

Summarizing,theoperationsprovidedforbytheDRAGprogramarethefollowing:
• Subclassing the titlebar icon
•Transferringthetextpresentinthe7#Zeintoatemporaryfileinthecurrentdirectory
•A11ocatingandsettinguptheDRAGINFO,DRAGITEM,andDRAGIMAGEstructures

• Calling the DrgDr¢g() function
• Destroying the temporary file

Figure 12.8  The DRAG  application while titlebar icon dragging is being
executed.



644     0S/2 2.1 Workplace shed progranming

Figure 12.9  Final result of dragging the titlebar icon.

Let's now examine the other half of the drag & drop by implementing the DROP
application,whichiscapableofacceptingtextobjectsoriginatingfromanyotherkind
of source (application or container) present in the system.

DROP: Accepting an Object
Themostinterestingaspectofdevelopinganapplicationcapableofreceivinginformation
delivered by a drag & drop operation is no doubt its appearance. h fact, when the user
dragsanobjectoveracontainer,therewilloftenbevariationsinthemouse'scursorshape
(]jke an interdiction sign appearing where the object cannot be accepted) or of the
underlyingwindow(emphasizingborder).A]lthesechangesaretheoutcomeofprocess-
inginformationassociatedwiththemousewhenthemessageDM_DRAG0VERisreceived.

The first operation is  accessing the information describing the dragging, first by
dereferencing a  PDRAGINF0  pointer and then a  PDRAGITEM  pointer.  By means  of the
PDRAGITEMpointerandtheappropriateAplfunctionofpM,thereceivingprogramisable
to verify the type, format, and rendering mechanism that was specified by the sender
during the preparatory phases of dragging. h the specific case of the DROP appficafron,
the verification of this information is based on the following code fragment:



Drag&Drop     645

®®

//  veri.fy  the  type
I.f(    !Drgveri.fyType(   pdrgi.ten,   DRT_TEXT))

(
Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;

break   ;

)
//   veri.fy   the  mechani.sin  and   the   format
i.f(    !Drgveri.fyRMF(    pdrgi.tern,    "DRM_OS2FILE",    DRF_TEXT))

(
Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;

break   ;

)
®®®

The test win search for a type and a format with Drgver£7givType() and Drgverz.-
f yRMF()   Ta[rfuer  than  w±+h  1±= _ specific  Drgy5rity^|ativeTyp.e()  `aind.  P_r_gY_e_r_ippra_-,
fz.I)eRMF() functions, because it is never possible to be certain about the source of
dragging. This information must involve the type DRT_TEXT, while the supported
renderingmecharismandformatareDRM_OS2FILEandDRF_TEXT.Thesearetypical
characteristics of a generic file in ASCH format.

Once consistency of the information associated with the mouse has been verified,
theDROPapplicationwiuevaluatethekindofoperationproposedbythesenderfor
settingupthemostappropriatevisual feedback,andthenmakesureitwillbeableto
support the proposed operation:

®,,

swi.tch(   pdrgi.nfo   ->   usoperati.on)

I
case   DO_DEFAULT:

®,®

break   :

case    DO_UNKNOWN:

®®,

break   ;

case   DO_COPY:

USDOR   =   DOR_DROP     ;

USDO   =   DO_COPY     ;

break   ;

case   DO_MOVE:

USDOR   =   DOR_DROP     ;

USDO   =   DO_MOVE    ;

break   ;

case   DO_LINK:



646     0S/2 2.1 Workplace shed progranming

®®®

break   ;

case   DO_CREATE:

®,

break   ;
)
®®®

IntheidentifiersusD0RandusDO,therewillappear,respectively,thedefinesD0R_
andD0_appropriatefortheproposedoperationandapplication-specific features.The
assignmentofthedefineD0R_DR0PtotheusD0Ridentifierwillalsodeterminethetype
of emphasis implemented by the program:

®®®

//   get  the  presentati.on   space   handle
hps   =   DrgGetps(    hwnd)    ;

1.f(    USDOR   ±   DOR_DROP)

I
Wi.nDrawBorder(     hps,    &rc,1L,1L,

CLR_BLACK,    CLR_WHITE,     DB_STANDARD)     ;

)
else
I

Gpi.Erase(    hps)    ;

release   the   handle
DrgReleaseps(    hps)    ;

®®®

The logic followed by DROP is rather limited. A thin border will appear inside the
client window if the proposed operation is supported. If it is not, the contents of the
client window will be erased with Gpz.£r¢se(). All these operations take place directly
ontheclient,andthusenablethereceptionandhandlingoftheDM_messagegenerated
by the drag & drop operations. When the user releases the right mouse button, the
DM_DROP  message will be received.  h this  case,  after appropriately accessing the
information about the dragging, the client will be overlapped by the WC_M LE class
window that was previously created when the WM_C REATE was received, but never
displayed (Figure 12.10).

Intercepting DM_DROP
hthecodehandlingDM_DR0Ptheconsistencytestsoftheinformationassociatedwith
themousearenotrepeatedforthereceivingapplication(whichwouldberedundant).
Rather,processingthismessagewillfocusonretrievingthetextstringsregardingthe



Drag&Drop     64:7

Figure12.10EffectofdraggingthecontentsoftheDRAGapplicationintothe
DROP application.

source container (the directory where the starting document is found), the name of
the source file, and the name of the target file in the destination container. h the case
of DROP,theapplicationisnotacontainer,butaprogram.Althoughthedrag&drop
is used mainly at level of WPS objects @etween containers), nothing prevents you
fromresortingtothisprotocolintemallyinthesameapplicationor,asinourexample,
between two different EXEs. in the case of the DRAG and DROP sample applications,
both are executable without any kind of container object.  The  generation of the
information to be dragged and its processing is handled completely in the window
structures of the two programs without any problems.

This reference to the WC_CONTAI N ER class is not out of place, as you will see later,
because container windows are specially designed for supporting in a simple and
direct way drag & drop operations. It is helpful to remember that even the deskfap is
awindowbelongingtotheWC_C0NTAINERclass.Thelackofacontainerwi]lnotpose
any design problems for the DRAG application, or for the DROP appHcation, except
for the impossibility of displaying the object being dragged as an icon (the text is
automatically exposed in the  777Ze).  Processing the  DM_ messages is  appropriately
handled on the basis of the windows involved in the two applications.



6q8     0S/2 2.1 Wor:laplace shell progranming

®®,

//   retri.eve  the   source   contai.ner   name
DrgQuerystrName(           pdrgi.tern   ->   hstrcontai.nerName,

si.zeof(   szcontai.ner),   szcontai.ner)    :

//   retri.eve  the   source   fi.1e   name
DrgouerystrName(           pdrgi.tern   ->   hstrsourceName,

si.zeof(   szSourceFi.le),   szSourceFi.le)    ;

//   retri.eve  the  fi.1e  name
DrgQuerystrName(           pdrgi.ten   ->   hstrTargetName,

si.zeof(    szFi.leName),    szFi.leName)    ;

//   create  full   pathname
strcat(   szcontai.ner,   szSourceFi.le)    ;
®®,

The complete pathname constructed in the s zconta i. n e r identifier allows you to
access the file created by DRAG when the whole process was started. Once the file is
open, DROP will simply transfer its contents into the 77cJe. The technique used in the
DROPexampleforaccessingtheinformationassociatedwiththemouseisnottheonly
onepossible.Aswewillsee,onceyouhavecheckedforconsistencybetweenthetwo
objectsconcemedinthedrag&drop,thechoiceofthemechahismusedbythereceiver
foraccessingthedataisuptotheprogra]rm.er.hpractice,anyIPCtoolprovidedby
OS/2canbeemployed,1ikecommunicationthroughasharedfile.Notalways,though,
will drag & drop involve two portions of code written by the same programmer. h
fact,itisratherunlikelythattheuserwilleverbeinterestedindragginganykindof
object toward any other kind of object without taking into account their nature and
origin. Therefore, it is always a good practice to be sure that the supported actions
workwellevenwithextemalobjects.Forexample,theDROPapplication,asyoucan
see in Figure 12.11, is able to show inside the 777Zc the text contained in a document
accommodated in the desktop, and originany produced from a D¢f¢ Fz.Je fe77zpZ¢fe.

The transfer of contents from DRAG to DROP can follow two paths:
• Dragging the titlebar icons from DRAG to DROP
• Creating a document in a WPS container (even on the desktop), and subsequent

dragging of this document into DROP

The implementation of titlebar  dragging brings with it some very interesting
implications. h practice, the operation of dragging the icon to the desktop is equiva-
lent to saving a document, which can easily be extended into a S¢zJe As operation. h
Chapter 13 we will further explore the potential of this form of dragging.

Listing 12.2 contains the source code of the DROP application.

Drag & Drop and Valuesets
The class WC_VA LU ES ET is an ideal tool for building useful application components.
For instance, you might implement a window like a panel contaiing several native



Drag&Drop     64!9

El

Figure 12.11  The DROP application is capable of displaying data from a
generic file present in the system.

icousorinsertedtherebymeansofadrag&dropoperation.Thiskindofcontrolpanel
allows you to embody in one sole object numerous functionalities of the apphication.
That's what we win implement in the PANEL sample presented in Listing 12.3.

ThestylesoftheclassWC_VALUESETdonotallowyoutodefineanykindofsupport
for  drag  &  drop  actions.  The  attributes  VIA_DROPONABLE  and  VIA_DRAGGABLE  to
represent, respectively, the possibility of accepting and originating drag & drop
activities. When filling in each single cell in the panel, you will also  assign the
VIA_DR0P0NA8LEattributebymeansoftheVM_SETITEMATTRmessage.

The z7¢Z#csef window will notify its owner about the drag & drop operations that
affect it by sending appropriate notification codes. Ih the case of VN_DRAGOVER, mp2
will contain a pointer to a V S D RAG I N F0 structure.

V N_D RAGOV ER              123                                                                          Descrt.pf£.o#

mp2                         VSDRAGINFOpvsdragirfo             Pointer to a VSDRAGINFO
structure.

Return value         Reserved

The identification of the affected ceu is easy, because it is flagged by the pair of
USHORT members.  The  VSDRAGINF0  structure is then completed by a pointer to  a
DRAGINFO,asyoumightexpect.ThesamebehavioralsopertainstothecodeVN_DROP.



650     0S/2 2.1 Wor:1aplace shell progranming

typedef   struct  _VSDRAGINFO

I    //   vsdl.nfo
PDRAGINF0   pDraglnfo    ;

USHORT    usRow    ;

USHORT   uscolumn    ;

}    VSDRAGINFO     ;

typedef   VSDRAGINFO   *PVSDRAGINFO    ;

ThePANELapplicationunderlinesalackintheDrgAPI.RIghtnowthereisnoway
to retrieve the image (icon, bitmap, or polygon) associated with the mouse pointer.
Usually drag & drop operations pertain to containers. WPS is a container, Hke au the

`::1:::ife#keesayftregmQ.##gi#7owb¢ug:d#r::mfiexte±FsfiT::.releasesproviding
I tried to bypass this limitation in the PM API using W£.77Lo¢dFz.ZeJco77():

i=

HP0INTER   APIENTRY   Wi.nLoadFi.lelcon(    PSZ   pszFi.le,    B00L   flcon)    ;

P ar aniieter               D e s cription

pszFile                     File name
flcon                        TRUE to get a private icon image, FALSE a shared icon image
Retwn vahae          D escription
HPOINTER            Icon handle or NULLHANDLE in case of failure

Wz.7tLo¢dFz7eTco7z() loads an icon from different sources. It first looks for the .ICON
extendedattribute,thenitaccessesthe.ICOfileifitispresentinthecurrentdirectory.
Othersourcesofinformationarethedifferentexecutables(OS/2PM,Windows,OS/2
full screen, OS/2 windowed, and so on). If you don't plan to change the image, it is
advisable to use FA LS E; operations are faster and you don't need to recau Wz.7tF7'ceFz7e-
Jco7{0. Figure 12.12 shows the PANEL appfication after the user has dropped some
objects in some cells.

Drag & Drop and Listboxes
The PANEL application has some additional features as you can guess from Fig-
ure  12.12.  The window to the right of the valueset is a owner-draw listbox. As
described in Chapter 7, owner-drawn windows can contain any kind of object: text,
bitmaps (icons), or a mix of the two ingredients. This specific listbox shows icons as
its items. h the PANEL example there is no way to fill the listbox from inside the
application. The only means is through drag & drop operations. So, 1et's follow the
same approach used for the valueset. Select any object in WPS and drag it over the
histbox (Figure 12.13).

The listbox behavior lets the user insert objects in any position. All you have to do
is  to release the right mouse button after reaching the  approriate location  (Fig-
ure 12.14).



Drag&Drop     651

Figure12.12ThePANELapplicationwhileitisengagedinadrag&drop
operation.

Figure 12.13  The insertion of an item is done through a drag & drop
operation on the listbox.



652     0S/2 2.1 Workplace shell progranming

Figure 12.14  Objects can be placed everywhere in the listbox.

The example is based on a standard listbox, easily changeable into an extended
selectionormultipleselection.Toachievedrag&dropinteroperabilitywithalistbox
window the developer has to perform some preliminary actions. First of all, it must
be subclassed. This is the only way to intercept DM_ messages. The WC_LI STB0X class
is lacking any notification code to signal drag & drop events.

Basically, all the drag & drop code is identical to the one used for the valueset. The
icon to  display comes from the  Wz.7tLo¢dFz7eJco7t() function.  The returned value is
checked to trap a NU LLHAND LE. h this case no icon is displayed and the application
emits a beep. What is nice in this piece of code is the logic followed to determine the
correctpositionfortheincomingobject,whichisbasedonthefollowinglinesof code:

®®,

//  deselect  everythi.ng
Wi.nsendMsg(     hwnd,    LM_SELECTITEM,

MPFROMSHORT(     LIT_NONE),    MPFROMSHORT(     FALSE))     ;

//   how  many   i.terns   i.n   the   li.stbox?
sltems   =    (SHORT)Wi.nsendMsg(    hwnd,    LM_QUERYITEMCOUNT,    OL,    OL)     ;

//   query  the  poi.nter  posi.ti.on
Wi.nQuerypoi.nterpos(    HWND_DESKTOP,    &pt)    ;
//   transform  the   poi.nt   1.n   li.stbox  coordi.nates
Wi.nMapwi.ndowpoi.nts(    HWND_DESKTOP,    hwnd,    &pt,    1L)     ;
//   si.mulate   a   left   button   down



Drag&Drop     653

Wi.nsendMsg(     hwnd,    WM_BUTTONIDOWN,
MPFROM2SHORT(     (SHORT)pt.x,     (SHORT)pt.y),    OL)     ;

//   si.mulate   a   left   button   down
Wi.nsendMsg(     hwnd,    WM_BUTTONIUP,

MPFROM2SHORT(     (SHORT)pt.x,     (SHORT)pt.y),    OL)     ;

//   query  the  selected   i.tern
ssel    =    (SHORT)Wi.nsendMsg(     hwnd,    LM_OUERYSELECTI0N,

MPFROMSHORT(     LIT_FIRST),    OL)     ;

//   i.f  no   selecti.on   the   li.stbox  mi.ght   be   ei.ther   empty   or
//   the   user   i.s   beyond   the   last   i.tern
l'f(   ssel   ---1)

l'f(    !sltems)
//   i.nsert  as  the  fi.rst  one
ssel   -  0   ;

else
//  the  last  one
ssel   =  sltems   ;

//   deselect  everythi.ng
Wi.nsendMsg(    hwnd,    LM_SELECTITEM,

MPFROMSHORT(     LIT_NONE),    MPFROMSHORT(     FALSE))     ;

®®®

First, we deselect all items in the fistbox and then count the number of entries
(s I terns). This information is useful to determine the right position in the listbox. To
find the mouse position on the listbox in terms of items (first, second, after the last,
and so on) the application gets the mouse position (Wz.77Q#e7rypoz.7tferpos()), converts
it  into  the  listbox's  coordinates  (Wz.7tM¢pWz.7tdozopol.7tfs())  and  then  simulates  the
pressure of button 1. Now it is time to ask the listbox for the currently selected item.
The final portion of this simple algorithm sets the sse 7 identifier to the appropriate
value. When its value is -1 it might depict two different situations. Either the listbox
is empty or the user has dropped the object below the last item. To determine which
is the case, evaluate s I terns . If greater than zero, it means the new object has to be
added at the very end of the list.

After accessing the drag & drop information the application passes the icon handle
to the listbox's owner through the  WM_PASSICON  message  and then simulates the
insertion of a new item in the selected location.

®,

hptr   =  Wi.nLoadFi.lelcon(    szcontai.ner,    FALSE)    ;

//   ski.p   i.f   no   i.con   i.s   avai.lable                                                                         .
1.f(    !hptr)

break   ;

//   pass   the   i.con   handle
Wi.nsendMsg(     PAPA(    hwnd),    WM_PASSICON,    MPFROMLONG(    hptr),    OL)     :

//   i.nsert   new   i.tern
Wi.nsendMsg(    hwnd,    LM_INSERTITEM,

MPFROMSHORT(    ssel),    MPFROMP(    "CIAO"))     ;



654     0S/2 2.1 Wor:laplace shell progranming

The owner-drawn portion of the application is straightforward. All we have to do
is to show the icon after erasing the background.

Drag & Drop and Folders

EI

Let's now make some changes to Listing 7.11 by adding support for drag & drop
operations. The task isn't overly compficated because the WC_CONTAI N ER class win
itself provide a number of useful tools. Apart from the actual implementation of a
container (in Listing 7.11 and in Listing 12.4 it is the client of an application), the first
operationtobeperformedconsistsoftakingadvantageofthenotificationcodes(Table
7.40).  You  will  be  concerned  with  retrieving  the  information  conveyed  by  the
CN_INITDRAG,CN_DRAGOVER,CN_DRAGLEAVE,andcN_DROPcodes.Depressingtheright
mousebuttoncombinedwithamovementofthemouseoveranyobjectpresentinthe
container win be perceived by the window as the start of a dragging operation. This
is the moment when the owner will receive a CN_I N ITDRAG. (This notification code,
likeallothers,isnotifiedthroughtheWM_C0NTR0Lmessage.hthefollowingdescrip-
tion we will avoid this information in order to make the descriptive table more
compact.)

CN_I N ITDRAG              107                                               Desc#.pf®.o#

mp2                         PCNRDRAGINIT          Pointer to a CNRDRAGINIT structure
pcnrdraginit

Return value         Reserved

TheCNRDRAGINITstructureisinitializedautomaticallywithinformationregarding
the object on which the user is acting.

typedef   struct  _CNRDRAGINIT
I    //   cdrgl'nl.t

HWND    hwndcnr    ;

PRECORDCORE   pRecord    ;

LONG    x    ;

LONG   y     ;

LONG    cx     ;                                                                                                                                                                          `

LONG   cy    ;

}    CNRDRAGINIT    ;

typedef   CNRDRAGINIT   *PCNRDRAGINIT    ;

The owner will know the container's handle, and about all the information associ-
atedwithaRECORDCOREstructure(amongwhichitwillfindtheiconrepresentingthe
object during dragging). The next pair of LONG identify the mouse's position on the
screen, expressed in screen coordinates. The last two members give the displacement
of the mouse's hot spot from the object. Almost invariably the notification codes of
theWC_C0NTAINERclassassociatedwithdrag&dropoperationsgivetheprogrammer
full access to a  RECORDCORE structure. This is great, but  be careful! h the case of



Drag&Drop     655

CN_I N ITDRAG, this will be the set of information that qualifies the record that was
selectedfordragging.Forallothernotificationcodes,itwillinsteadbethesetofdata
regarding the record over which the object is being dragged! This structuring of the
APImakesitagoodideatosavetheinformationregardingthePREC0RDC0REmember
of C N_I N I TD RAG in a s ta t i. c storage class pointer. This will make it simpler to write
the code dealing with all other notification codes.

stati.c   PAPPREC   pappsource    ;

case   CN_INITDRAG:

I
®,®

I
®®

Naturally, this is only the begirming of the work awaiting the programmer. Ihter-
cepting the notification codes alone won't be enough: You must also handle the
draggingaccordingtothenormalrulesdescribedatthebeginningofthischapter.

case   CN_INITDRAG:

(
PCNRDRAGINIT   pcnrdragi.ni.t   =   (PCNRDRAGINIT)mp2    ;

PDRAGINF0   pdrgi.nfo    ;

DRAGITEM   drgi.tern    ;

DRAGIMAGE   drgi.mage    ;

HWND   bwndTarget    ;

PAPPREC   papprec    ;

//   allocate   a   DRAGINF0   structure

pdrgi.nfo   =   DrgAllocDragi.nfo(   1L)    ;

pdrgi.nfo   ->   hwndsource  =  pcnrdragi.ni.t   ->   hwndcnr   ;
pdrgi.nfo   ->   usoperati.on   =   DO_COPY    :

//   i.ni.ti.all.ze   the   DRAGITEM   structure
drgi.ten.hwndltem  =  pcnrdragi.ni.t   ->   hwndcnr   ;
drgi.ten.ulltemlD  =   100L   ;
drgi.tern.hstrType   =   DrgAddstrHandle(   DRT_TEXT)    ;
drgi.tern.hstrRMF   =   DrgAddstrHandle(    "<DRM_OS2FILE,DRF_TEXT>")    ;

®®,

drgi.tern.fssupportedops   =   DO_COPYABLE    I    DO_MOVEABLE    ;

i.f(    !DrgsetDragi.tern(    pdrgi.nfo,    &drgi.tern,    si.zeof(    DRAGITEM),    OL))

Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;

papprec   =   (PAP`PREC)pcnrdragi.ni.t   ~>   pRecord    ;

pappsource  =  papprec   ;
//   allocate   DRAGIMAGE   structure



656     0S/2 2.1 Workplace shell programming

drgi.mage.cb   =   si.zeof(    DRAGIMAGE)    ;

drgi.mage.cptl   =   0    ;

drgi.mage.hlmage  =  pcnrdragi.ni.t   ->   pRecord   ->   hptrlcon    ;

®,

drgi.mage.cyoffset  =  0   ;

hwndTarget   =   DrgDrag(         pcnrdragi.ni.t   ->   hwndcnr,

pdrgi.nfo,    &drgi.mage,
1L,     VK_ENDDRAG,

NULL)     ;

)
break   ;

ThenotificationcodeCN_DRAGOVERisreceivedafteranymovementofthedragged
objectinthecontainer.Thistime,theinformationconveyedbymp2correspondstothe
address of C N RD RAG I N F0 structure:

C N_D RAGOV E R              103                                                                           Descr®.pfi.o#

mp2                         PCNRDRAGINFOpcnrdraginfo     Pointer to a CNRDRAGINFO
structure

Return value         Reserved

hCNRDRAGINF0apointertoaREC0RDC0REstructureappears,containingdataabout
the underlying object, and a second pointer to a D RAG I N F0 structure. So the designer
has access to the information that is typical of a drag & drop operation, as well as to
those pertaining to the management of objects in a container.

typedef   struct  _CNRDRAGINFO

I    //   cdrl.nfo
PDRAGINF0   pDraglnfo    ;

PRECORDCORE    pRecord    ;

}    CNRDRAGINFO     ;

typedef   CNRDRAGINFO   *PCNRDRAGINFO    ;

As was anticipated, the information contained in the memory area pointed at by
p Reco rd refers to the object underlying the mouse's hot spot. If the mouse pointer is
over an empty area of the container, then the p Re c o rd will be null. This is a condition
thatmustbecheckedforinordertoimplementthecopyingofanobjectinacontainer.
In fact, dragging an object to an empty portion of a container, and releasing the
mouse's right button, is the typical way to create a copy of the dragged object. The
designermustdecidewhatbehaviortoimplementintheapplicationaccordingtothe
specific development model adopted. In the case of WPSFLDR, it will be possible to
createanobjectoftypeRED,GREEN,orBLUEdirectlyattherootlevel(Figure12.15),
an operation that was not implemented in the original FOLDER version.



Drag&Drop     657

Figure 12.15  WPSFLDR with a red object at the root in the tree display mode.

BeforeproceedingwithananalysisofthehistingdealingwiththecN_DROpnotifica-
tion code, it is important to stress a significant matter which is not documented
correctlyinthedescriptionofcN_DRAGOVER.TheretumvalueisnotreseIved;instead
it is a combination of two: the S H 0 RT containing the D0 R_ and DO_ defines.

®,®

return    MRFROM2SHORT(    DOR_DROP,    DO_MOVE)     ;

®®®

To avoid the situation shown in Figure 12.15, it is necessary to return the value of
DO_N 0 D R0 P whenever the member p Re co rd of the C N RD RAG I N F0 is null:

®®®

//   forbi.d   droppi.ng   R-G-B   objects   on   the   contai.ner

l.f(    !prec)

return    MRFROM2SHORT(    DOR_NODROP,    OxOOOO)     ;

®®,

hthecodefragmenthandlingCN_DR0PyouonlyneedtocalltheC7'e¢feA7ioffeerob-
/.ec£()functiontocreatenewobjectsonthebasisofthedirectmanipulationperformed
by the user (Figure 12.16). The source code of WPSFLDR is presented in Listing 12.4.



658     0S|2 2.1 Workplace shell progranming

Figure 12.16  WPSFLDR, with its rich contents.



WPS Programming
If you have read this far, you must be a great OS/2 fan, and are probably eager to
make your own hot appHcations! The puapose of this chapter is, in the first place, to
get a better comprehension of the look-and-feel rules characterizing OS/2 2.1 pro-
grams;thenwriteaprogramcomplyingwiththeserules.Wehavealreadycoveredin
manyplacesthestyleissuesofprograms.Summarizingthebasicrules,wemightsay:
few menu bars, few dialog windows, never a system menu, always a titlebar menu
and a window context menu, many objects, lots of drag & drop, care about details, no
MDI, always SDI.

Thissunmarymightbefoocondensed.Let'sexpandoneachconceptbylookingat
some examples and making some thoughtful considerations. First of all, a question
comes to mind. What really is WPS, and what does an ob/.ec£-or{.e7zfed (as the IBM ads
say) user interface mean?  Take your time,  and think about it! WPS is an OS/2
application-asystemshell-thatmainlytakesadvantageoftheAPIWz.7zservices,but
also of the Dos services for accessing the file system, managing memory, handling
multithreading, and more. Furthermore, WPS uses the SOM (System Object Model)
objectsofOS/2.Fromatechnicalpointofview,WPSisnothingmorethanawindow
of the class WC_CONTAI NER, which extends over the whole screen area (its frame is
hiddenbehindit).Theobjectscontainedinwps,whichweareaccustomedtothinking
of in four groups (folders, programs, data files, and physictil devices), are nothing
morethansimplerecordsinacontainer(WPS).Adoubleclickonanypartoftheimage
will send the notification code C N_E NT E R to the frame, with all record related informa-
tion in mpl. As we have seen, the data structure REC0 RDCO RE of each object is almost
invariablyassociatedwithsomespecificmemoryarea,allocatedandmanagedbythe
WC_C0NTAINERwindowdesigner.So,whenadoubleclickaffectsarecordcorrespond-
ing to an executable, that executable is activated. This also extends to the repre-
sentation of the other object groups. Actually, object manipulation is handied at the
level of a single application, PMSHELL, that is WPS, even if it is a very complex
appfication. The drag & drop operations within a container are not at all complex, as
we have seen in Listing 12.4. The direct consequence of these considerations is the
extremeimportanceoftheclassWC_CONTAINER,whichisacriticalandcentralelement
when writing code.

The objectives to aim for when designing a new OS/2 application are:

659



660     0S/2 2.1 Workplace shell progranming

• Creating a product that is strongly integrated in WPS
•Theinnerworkingsoftheprogrammustcomplywiththestyleandoperativerules

of VVPS

Integrating in WPS
You can integrate OS/2 applications into WPS at various levels. After all, even old
executableslikeE.EXEworkfineunderos/22.1withoutcreatinganygreatproblems.
h general, though, there are three successive integration levels in WPS, which are
known as minimal, medium, and advanced.

Mininal Iutegr ation
Minimal integration is achievable with small modifications to 16-bit code, which can
be considered code fixes. An image that better qualifies the features of the product
substituesthesystemmenuicon,butthesystemmenuisnottakenawayorreplaced.
The program will have a menu bar, and, consequently, a number of dialog windows
displayed after the selection of menu items of the extended command type. ch
additional improvement is the ability to define a resource of the ASSOCTAB LE type in
the application's resource file. This integration allows you to obtain the same result
thatinversion1.xwasobtainedthroughassociationsintheFileManagers.However,
the association does not involve the placement of a template in the Templates folder,
andthereforelimitsthecomectiontothefilesystemlevel.Thepresenceofatemplate,
indeed, involves the user directly and implies a more accurate redesign of the code
(for instance, for supporting drag & drop operations).

Medium Integration
Theelementsthatcharacterizeanapplicationofthistypearenumerous:theadoption
of a titlebar menu in place of the old system menu, the presence of the zuz.7tdozo co7tfexf
77ze77t{, support of titlebar dragging, and acceptance of other objects dragged by the
user. Furthermore, printing is supported directly by dragging the generated objects
over the printer icon. The generated documents will have icons of their own, and in
theTemplatesfoldertherewillbeatemplatetoallowyoutoeasilyproducenewones.
This kind of program also uses objects provided by SOM and employed by WPS,like
the Color Palette and the Font Palette. These programs are written in C and do not
have to resort to the definition of new SOM objects or to subclassing existing ones.

Adv anced Integration
This is the category of ``true" OS/2 application. Programs of this category have been
redesigned,andhaveastheirdesignobjectivetheproductionofsomethingthatreally
interactswithWPSandistrulyinspiredbythefunctionandstylerulesofOS/2'suser
interface. h this case, software development starts with the definition of new objects



WPs progranming     661

at the SOM level, objects that are all integrated with C code. In addition to having an
elements described for the preceding categories, these programs take advantage of
and rely upon system INI files and on the internal structure of WPS objects for
performinganunberofoperations.Manyofthemethodsofthestandardobjects,like
a printer, are redefined for better adaptation to the specific needs of the program.

How to Develop for OS/2
The preceding scheme might not be satisfactory in all cases, and is probably exces-
sively rigid in some aspects. The purpose of the above classification is stressing the
direction that should be taken when writing OS/2 programs. As we will see in this
chapter, it is not at all difficult or demanding to achieve these results. Let's start with
aconcreteexalnple,anapplicationwrittenincandintegratedintowps(atthesecond
level, according to the previous classification).

We will now examine SNOOPWSP, a version of SNOOPER that has been revised
in some of its functionalities, especially in its user interface: We will take advantage
of all techniques leamed up to this point. The program identifies itself with a tiny
window, positioned at the center of the screen (Figure 13.1)

Figure 13.1  The look of SNO0PWPS is very different from that of its earlier
versions.



662     0S/2 2.1 Workplace shell progranming

The three gray buttons at the center of the cZz.e77f immediately capture the user's
attention. The first one, Snoop, allows you to activate the s7toop£.ng operations. The
logicbehindthebuttonpressureconsistsinthemousecaptureandinthesubsequent
creationofapanelwindowtodisplayalltherelatedinformation(it'sself-evidentthat
SNOOPWPS provides enough space in its window for displaying information about
a window). The central button, Stop, is initially disabled, and eventually terminates
any active snooping action. The third and last button, WinTree, introduces some new
functionalities with respect to those offered by SNOOPER. We will examine the
outcome and the effects generated by the three buttons later. For the moment, 1et's
considerthestructuralelementsoftheprogram.Figure13.2emphasizesthepresence
ofthetitlebarmenu:TheoverallnumberofwindowsinSNOOPWPSiseight(the five
traditional windows plus the three buttons).

By pressing the right mouse button in any empty space in the client window, you
will  display  the  zoz.77dozu  co7tfexf  77zc7t#  (Figure  13.3).  The  interaction between  the
program and the user follows the traditional scheme adopted by WPS.

One problem that had to be overcome when version 2.0 of OS/2 was released was
that of fully understanding the nature of the system shell. SNOOPER helped in this;
butitwasalsonecessarytohavesomemeansforcorrelatingtheinformationofseveral
windows related by parenthood or ownership. One course of action was extracting
from the actual program the data packet retrieved when the mouse's cursor was

Figure 13.2  SN00PWPS is equipped with a titlebar menu.



WPs progranming     663

REfi=fEE

WNW0BD exB

;¢ffi?~`

Bma28H+

EE
thf.EXE

z,,.,z#

SNoflpEFIEXE

E@
Templates

IREen  #   j#aedr           ng

##%ep      £Hngd           ###8

gfa£€iagt.S#b€tt8rRE#tr
Mev8ng   fa              ¢gfeii::::t¥#adaw"ife#*

#atj+#drfty±€ind°W#aponck#

P,
hpv#!t,§e#£*#*             #

•.  .   .-tlit;§#Oweepfed . .    ..    ..  .?€€F :

grr=.                        ...                     .                              .

## S#

REi#
Drn/e A.                Shredder

Figure  13.3 Appearance of the window context menu in SN00PWPS.

positioned on a new window and storing that data in a separate document. The
fundamental idea was permanently logging that data, so that it would be available
laterforfurthermaripulation.IfyouclickontheSnoopbuttoninthewindow,nothing
specialhappens:eventhecursor'sicondoesn'tchange.Fromthismomenton,though,
you are actually spying on the system's activities. The eight windows that make up
the program cannot be investigated (this is a design choice). As soon as you reach
some other window, a document (a panel) will appear close to the lower left-hand
comer of the screen, as shown in Figure 13.4 (it is helpful to have at least SVGA
resolution to avoid overcrowding the screen with windows).

The selected font is very small, in order to accommodate a large amount of data in
asmallspaceTheoutputhasalsobeenreorganizedwithrespecttotheearlierversions
of SNOOPER, in addition to presenting a richer data set.  SNOOPWPS will also
indicate the address of the window procedure stored in the reserved memory is of a
window as well as at the class level. Different numeric values indicate that there is
s#bcz¢ssz.7tg. Furthermore, each window specifies its programndng model, 16 bit or 32
bit, the position, the size, the PID, and the TID. Each of these data are contained in a
windowoftheclassWC_STATIC.Thepanelalsocontainstwobuttonslabeledwiththe
handle of the parent window and of the owner window. You can terrfunate the
snooping actions by pressing the Stop button, which has been enabled, and then



664     0S/2 2.1 Workplace shell progranming

iH
Miscelleneous

igE-'di
WNvroF\D ex8

%#,!¢i

"8RE00RE

EEE
WF E:«E

%
SNOOPER EXE

E@
Templates

ffi       j#
Drive A                Shredder

Figure 13.4  SN00PWPS shows information about the container window of
WPS in a document window named with its handle.

examine in detail the generated document. First of all, both buttons are enabled only
if they contain a valid handle-if the window really has a parent and/or an owner.
To discover more about them, press the corresponding button (Figure 13.5).

These are stand-alone windows, which the user can position anywhere on the
screen. While inspecting and exploring the collected data, you can also look at those
windows at the same time. By generating a panel for each investigated window, the
screen gets overcrowded easily. The application supports the selective destruction of
eachdatawindowactingonthetitlebarmenuoronthespecialwindowcontextmenu
in the Snoop button (Figure 13.6).

SNOOPWPS will ``auto-censor" itself if the user were to request information about
an already s77ooped window. This behavior is a consequence of the intemal setup of
theapplication,andalsoaffectsanypossiblepressingoftheparentandownerbuttons
inside the panel.

You will often need to take notes about the data produced by snooping. Therefore,
a special print option has been devised for printing. Each single document also
supportsfz.£Zez7¢rd#¢gg£.7tgtomanydestinations:anyf.olderoftheinterfaceorevenicons
of printing devices (Figure 13.7).



WPs progranming     665

fi
Miscelloneous

RE
VVI NWC)F\D tan

feeei
I  c"200RE

EE
ve E:€

#++

SNOOPER ERE

G@
Templates

hrmd  Or340161c
ID  0x8008
SMes  Oxb2001841
Window/rmdproc:1AACBD38
Vvindowwords  Oxc
Capoon.
Slze  1024x768
posltion  u.1H102476ey
Class.137-WC_CONTAINER
ClassstylB  0X30000010
Ciess`rmdprot=1A4A78BO
hch  Ox80001
hmq  Oxcea7
PID 4 -" 1
Vwhdow model  32blt

r=o-##f*TE+2[dTflgE=

hand  ax20013c
lD  0xO
Styles-Oxaooooooo
Windowundproc:1A2313FI
Vvindowwords  Ox8
Capt,On
Size  1024x768
Position  (0,OH1023,767)
Ciass  f32766
Classstyle  Oxl 0
Ciassrmdpioc:1A2313Fl
hch  Ox8000l
hmq  Oxaf57
PID 2 -TID 1
Vvindow model  16bltverfeRE i#

Shredder

Figure 13.5  Panels showing information about the parent window and
the owner window.

fi
Miscelleneous

=¥#.--:
`tMrmRD ce

#nd-,
EEEHHHngal

EE
\VI E4

i37!
SN00PEB.EXE

H
Templates

hrmd  ard40161c
lD  0x8008
Styles. Oxb2001841
Window/`mdproc:1AACBD38
whdowwards  Oxc
Capt,On`
Size  1024x768
Posrtlon  tl.1H1024.76ty
Ciass f37 -WC_CONTAINER
Classsty]e. Ox30000010
Ciasswndproc:1A4A70B0
hch  Ox80001
hmq  Oxaea7
Plo 4 -TID 1
Vwhdowmode|32brt

E°EEffi,Ff[,-£±9fi

hrmd  Ox20013c
lD  0xO
Sty'es=Oxatoooooo
Window/`^rndproc:1A2313FI
Vvindowwords  OxO
Capt,On
Slze  1024x768
posrfuon  ro.OH1023.767)
Class  !32766
Classstyle  Oxl0
Classrmdproc=1AI313Fl
hob  OxOOool
hmq Orfu
Plo 2-TID 1
Vwhdow model  16bit

RES^S§*#`!==#i[_°.9L6::L

Figure 13.6  Interaction with the data panels.



666     0S/2 2.1 Workplace shell progranming

EEE]         EE        ®
Osre programs   LotusApps     StartHere

E@
Templates

E
HP LaserJet Ilo

RE         ffi
Orme A                Shredder

Figure 13.7  Printing of the information obtained through SN00PWPS is
achieved by dragging the titlebar icon over the image of a printer.

AnotherlimitationofSNOOPERwastheimpossibilityofexaminingthefeaturesof
anynonvisiblewindoworbelongingtothetreedescendingfromHWND_OBJECT.cry
searchwiththemousecouldnotsolvetheproblembecauseHWND_OBJECTdescendants
are always invisible. The only solution to the problem is to explore the entire tree
structure of a window, starting from its primogenitor, respectively, HWN D_D ES KTO P
andHWND_OBJECT.BypressingtheWinTreebuttonyouwillseeintheupperleft-hand
side of the screen a window showing the handles of the windows in a tree structure
(Figure 13.8).

By default, after pressing WinTree, the program will scan through all windows,
starting from HWND_DESKTOP. The choice can be changed by acting on the window
context menu of the WinTree button. That's right! Even the buttons in SNOOPWPS,
being high-level interaction user interface objects, have a menu of their own (Figure
13.9).

This is a co77d€.£z.o77flz 777e7tt{ having  HWND_DESKTOP  as its default.  Once the selection
hasbeenchanged,youcansimplypressthemousebuttonovertheDefaulttreemenu
item to see  a new window appear in the upper left-hand side of the screen. A
conditionalmenualwayspresentsacheckedmenuitem.Iftheuserselectsthepop-up
menu item that introduces a conditional menu, the checked menu item is selected. To



WPs progranming     667

t - *3Z.76e

hand  Ox340161c
ID  0x8008
Styles. Oxb2001041

#::##d##AACBD38
Capt,On
Slze  1024x768
Position  tl.1)il 024768}
Class.f37-WC_CONTAINER
Ciassstyle  Ox30000010
ClcLsswndproc:1A4A70B0
hch.Ox80001
hmq  OxaecL7
Plo 4 -"D 1
Vvindowmodel  32bitw'ffE¥Eife ®

osrasystem EBi#
Dwt3 A              Shredder

Figure 13.8  The outcome of pressing the WinTree button.

t +i  *+32?T66

hund  Ord40161c
lD   0xOOOO

Styles.Oxb2001841
Window/`mdprot:1AACBD38
Vvindowwords  oxc
Capt,On
Size  1024x760
Posrfuon.tl.1H1024760
Ciass`i37-Vro_CoNTA]NEF}
Classsty|e  Ordooooo10
Clessrmdproc:1A4A78B0
hch  Ox80001
hmq  Oxaea7
pro 4 -TiD 1
Vrfndow model  32bit

=°EL#HE;2Et=
HRE

os# sysl8m REi#
Din/a A               Shredder

Figure 13.9  The selection of HWND_OBJECT in the window context
menu of WinTree.



668     0S/2 2.1 Workplace shell programming

set and query the default menu item, you related to the two messages MM_SETDE-
FAU LT I T EM I D  and MM_0 U E RY D E FAU LT I T EM I D.

MM    SETDEFAULTITEMID                   0x0432

mp 1                                           ULONGulD efltemlD
mp2                                           ULONG ulRes
Return value                            BOOL fResult

MM_OUERYDEFAULTITEMID            0x0431

mp 1                                            ULONG ulRes
mp2                                           ULONG ulRes
Return value                           ULONGulDefltemlD

Description
Default item ID
Reserved
Success or failure

Description
Reserved
Reserved
Default item ID

As you can see in Figure 13.8, the window tree structure is limited to its first level
(first generation descendants). Among these, there are some that are not visible (for
instancethe¢¢777eofwps),whileallchildrenofHWND_OBJECTarevisiblebydefinition.
To display the tree structure starting from a generic window, you only need to select
that window by dragging it over the WinTree button (Figure 13.10).

Releasing the right mouse button over WihTree displays a new window  (Fig-
ure 13.11).

The same logic is true also for obtaining the information panel. The only variation
in this case concerns the destination button, Snoop (Figure 13.12).

You will probably  agree  that  SNOOPWPS  is  a  significant improvement  over
SNOOPER. Even with the limited functionality it offers, and the simplicity of the
examples, you can certainly conclude that it is a completely different breed of appli-
cationwithrespecttoitspredecessors:Itiseasiertouse,moreintuitive,andjustbetter.
The ingredients of SNOOPWPS are those you already know: titlebar menu, window
context menu, and lots of drag & drop between various components of the program
as well as with WPS.

Analysis of the Program
SNOOPWPS is just a framework for a programmer's utility. There are many more
functions that might be added, and it can be made much more flexible. For instance,
it would be nice to have a 73ofez7ook for its settings, and allow the user to customize
the look of the panel windows (maybe by selecting a different system font, colors,
and so on), and to customize the program behavior (ignore spying frame windows,
for instance). You can create these extensions yourself! It will be a great exercise.

The application registers two window classes, one for the program and the other
forthepanelwindows.Thefirstofthetwoclasseshasatotalofeightbytesofwindow
words,  the  sum of a  PV0ID  and  a  ULONG.  The first four bytes  (from  0 to 3)  will
accommodate a pointer to a memory block dynamically allocated when the message
WM_CREATE  is  detected.  The  block  is  a  page  of 4096  bytes;  this  means  that  the



WPs programming     669

hrmd  Ord40161 c
lD   0xOOO8

Styles  Oxb2001841
Windan/\^mdproc:1AACBD38
VVIndowwords  be
Capt,On
Siz8` 1024 X 768
posiuon  u.1H102476ey
Cless f37 -WC_CONTAINER
Classstyle:OX30000010
Classundproc:1A4A78B0
hob  OxOOool
hmq  Oxeea7
Plo 4 -TID 1
Vvindow model  32bit

EOE##+#[9Ei
H\

OS% System Ei#
Drm8 A                Shredder

Figure 13.10  Dragging a window handle to the WinTree button will origi-
nate a new tree structure containing information about its child windows.

hand  ora40161 t>
ID, OxOOO8

Styles  Oxb2001041
Window/wndproc=1AACBD38
VVIndowwords.Oxc
Capt,On
Srae:1024x768
Position  a,1H1024768)
Class.*37-WC_CONTAINER
C]assstylB  0x30000010
Cicrss`hmdproc:1A4A70B0
hah  Ox80001
hmq  OxcLed7
Plo 4 -TID 1
Vvindow model` 32bit
ue.oB.iEffiD£-]2EEL

ri,

ogre system REi#
Diie A               ShreddeL

Figure 13.11  The tree structure  of the  child windows  of the handle
previously selected and dragged to WinTree.



670     0S/2 2.1 Wor:laplace shed progranming

fan=;                      .*£..,.                   A...=..-........-.i....,,..`...        .-.......                         .           H

eous                                                            ce<    ffi      Stem       RE  4

STEVE

4a022f4  -  #44c02360-#44e02438-#44f024a4-#45201430-BH_CLASS_NAME5602680-#48203778-#4 ..its)rs®e?qAa-8;S!gr£a€8y<?

.i....             ..§.........-I.'                        i

--|Fiae¥ g^rt`esSp             as, REffi

EREH -`        . `8403850-#485038bc-#48603928-#48f03ce4-#49003d50-#4

EEREERE        k
F=       I      .I   ..,    .....!*-.I.RE i'    .ae3'S.3z£€:I                  ,  .  .. .     ffi

i#

hrmd  Ox3401 61 c hrmd  Ox83037e4lD0xl'4

9103dbc  -#4
lD  0x8008Sues.Oxb2001841

SMes. Oxl 60000oo

9503f6c  -  #4
Wndow/wndproc:1AACBD38Vvindowwords:Oxc Windo\^/wndproc:1A2313AFVvindowwords.Ox22

9604004  -  #4
copt,On copt,On
Size  1024x768 Size  OxO

9704070  -  #498040dc-#4
Positlon    1.1     1024,760 Positlon    0,0    -1.-1

Ciass.±37-WC_cONTAINEF} Class.#4-WC_MENU
Classs     e.Ox30000010 Classs    e  Ox2000014
Ciess rmdproc: 1A4A78BOhahOx8 Class wndproc: 1A2313AIhobOx80001

a604584  -  #4
0001hmq:Oxaea7

hmq.OxadbfPID7-T'D1

55e05104  -#4
PID.4 -ThD.1Vvindowmod8132bitWP0BJL"

Vvindowmodel  16bitWPOBJllAI`lDLE-209654

58e06d34  -  #4
DLE-209654PcLrentox320151c   - -¥='7=mHlnlllllliL-

Shredder
|i-.mTTaziRErii]hi Ctwner: Ox810370c            ,

Figure 13.12  The information panel about a window belonging to the class
WC_MENU, a drop-down that is invisible to the user.

maximum number of s7toop¢Z7Ze windows sequentially is limited to  1024 (1024   x
s i. zeof ( HWND ) ). Naturally, you can increase this limit at will without causing any
problems by allocating a greater number of consecutive pages. The second part of
the window words contains a counter that refers to the overall number of windows
handled by SNOOPWPS. This quantity counts both the windows that have actually
been examined, as well as the support windows-the eight windows of the main
window plus the five windows that make up each panel. When SNOOPWPS is first
displayed, only the first eight window handles of the 1024 available in the reserved
memory block are actually engaged (Figure 13.13).

Whensnoopingawindow,thatquantitywillbeincreasedbysix:thefivestructural
windows of the panel plus the window selected with the mouse. The memory block
is filled in sequentially without resorting to any kind of memory management
algorithm (linked list, reference series, last recently used, etc.) The simplicity of the
data being handled suggests this approach, which is in any case fast and efficient.

As  the  user  closes  an information panel,  the  application executes  a clean-up
sequence  destroying the  six involved handles,  and making this packet of slots
available for any other subsequent snooping operation.



WPs progranming     671

PAGE
CONTA~G

UP TO 1024-

TOTAL-EROF
SNOOPED
vvneows

8
SNOOPVVPS

STRUCTURAL
VVINDOWS

---

I w i aAko* s
®

®

®

HWND SNOOPED i/VINDOW
• FRARE
• CLIENT
• TTTLEBAI
• TrrLERENU•h4-

Figure 13.13  Scheme for managing information in SN00PWPS.

®®®

case   WM_CLOSE:

f
HWND   hwndcli.ent    ;

USHORT    uslD    ;

PHWND    phwnd     ;

//   retri.eve  the   owner,   tha   appli.cati.on   cli.ent  wi.ndow
hwndcli.ent   =   OWNER(    PAPA(    hwnd))     ;

//   retri.eve  the  poi.nter  to  the  hwnd   li.st
phwnd   =   Wi.nQuerywi.ndowptr(    hwndcli.ent,    0)    ;
//   retri.eve   the   frame  wi.ndow   ID
uslD   =   Wi.nQuerywi.ndowushort(    PAPA(    hwnd),    QWS_ID)    ;

//   erase  the  snooped   handle
phwnd   +=    (    uslD    -    INFOWINDOW)     ;
*phwnd   =   NULLHANDLE    ;

//   destroy  the  i.nfo  panel
Wi.nDestroywi.ndow(   *(    phwnd   +   1))    ;

I
return    (MRESULT)TRUE    ;

®®



672.     OS/2 2.1 Wor:laplace shell progranming

ThewindowsoftheclassWC_STATICandthetwobuttonspresentineachpanelare
interdicted from investigation through SNOOPWPS. Their exclusion, however, is not
achieved by storing handles, but by evaluating their IDs. All this happens inside the
WM_MOUSEMOVEmessage:

®®,

case    WM_MOUSEMOVE:

I
P0INTL   pt    ;
HWND    hwndsnoop    ;

PHWND    phwnd     ;

ULONG     1.      ;

ULONG    ulcnt    ;

USHORT    uslD    ;

//   ski.p   i.f  the   user   hasn't   pressed  the  Snoop  button  yet
l.f(    !fsnoop)

break   ;

pt.x   =   SHORTIFROMMP(    mpl)     ;

pt.y   =   SHORT2FROMMP(    mpl)     ;

//   map   the   poi.nts   for   the   DESKTOP
Wi.nMapwi.ndowpoi.nts(    hwnd,    HWND_DESKTOP,    &pt,    1)     ;

//   determi.ne   the   selected  wi.ndow
hwndsnoop   =   Wi.nwi.ndowFrompoi.nt(    HWND_DESKTOP,    &pt,    TRUE)     ;

//   ski.p   1.f   1.t   i.s   the   STOP   button
i.f(    hwndsnoop   ==   CTRL(    hwnd,    CT_STOP))

I
//   release  the  mouse   capture
Wi.nsetcapture(    HWND_DESKTOP,    NULLHANDLE)     ;

break   ;
)
//   check  the  memory   area   and   create   the   i.nfo   panel
Checkwi.ndow(    hwnd,    hwndsnoop)    ;

)
break   ;

®,®

AftercarryingoutsomepreliminaryoperationsintheWM_M0USEMOVEmessage,the
actual processing of this portion of the program takes place in the Cfecckwz.7tdozo()
designed specifically for this purpose. This choice allows the user to obtain the same
effect when a window handle is dragged from a window produced by pressing
WinTree over the Snoop button. Cfecckwz.7tdozo() will always receive the handle of the
application's client, and the handie of the window to analyze. The first operation is
retrieving the ID of this last window, and comparing it with those assigned to the
windows belonging to the classes WC_STAT I C and WC_BUTT0 N appearing in the infor-
mationpanel.Of course,thisisnotthebestwayfordiscriminatingbetweenwindows
used by the application and those present in the system. To improve the algorithm,



WPs progranming     673

therearetwoviablesolutions,bothquitesimple.Thefirstoneistretrievingtheparent's
handle or the cHent of the panel. This handle is among the six stored in the memory
block managed by the application. The second solution requires the user to store the
handles of an windows in the area available to SNOOPWPS. You can choose which-
ever you please (probably the second one is faster).

B00L   Checkwindow(         HWND   hwndcll.ent,            //   appli.cati.on   cli.ent   wi.ndow
HWND   hwndsnoop)               //   wi.ndow   chosen   by   the   user

I
LONG    1.      ;

USHORT    uslD

PHWND    phwnd

ULONG   ulcnt

HWND    hmenu

//   query   the   wi.ndow   ID
uslD   =   Wi.nQuerywi.ndowushort(    hwndsnoop,    QWS_ID)    ;

//   ski.p   i.f   i.t   i.s   a   wi.ndow   i.nsi.de   an   i.nfo   panel
I.f(     (    uslD    >=   DISPLAYWINDOW)    &&

(    uslD    <=   DISPLAYWINDOW   +   WINDOW_INFO   +   2))

return   FALSE   ;
®®

Tobackupthroughthehistofsnoopedwindowsorthosebelongingtotheapplica-
tion, you must be able to access the contents of the window words in the program's
cfient, and then loop through the hwnd list quickly.

//   retri.eve  the  poi.nter  to  the   hwnd   li.st
phwnd   =   (PHWND)Wi.nQuerywi.ndowptr(    hwndcli.ent,    0)    ;
//   get   the   number   of  wi.ndow   i.n   the   block  memory   area
ulcnt   =   Wi.nQuerywi.ndowuLong(    hwndcli.ent,    si.zeof(    PHWND))    ;

//   ski.p   i.f  we   are   not   on   a   di.fferent  wi.ndow   or   on   the   desktop
for(   i   -0;   1.   <   ulcnt;    )
I

l.f(    !*phwnd)

I
phwnd   +=   SN00PNEXT    ;
i    +=   SN00PNEXT    ;

contl.nue   ;
)

i.f(    hwndsnoop   ±   ((HWND)*phwndi+))
return   FALSE    ;

1.++    ;

)
®®®



674     0S/2 2.1 Workplace shell progranming

The handle of the window context menu of the buttons in SNOOPWPS are stored
inthefourbytewindowwords(OWL_USER)ofthetwowindowsbelongingtotheclass
WCTBUTTON.  The menu options  of the Snoop button allow the user to  destroy or
minimizealldisplayedpanels.Bothoptionsmustbeenabledassoonasanewwindow
is exained.

Thesyntaxofcfeeckwz.#dozo()isthencompletedbyacautothefunctioncreefes#oop-
Wz.7tdozo() which physically creates the panel.

®

//   modi.fy   the   popup   menui.terns
hmenu   =   Wi.nQuerywi.ndowuLong(     CTRL(hwndcli.ent,    CT_SNOOP),

OWL_USER)     ;

Wi.nsendMsg(    hmenu,    MM_SETITEMATTR,

MPFROM2SHORT(    MN_CLOSEALL,    TRUE),

MPFROM2SHORT(    MIA_DISABLED,    ~MIA_DISABLED))     ;

Wi.nsendMsg(    hmenu,    MM_SETITEMATTR,

MPFROM2SHORT(    MN_MINIMIZEALL,    TRUE),

MPFROM2SHORT(    MIA_DISABLED,    ~MIA_DISABLED))     ;

//   hwndcli.ent         ->   mai.n   wi.ndow   cli.ent   wi.ndow
//   hwndsnoop           ->   wi.ndow   spotted   by   the   user
return   Createsnoopwi.ndow(   hwndcli.ent,   hwndsnoop)    ;

)

Creating a Panel
The function Crcflfes7toopwz.7tdozo() retrieves the pertinent data regarding the window
selected by the user with the mouse, or indicated through a drag operation; it then
displays the data. Let's ignore the logic for filling in the SNOOP which is just slightly
more complicated for fulfilling the greater demands of SNOOPWPS; otherwise it is
similar to what we have  already seen for  SNOOPER.  The text strings with the
description of each piece of information and the values of the members of S N00 P are
all contained in one memory block allocated in Cre¢fes7toopwc.77dozo().

®

//   allocate   room  for  the   i.nfo  to  output
DosAllocMem(    (PPV0ID)&pstart,    4096,    PAG_COMMIT    I    PAG_WRITE)

rc)

Wi.nAlarm(    HWND_DESKTOP,    WA_ERROR)     ;

Wi.npostMsg(    hwndcli.ent,    W.M_QUIT,    OL,    OL)     ;

)
pchstri.ng  =  pstart   ;
®®,

Thetextstringsareseparatedwithaterminationcharacter(`\0')andareallpassed
to the window procedure of the panel class after the creation of a panel's client.



WPs progranming     675

//   di.splay   i.nfo
lLen   =   (LONG)    spri.ntf(    pchstri.ng,    "hwnd:    Ox%lx",    snoop.hwnd)    ;

pchstri.ng  +=  lLen   +   1   ;
lLen   =   (LONG)    spri.ntf(    pchstri.ng,    "ID:    Ox%x",    snoop.uslD)    ;

pchstri.ng  +=  lLen  +   1   ;
1Len   =   (LONG)   spri.ntf(   pchstri.ng,   "Styles:   Ox%lx",    snoop.ulstyles)    ;

pchstri.ng  +=  lLen  +  1   ;
lLen   =   (LONG)    spri.ntf(    pchstri.ng,    "Wl.ndow   wndproc:    %p",
snoop.pfnwndproc)    ;

pchstri.ng  +=  lLen   +   1   ;
®,

lLen   =   (LONG)   spri.ntf(   pchstri.ng,    "Parent   ClassName:   %s",    snoop.szpar-
entclass)    ;
pchstri.ng  +=  lLen   +   1   ;
lLen   =   (LONG)   spri.ntf(   pchstri.ng,    "Owner   ClassName:   yos",    snoop.szowner-
Class)    ;

pchstri.ng  +=  lLen   +   1   ;
®

Thechosenstrategyimpliesthatthecreationofwindowscontainingallinformation
takes place with two calls to Wz.77C7'e¢fewz.77dozu(), so the user can have greater control
over the message flow that is involved in this phase.

®®

//   frame   wi.ndow   i.nfo
fcd.cb   =   (SHORT)si.zeof   fcd    ;
fcd.flcreateFlags   =    (    FCF_NOMOVEWITHOWNER    I     FCF_STANDARD)    &

~FCF_MENU   &   ~FCF_ACCELTABLE   &   ~FCF_SYSMENU    ;

fcd.hmodResources   =   NULLHANDLE    ;
fcd.i.dResources   =   RS_ICON    ;

//   retri.eve  the  i.nfo
pMem   =   (PHWND)Wi.nQuerywi.ndowptr(    hwndcli.ent,    0)    ;
ulcnt   =   Wi.nQuerywi.ndowuLong(    hwndcli.ent,    si.zeof(    PHWND))    ;

//   fi.nd  the  fi.rst  free  posi.ti.on   i.f  any
pMem   +=   SN00PER0BJ    ;
ulpos   =   SN00PER0BJ    ;

whi.le(   *pMem   &&   ulpos   <   ulcnt)

I
pMem   +=   SN00PNEXT    ;
ulpos   +=    SN00PNEXT    ;

//   create   the  wi.ndow  to   document  the   i.nfo
spri.ntf(   szstri.ng,   "Ox%lx",   snoop.hwnd)    ;
hwndFrame   =   Wi.ncreatewi.ndow(             HWND_DESKTOP,    WC_FRAME,

s z S t r 1. n 9 ,
WS_C LI PCH I LDREN ,

OL,     OL,     OL,     OL,

hwndcli.ent,    HWND_TOP,



676     0S/2 2.1 Workplace shell programming

INFOWINDOW   +   ulpos,

(PV0ID)&fcd,    NULL)     ;

//   10.Helv   i.n   the   ti.tlebar
Wi.nsetpresparam(    CTRL(    hwndFrame,    FID_TITLEBAR),

PP_FONTNAMESIZE,    si.zeof(    szFont),    szFont)    ;

//   create   the   cli.ent   wi.ndow.   OWNER   i.s   the   appli.cati.on   cli.ent   wi.ndow
hwndpanel   =   Wi.ncreatewi.ndow(            hwndFrame,    szsnoopclass,

NULL,

OL,

0,     0,     0,    WINDOWCY    -30,

hwndFrame,    HWND_TOP,    FID_CLIENT,

pstart,    NULL)    ;

Wi.nsetwi.ndowpos(    hwndFrame,    HWND_TOP,

(    ulcnt    -SN00PER0BJ)    /   SN00PNEXT   *   WINDOWCX    /    5,    0,

WINDOWCX,     WINDOWCY,

SWP_ZORDER     I     SWP_SHOW     I     SWP_MOVE     I

SWP_SIZE    I     SWP_ACTIVATE)     ;

®,

The creation of the client will cause, as always, the message WM_CREATE to be sent
to the window procedure of the class to which it belongs. It is in this portion of the
code that the text strings are inserted into the WC_STAT I C class window, and into the
two buttons identifying the parent and the owner.

The function Wz.7tQ#e7t/Wz.77dozoModez() indicates the nature of the code that regis-
tered the window class by exalnihing an instance of it:

#defi.ne    INCL_WINTHUNKAPI

LONG   APIENTRY    Wi.nQuerywi.ndowModel(    HWND    hwnd)     ;

P ar ameter              D es cription
hwnd                      Handle of the window to be examined
Retunii value          D e s cription
LONG                     Definition of the programming model employed (16 bit or 32 bit)

The return value is the define  PM_MODEL_1X  or  PM_MODEL_2X, indicating, respec-
tively, the 16-bit version and the 32-bit version, assuming that the given parameter
corresponds to a window handle.

h the code of SNOOPWPS a special text string is stored in the member s zModel of
the SNOOP structure:

®,®

//   query   the  wi.ndow  model
strcpy(     snoop.szModel  ,    (Wi.nQuerywi.ndowModel(    hwndsnoop))    ?

"32bi.t"   :   "16bi.t")    ;

®®



WPs progranming     677

TheremainingoperationperformedinCre¢fes7coopWz.7tdozo()involvesthestorageof
thegivenwindowhandleandoftheframehandles,withtheirrespectivecontrols,into
the memory area managed by the appHcation. The order is not random. The first
handleisthatoftheiuspectedwindow,followedbythatoftheframe.Thedestruction
ofapanelisalwaysbasedonthesecondone,buteventhoseofglobaldestructionand
minrfuzation are driven by the menu of the Snoop button:

®,®

//   add   the   new   hwnd   and   update   the   poi.nter
*pMem++   =   hwndsnoop    ;

*pMem++   =   hwndFrame    ;

*pMem++   =   hwndpanel    ;

*pMem++   =   CTRL(    hwndFrame,    FID_TITLEBAR)    ;

*pMem++   =   CTRL(    hwndFrame,    FID_SYSMENU)     ;

*pMem++   =   CTRL(    hwndFrame,    FID_MINMAX)     ;

//   appli.cati.on  ti.tlebar
//   appli.cati.on   sysmenu
//   appli.cati.on   mi.nmax

®®®

Cre¢£cS7toopwz.7zdozo()terminatesbysubclassingtheiconofthetitlebarmenusothat
it may be dragged by the user:

®

//   ti.tlebar  subclassi.ng
hwndTi.tlebar   =   CTRL(    hwndFrame,    FID_SYSMENU)    ;

Wi.nsendMsg(    hwndTi.tlebar,    WM_PASSPROC,

MPFROMP(    Wi.nsubclasswl.ndow(    hwndTi.tlebar,

Ti.tlebarwndproc)),    OL)

EI
®,®

The source code of SNOOPWPS appears in Listing 13.1. The proliferation of win-
dows on the screen is a consequence of the usage of the SDI model. The information
panels  are, nonetheless,  strictly governed by the application through the Snoop
button's menu. The ownership relationship between the application's client and the
panels do not find any tool in the API that helps to identify them, as is the case of
parenthood. SNOOPWPS solves this problem by storing the frame's handle in the
private memory area.

The API for WPS Objects
We will now explore new territory in OS/21and. The header file PMWP.H contains
the prototypes of fifteen functions (Table 13.1) that are notably different from the
traditionaltoolsformanagingwindows.Wehavealreadydiscussedsomeofthenew
functions in Chapter 4, With the expressiveness and ease of use of W€.7tsforewz.7tdozo-
Pos() and Wz.yiResfo7iew€.7cdozopos(). The storage of the position of a window, and even
of the presentation parameters, is a distinctive feature of the WPS interface. Further-
more,inChapter12thePANELapplicationusedWz.7tLo¢dFz.ZeJco7t()toretrievetheicon
associated with an object present in the system's interface. Let's concentrate on the
Apl of phrm.H



678     0S/2 2.1 Worlaplace shell progranming

Table 13.1  The PM API Functions for Using the WPS Objects (SOM)

Function                                           D escription

WinRegisterobjectclass
WinDeregisterobjectclass
WinReplaceobjectclass
WinEnunobjectclasses
Wincreateobject
WinsetobjectData
WinDestroyobject
WinQueryobject
WinsetFilelcon
WinFreeFilelcon

WinLoadFilelcon
Winstorewindowpos

W.inRestorewindowpos

Winshutdownsystem

Registers a new class of objects.
Cancelsaprecedingregistrationofaclassofobjects.
Replaces a class of object.
Enumerates the classes of objects.
Creates an object belonging to a class.
Setsthestructuralandaestheticfeaturesofanobject.
Destroys an object.
Returns the handle of an object.
Sets the icon of an object.
Releases the memory associated with the icon of an
Object.
Retrieves the icon associated with an object.
Saves the attributes of a window in the system's
initialization file.
Retrieves  the  attributes  of  a  window  from  the
system's initiafization file.
Executes system shutdown.

The group of functions we are about to explore is characterized by the presence of
the  word  OZ7/.ccf,  as  in  We.77Crc¢feoz7/.ec£().  This  has  nothing  to  do  with  the  oZ7/iecf
owl.77dozt7s  descending  from  HWND_OBJ ECT.  in this  case,  it is  something  completely
different. Some folders of WPS, like the System Setup, contain a number of objects
that are easy to confuse with true applications. For instance, consider the Color
Palette.  The  overall aspect is  that of a generic window  containing, probably,  a
Valueset for representing the palette of colors. This is not the case. By examining the
Settings window of the Color Palette (Figure 13.14), you can see that this is not an
executable module.

One of the components of OS/2 2.1 is known as the System Object Model (SOM),
atoolthathelpsincreatingobjectclassesuseddirectlyinapplicationslikeWPS.The
Color Palette is an object of the class WPcolorpalette, defined in WPS. Therefore, the
first test is to get to know the names of the object classes of WPS.

The application CLASSES shown in Listing 13.2 will display in a listbox the names
ofallobjectclassesregisteredinWPSatanygivenmoment(Figure13.15).Thefistcan
changeintime,generallyduetotheadditionofnewclassescreatedbyprogrammers.
Destroying one of the classes of WPS is an operation to be avoided unless you have
some new class with the same functionality.

The logic of this code is based on the function Wz.7t£7t#77cOZ7/.ec£CJ¢sses(), which has
the following syntax:



WPs progranming     679

gz=               ,-*.        ...~         -.,.-.           ~         £                                          i-

loneous?¥!.i!iif,®®®S
®®S®®S
®o©S§fiveffRIS®
®S®®®® fi..

ii®®®S_= ngife
D-ra-g~  ii-air  to  target  window.    Hold  Alt
keg for §g§tem-wide cb__eqge.asgrffngREffRE

¥#i!i;ii;
EE]

`If E}E

ca%ttecoEJEanceDmefital,ffipalettds

.F±         AfA

Schemepalette     Selecbelnsta]l     Sound     ERE    Syst(

Ptrf           ife              ##rf

Thrfefty            ng  #ey#*
ap£         REng      if e*-edifer#

d S«unn $8havT8r

REDisp}dyfxishLnswind&5ww

E`H
Figure 13.14  The Color Palette is a WPS object, not an application.

:!pPE:v:i§.i;I:'_.I;#!i!`ii¥.I,..'.: 1.  :::+::;.;:::d€{~.I.:'.    :++.i:+  :;.:;-+A          :..     -=`h`  ...,, I., rr.:,,--  :::; :`. +:I.-.I   .;;:::::'Ji;:';;i:

;#E5:i:ttcehr=TwCpPpR+|itT:-'=.          -:}:.-+`f   .:.jT     ...- jH-:.        .               .:         ...,-      :+`=     -.Ah;+ch     ..

:FDrvoiE.#u,='..w'E'5;`[:-I:.'}..i  1    ,  :::+:I;.;i::Jf{~.I.:'.    :++.i:+  :;.:;.    |^                           i-,I          i`       I

;#BP:.:!¥eJE-NLWs=-PRINT:,:,..I.I::,::::.,:,.,+:.,j~=.:.`..;..::::I.,I.:.::.:':+,`:::,--:.:;,:xp.:;;,:.-.:::,::;:::+;::;:+
:qupIP.e.-'WP,NLTS` .... _       .          .    ++...     +`                     „           .       : ..-.. :+,.'.   :...., ;:-:-`v:.:.`:+:..;.    :.';:;?::;;:ji

;#i:!Ei;_ii¥:;i:F:;;;SF±G+,..:,++I:':..;:.:`.::`.;`..:`.i:`+t.`!'...{';.{*:-.-',:"::+i:',I.:;i-:'-;`'+;;;:i;;::`':;';.i:;::;±L:;i:::::i:;;:;:j`::+;;

;§§;::a:§s::¥;:;Ep.:_:¥b¥:w:P,.:::.,,:::;.:;`j.::.,.,...:..t....`,~.,Tr.,.+`:::+:+:+::T.,++::;:;:;:+:`,:;;::;:;:;a+;.:i:;:I:,++:.:;:::§`::,:~

•§§§§i§je:a:rjtrMi¥#p;ty               t     :    ~    j`        :~               +        '`:        ;+J>:^:+,r::,i;5:;:i.::::i+¢f`:i:ch:+

i#55`t[££:i:I-i+;.ndpwM.py..p..  :+-.   ::.     :+:-+I     i::<r   ::.:.:.`':+                    f`           :,.    i,       .;,~2...:-::::..  ::€:::-.~;,:;:;,,I;

##ii!;::ii:i#::¥p#ff;:::::GF,Gtt                      lr           }::'

r,

Figure 13.15  The output generated by the application CLASSES.



680     0S/2 2.1 Wor:laplace shell progranming

#defi.ne   INCL_WPCLASS
B00L   APIENTRY   Wi.nEnumobjectclasses(   P0BJCLASS   pobjclass,

PULONG   pulsi.ze)

Parameter
pobjclass

pulsize

Retan Vahae
HOBJECT

Description
AddressofthememoryblockwhereinyoucanfindOBTCLASS
structures containing information about the WPS classes
Whenthefunctioniscalled,mustcontainthesizeofthememory
block containing the OBJCLASS structures. When the function
returns, contains the actual size of the OBJCLASS structures
Description
HandleofthecreatedobjectorNULLHANDLEincaseoffailure

The best way for using this function is to call it once, and specify NU LL in place of
the parameter of type P0BJ C LASS. In this way, the second parameter will report the
size of the memory block containing the information describing the classes. The
dynamic allocation with DosAZJocMe77t() is set in multiples of a page, according to a
simple algorithm:

®,®

ULONG   ulsi.ze   =   OL    ;

//   get  the   buffer   di.mensi.ons
Wi.nEnumobjectclasses(    NULL,    &ulsi.ze)    ;

//   allocate  the  pages
DosAllocMem(    (PPV0ID)&pobjclasses,   4096   *   (    ulsi.ze   /   4096   +   1),

PAG_READ     I     PAG_WRITE     I     PAG_COMMIT)     ;

//  get  the  classes   i.nfo
Wi.nEnumobjectclasses(    (P0BJCLASS)pobjclasses,    &ulsi.ze)    ;
®,®

The memory block auocated with DosAZZocMe77c()  is  then  occupied by a  set  of
structures of type 0 BJ C LAS S:

typedef   struct  _OBJCLASS
i    //  ocls

struct  _OBJCLASS   *pNext   ;
PSZ   pszclassName    ;
PSZ   pszModName    ;

}    OBJCLASS    ;

typedef   OBJCLASS   *P0BJCLASS    ;

The name of the class and that of the module (the DLL) that contains it, appear in
OBJ C LASS as pointers. This also impfies the presence of a member that points to the
next OBJ C LASS structure in the list. The module WPCONFIG.DLL contains, among
otherthings,theclassesWPcolorpaletteandWPFontpalette-theobjectColorPalette
is an instance of the first one.



WPs progranming     681

Au objects produced by WPS (the Color Palette, for instance) are accessible from a
C listing by creating specific instances with Wz.7tcre¢feob/.ec£():

#defi.ne   INCL_WPCLASS
H0BJECT   APIENTRY   Wi.ncreateobject(     PSZ   pszclassName,

PSZ   pszTi.tle,
PSZ   pszsetupstri.ng,
PSZ   pszLocati.on,
ULONG    ulFlags)     ;

Parameter
pszclassNane
pszTitle
pszsetupstring
pszLocation
ulFlags
Return Value
HOB]ECT

Description
Name of the class to which the object belongs
Title given to the object
String containing the obj ect's initialization instructions
Definition of the location to place the object
Flags for creating the object
Description
HandleofthecreatedobjectorNULLIIANDLEincaseoffailure

This syntax is not complicated, but it introduces some new concepts. First, 1et's
defineanobject.TheColorPaletteisanobject,justliketheFontPalette,andtheicons
representing the system's drives. The objects of the WPS classes will manifest them-
selves on screen as windows, which are virtually indistinguishable from those pro-
ducedtraditionallywithW£.77Crc¢fesfdw£.77dozu().Anobjectisnothingotherthanaset
of code and data originally defined in SOM. Thanks to the syntax of SOM, you can
define the behavior and the basic characteristics of a class of objects by integrating all
details through PM API calls. This is the case of WPS's folders and of many other
components of the interface. This solution allows you to encapsulate code and data,
andmakesitveryeasytoemployandreusetheminapplications.Withoutgoinginto
greater detail, suffice it to say that in order to create a WPS object it is only necessary
to know the name of the available classes.

The class must be indicated as the first parameter to W€.7tcre¢feob/.ecf (), and it can
be any of those shown in Figure 13.15 and summarized in Table 13.2.

Any text string can operate as an object's title, and will show up in the traditional
titlebarofawindow.Theinitiahizationstringofanobjectcontainsaseriesofdirectives
to be executed, and given according to the following syntax:

setti.ng=va1ue;setti.ng=va1ue;setti.ng=va1ue

Each object has a specific sequence of setting parameters, defined directly by the
class to which it belongs. Considering that the goal is to construct an object, the only
requiredinitiahizationisthatofspecifyingopEN=DEFAULT(withnospaceinbetween!)
as the startup string.

The fourth parameter establishes the position in the system where the new object
willbe placed. The possible choices are the defines listed in Table 13.3        '

These defines identify other standard components of the WPS interface. The syntax
of Wz.7zcre¢feob/.ec£() is completed by a creaLtion flag that can be selected from those
listed in Table 13.4.



6&2     0S/2 2.1 Wor:laplace shell progranming

Table 13.2  The Classes of WPS

Class                                          Class                                          Class

WP0bject
WPFilesystem
VVPDataFile
Wprogranifile
VVPcommandFile

VVpprinterDriver
WPBitmap
VVI?Pointer
VIcon
VVPMet
VVppif

VVPFolder
VVPDrives
WPNetwork
Wpstartup
WPTemplate`s
WPDesktop
VVPFindFolder
VIRootFolder
WPNetgrp
VVpseIver
VVpsharedDir
VVPMinwinviewer

WPAbstract
Thdex
Vvprinter

VVPRErinter
WPSpool
Wpsystem
VVpshredder
VVPDisk
Wpprogram
VVPMouse
WPKeyboard
wpcountry
VVpclock
VVPSound
VVppalette
VVPFontpalette
VVPcolorpalette
VVPschemepalette

Wpwinconfig
VVPPower
VVPREst
VVpshadow
VVPNetLink

WPTransient
VVPFilter
VVPFinder

vvPNIwindow
VVpcnrview
VVPFoldercv
VVPDiskcv

Table 13.3  Some of the Standard Locations to Place Objects in WPS

Lo cadion                                   Description

<WP_NOWHERE>
<VVP  DESKTOP>
<VVP  OS2SYS>
<VVP  TENIS>
<VVI?_CONFIG>
<WP_START>
=WP_INFO>
<WP_DRTVES>

In the hidden folder
h the desktop
In the OS2SYS.INI configuration file
h the templates' folder
h the System Setup folder
h the Startup folder
h the hiormation folder
In the Drives folder



WPs progranndng     683

Table 13.4  Creation Flags for W€.#Cre¢feob/.ecf()

Flag                                                Vahae       Description

C O_FAILIFEXISTS                     0

C O_REP-LACEIFEXISTS            1

C O_UPDATEIFEXISTS             2

The  object is  not  created if there  already
exists another one with the same ID.
The  object replaces  another  one  with the
same ID.
The object updates any existing object with
the same ID.

The return value is a handle to the object. This is a piece of information used only
from within other functions of this category, like Wz.7tse£Ob/.ecfD¢f¢(), but that has
nothing to do with the window adopted by the object to appear on the screen. The
syntaxforobtaininganinstanceofaColorPaletteisthefollowing:

®

H0BJECT   hobjclr    ;

®,,

hobjclr  =  Wi.ncreateobject(    "WPcolorpalette",
"Object   color",
" 0 P EN=D E FAU LT" ,

"<WP_DESKTOP>",

CO_UPDATEI FEX ISTS ) ) )

®,,

Once created, the object will appear on the screen as an ordinary window. The
interactionsbetweentheuserandtheobjectareinpracticethesameasthosebetween
the user and an ordinary window, at least for the standard structural elements: the
titlebar,thesizingicons,andsoon.TheobjectspresentintheSystemSetupfolderare
the result of a can to W.74Creflfeob/.ec£(), without specifying in the initialization string
the OPEN directive. A double click on the object will cause the object to be opened in
its standard mode.

Do you remember how to create a window of the WC_CONTAI NER class? You can
achieve the same result in a much simpler way by calling Wi.7tcreflfeoz7/.ecf () with the
following syntax:

®,®

H0BJECT   hobjclr    ;
®®,

hobjclr  =  Wi.ncreateobject(    "WPFolder",
"New   folder",
" 0 P EN=D E FAU LT" ,

"<WP_DESKTOP>",

CO_U PDATE I FEX I STS ) ) )

®®



684     0S/2 2.1 Worlcplace shell programming

The result is shown in Figure 13.16, after some objects taken from WPS have been
placed in the folder.

By inspecting Nezt7/ozder with SNOOPWPS you can see that it is a window of the
classwc_C.ONTAINER.hpractice,creatingobjectsoftheclassesregisteredinwpsisan
ideal way to simplify the writing of code for OS/2 programs. hverting the line of
reasoning, WPS objects are nothing but large portions of code and data that take
advantage of PM's AVI.

wpA5 t#. ::trsr:enri:tfagcekthoefr: i:oao]L¥taattia°Eo::hree::::a=g°t:: ehtwane:re a:fpHic:ti£:Sd=;
representingtheobject.hdeed,whenwritingCcode,thefundamentalelementofthe
wholeofthedesigner'sworkismanagingwindowsthroughtheirhandles.Itislikely
that the same is true for objects. It would be useful to have some function that, given
the handle Of an object (H0BJ ECT), was able to return the handle of the associated
window, and/or information about its status (closed object, mininrized, and so on).
Currently there is nothing like this, and therefore we have to find a different solution.

A Simple Installation Program
The extreme ease of creating a folder with Wz.77Cre¢feoz7/.cc£() is the leading idea for
implementingaverysimpleprogram.hWPS,foldersarealsoavisualrepresentation

jill
Miscelleneous

aex;;...`           =-                      §-.    --.        -.     .i---.              5     -.....                                                                            --*.      ......                    .H

H      ill       EE     ©
nEERE     MasterHelplndex         Minimized          StaitHere

Vvindowvlewer

t
VvlrueRD 8se

rgrai~G

EEEEEEBE

i{z,%
Vffi EXE

i+`\+ir+.tl

SN00PEREXE

E@
Templates

hwnd  Ox75404ado
lD. Ox8008
§ques. Oxb2001041
WndowwndproGIAAD27BC
Vvindow words. Oxc
Copt,On
Size  508x230
Positlon  (44)fl 1.233)
Class.#37-WC_CONTAINER
ClasssMe. Ox30000010
Classwndproc:1A4A78B0
hah  Ox210001
hmc]  Oxaea7
P'D 4 -"D 1
Vvindowmodel  32bit
WP_OBJI+ANDLE-209654

Bee      fi

NewFolder

RE#
[lrl`/e A                Shredder

Figure 13.16  A folder created as an object.

`----,---,`



WPs progranming     685

of a directory in the ffle system. The creation of a folder called TWENY in the system's
desktop is the equivalent of generating a directory on the bootup disk under the
directory \DESRTOP (in OS/2 2.1 the desktop is called simply DESKTOP, and ng
longerDesktop2!Oasinversion2.0).Wecantakeadvantageoftherelationshipbetween
WPS folders and the file system's directories. The installation of an application from
floppy disks on the hard disk requires a two-level interaction with the ffle system:

• Create the directory in which to place the files
•  Copy the files

Atfirstglance,thesemightseemtobeoperationsthatcouldbedelegatedtotheDos
API of OS/2. The first one, though, can be replaced by the creation of a folder,
displayed in the preferred mode (icon view or detail view, for example), through the
specific  object API.  To  create  a  folder, just  call  Wz.7tcre¢feob/.ec£()  specifying  the
W P Fol de r class. To optimize performance it is convenient to create and display it on
the screen as an icon. Only after all the files involved have been copied to the target
directory do we  open the folder  calling  Wz.7ise£OZ7/.ec£D¢£¢() with the  appropriate
setting string. Separating the creation from the opening is the the best approach in
terms of how promptly the object appears on the screen. h the case of the INSTALL
program, the custonrization goes a little further. Not only do we create a folder, but
we also substitute a blue version of the traditional folder image for the standard icon.
Each object class supports some initialization commands in the setup string. one of
these is  I CONRESOU RCE, which adopts a specific icon as the object representation on
the screen. Its syntax requires the icon ID, followed by the DLL module name where
the icon is located. Despite its simplicity, you must follow these two guidelines:

• The icon ID has to be a number, not a definition
• Specify only the DLL name without the extension (.DLL)

Thefollowingcodefragmentshowshowtocreateanewfolderonthedesktopwit.h
a different icon:

®®®

//   create  the  I.nstall   folder
hobj   =  Wi.ncreateobject(      "WPFolder",

"Install    Folder".
" I CON RESOU RC E=301, M I E02" ,

" <W P_D ES KTO P> " ,

CO_REPLACEIFEXISTS)     ;

®®®

Beforecopyingthefilesyoumustunderstandthiscrucialpieceofinformation-the
bootup disk in a OS/2 2.1 system is no longer limited to the first hard drive, C:. It can
beanypartition,eitherprimaryorlogical.DosCopy()needstoknowthefullpathname
to where it should copy the files. To get the boot-drive letter, you have to rely on
DosQuerysyslnfo()..



686     0S/2 2.1 Workplace shell progranming

®®®

Dosouerysyslnfo(      OSV_BOOT_DRIVE,    QSV_BOOT_DRIVE.    (PV0ID)&lDri.ve,

si.zeof(    1Dri.ve))    ;
®®®

This function returns one or more pieces of data in its third parameter according to
the values of the first two.

#defi.ne    INCL_DOSMISC
APIRET   APIENTRY   DosQuerysyslnfo(     ULONG   i.Start,

ULONG    1.Last,

PV0ID   pBuf ,

ULONG    cbBuf )     :

Parameter
istart
iLast
pBuf
cbBuf
Return Value
APIRET

Description
First information to retrieve
Last information to retrieve
Pointer to a buffer to store the requested set of data
Buffer dimension
Description
Zero if the function operated successfully

To get the boot drive number, both 1. Sta rt and 1. La s t are set to QSV_BOOT_D RI V E.
These values are then transformed into the drive letter to form the full pathname for
the Desktop. DosCopy() does the filling of the new folder. When the copy operation is
over, INSTALL (Listing 13.3) calls Wz.7tse£Ob/.ec£D¢£¢() to open the folder showing its
contents. The program presents itself on the screen with a listbox as its client, inside
which the names of all files present in the current directory are listed (Figure 13.17).

The selection of the hstall option from the File menu will first cause the creation
of the Install Folder, and then physically copy what is contained in the listbox to the
new directory, through DosCopy(). The result is shown in Figure 13.18.

The creation of a new folder with Wz.7tcreflfeoz7/iec£() involves much more than the
mere production of a window of the WC_C0 NTA I N E R class. We can take advantage of
the fact that a WPS folder corresponds to a directory-and therefore implies the
creation of a new directory in Wz.7tcrc¢£eob/.ec£() by specifying the class W P Fo 1 d e r-
and that it displays its own contents automatically in the ICON mode by default. To
see what information is actually present in the Details view, you only need to act
upon the object's wz.7tdozu co7efexf 77te77# (Figure 13.19).

The code of INSTALL also introduces another interesting novelty. As you might
suppose for a WPS-compliant apphication, in this case fz.fzez7¢r dr¢ggz.7zg is supported.
The preliminary operations are similar to those described in the DRAG example
(Listing 13.1): subclassing of the titlebar menu and then interception of the message
WM_BEGINDRAG.DifferentfromDRAG,though,theinformationtransferredwithdrag
& drop refer to a series of files that are physically present on some media (probably a
floppy disk). h this case, it is convenient to use the support function DrgDr#gFz7es()
which simplifies all operations covered by the process.



WPs progranming     697

fi
Miscellaneous

:test-,-±L
•wlNmeBDexB

%,±?,
RE_Ier±l'Iri,III¥ij

'[,','g;,'ij

vyFERE

Sun
_

Sit'OOPEREXE

H,
Templcites

:`;\;#!J:\+::i:'#\l:-::::L:\;F:;:!!::.;i+`

E:{g.#~32tgE£..gL.:£\::S=3g.\j::.:::::tc+.a

I;ii.I,iiii!i-;ii!i!ili,i\ii:ii!!;;;bik

I

E;):I;:\:!i:i!\:i!I::;£i::i:li.:i
i;;:-¥32,\;,E£:`i

:-:i:,I-!:::¥:::-A,:y`
4\L|ST03}where.obj
-:'    .r~+-'-..           +    +I1 - + ` *  * -   \- I-\-

-A

:\~:i:I:.3~\#.:;::a

osre¥tem                                 RE          i#
Ditv8 A               Shredder

Figure 13.17  The INSTALL immediately after its activation.

Figure 13.18  Display of the files copied by the INSTALL program to a
new folder in the system.



688     0S/2 2.1 Workplace shell programndng

HPLe¥e„D  ,ns%er                            M,scEeous

dfa

RE. ''g]#¥¥#1{TgFdiae=ig¥nTng€FSf---~Tu:==¥oT9p'===iiREiti}
11                    ITh                   5ZiiiH               fTh                EZE

iae    fiREltlfflr. a • -Betait§  Wlew                                                              REun

EEE=   lcon •.-.---'±--.-`---..,dB`ts
Real nape S'Ze Last wile date,Ezffi Lastwhetlme Last access dclI-F5

aBF*|=Hi-H](_  - -1lHIE`['
E CussES DEF CussES DEF 162 10/4nl3 122222222222 4-48 1

q#"

IBM C++ Beta CLJrs: E CussES DEP CussES DEP 560 10/4ro3 0.12 1

E± E RE cL+rssEs ERE CussES ERE 38 444 10/4/93 2052 1

E cLjrssEs H CussES H 319 10/4„3 2030 1 ife         13    #

E#

Toolkit 2 1 M[E02 RE CussES Ice cL+rssEs leo 2692 10/4no3 07.54 1
REifefaRE#

as, E] cL+rssEs MAK CusSES MAK 601 10/4„3 00.12 1
A  *RE ly8RE#.rr^rfr|f. ::f,',:'3,A  fu:

Aul*

E ctjrssEs Obi CussES obi 5326 10/4/93 2156 1

Vwl= EWEiffiiPIJ,Ow200 EiRE- CussES RC CussES BC 364 10/4/93 .19 36 1

pr;,:+i.:i,-9'Ie\J',.rr',i,':i+iraE CussES BES CussES FRE§ 2850 10/ap3 20,42 1

E MIE02 DLL MIE02 DLL 15 215 514193 ;25,30 1

E MIE02 H M'E02 H 903 5/4/93 24:38 1

\,,€r:`.`"+.-I

E MIE02 uB MIE02 uB 1.536 5/4/93 2532 1

*::+I;:::I;::tr1;~`.'tr`,.}J,`j.,-:.1.,I,I::wi:,,,.I:it,:,:

E..-..,........;

t;i.-..-,..-.-.--...--..,*---....,-.,...

-(F:\PM32\?H A3 P 1 `4 \ •sTO`3\.rii:B2rdi,,

WNWoan ere F:\PM32\CHAP14\4r ST0B\inie82.h-a

-Sun F:\PM32\CHAP14\IF:\PM32\CH.AP14,\ ST03.\mien2sTo3\rfeherra .IiI.Jc- F:\PM32\CHAP1'4\ STd3\wh6rer,h
SNOOPEFiEXEE@ F:\PM32\CH-AP14\'t:-

-S.TO'3\wh€feiob.rii:"'L:a{T+i1'~3*-P^-,--A*rp.f4cf*~T`,e,i +A

i=zEz=9ai:I:=ml                                                                                        ull
Templates DlrveA    Shredder

Figure 13.19  The display of the folder Install Program in Details view.

#defi.ne    INCL_WINSTDDRAG

B00L   APIENTRY    DrgDragFi.les(      HWND    hwnd,

PSZ   *apszFi.les,
PSZ   *apszTypes,
PSZ   *apszTargets,
ULONG    cFi.les,

HP0INTER   hptrDrag,

ULONG   vkTerm,

B00L   fsourceRender,
ULONG    ulRsvd)     :

Parameter
hwnd

apszFiles

apszTypes

apszTargets

Description
Handie of the window wherein the drag & drop operations are
initiated
Pointer to a CIIAR containing the addresses of the file names to
be dragged
Pointer to a CIIAR containing the addresses of the file types to
be dragged
Pointer to a pointer to a char containing the addresses of the
names to assign to the files during dragging



cFiles
hptrDrag
vkTerm
fsourceRender

ulRsvd
Return Vahae
BOOL

WPs progranming     6&9

Number of files being dragged
Handle of the icon to be displayed during dragging
Virtual key indicating termination of dragging
hdicates whether the caller will receive a DM_RENDER mes-
sage for each file
Reserved
Description
Success or failure of the operation

The syntax of DrgDr¢gF37es() only seems complex. After the handle of the window
engaged as the source of the drag & drop operations, there are three parameters, au
of the same type (PAPS Z) even if in the declaration they are expressed as pointers to a
PSZ. This is, in practice, a pointer to a pointer to a UCHAR. The strategy behind this is
verysimilartowhatwehaveseeninimplementingasp€.7tz7#£fo7tcontainingtextstrings
(Listing 7.13). The application will take care of dynamically allocating the memory
block and reserve for itself the first portion for storing the addresses of the file names
placed after the last pointer (Figure 13.20).

By indicating  NU LL for the parameter pTypes you can instruct DrgDr¢gF€.Zcs() to
retrieve the type of each single file affected by the drag & drop operations directly
from its extended attributes. This is the most convenient solution. The same value can
begiventopTargets.hthisway,thedraggedfileswilltakeonthesamenameinthe
target folder  as  they had in the  source folder,  since they now have  a  different
pathname.ThenunberoffilesindicatedinthecFi.1esparameterisusedbyDrgDr¢g-
Fz.Zcs() to determine how many memory addresses are needed for handling the file
names.

The image associated with the mouse pointer is a simple icon that can be loaded
with  Wz.7tLo¢dpoz.7tfcr().  WPS  uses  a  standard  bitmap  when more  files  are  being
dragged.  The  application's  own icon is  the  solution  adopted  in INSTALL.  The

POINTER TO TIH FIRST FELENAhAI
POINTER TO THE SECOND FELENAhffi

rpQINIERTOTHETrmDFILENAME

I I I

PonunR
<                    TO THE LAST

FILENARE
I-111111111I- -

®®®

I

Figure 13.20  The scheme used for defining the second parameter of
DrgDragFiles().



690     0S/2 2.1 Workylace shell progranming

parameter v kTerm corresponds to the virtual key that indicates the termination of
dragging.ItisadvisabletousethestandardsolutionrepresentedbyVK_BUTT0N2.The
syntax  of DrgDr¢gFz7cs(J  is  then  completed by  an  indicator,  the  fsourceRender
parameter, that establishes if the passing of files is to take place directly under the
function's own control (TRU E) or by means of some subsequent interaction with the
source application (FA LS E). In INSTALL it is more convenient to let DrgDr¢gFz.Zes()
takecareoftransferringthefiles.However,itisveryimportanttospecifyasthesource
window handie the titlebar menu. This assures the reception of the message DM_R E N -
D E RCOM P LETE for each file that reaches the final destination correctly. Furthermore,
the window procedure of the subclassed titlebar menu will receive the message
WM_ENDDRAG.Thisistheidealplacetodestroythememoryblockpreviouslyallocated.

Figure 13.21 shows the INSTALL program in fun action, when the entire contents
of the running module's directory are being dragged. The interaction with WPS is
total,asyoucaninferfromthepresenceofthedialogthatliststhefilesbeingdragged.

DrgDr¢gFz7es()  eliminates  the need for  structures  like  DRAGI NFO,  DRAGITEM,  and
D RAG I MAG E and a great deal of the preliminary setup work for drag & drop. Releasing
the titlebar icon over any destination folder almost invariably corresponds to a 77coz7e
operation. To transform this into a copy operation, the user must press the CTRL key.

-t-
",::..      .   .~      -.

•**e...,                  -I..                      -=           ...-                         ..                  .-.                                  -.                        ,           .                                            ..                    .--.,-.,                      H gr5lgr8TE-€,tj
HPLaserJ&IBMC+'rE

EEE

#S#f,rftiI,t`•.`-;I.

BERE        Installdef

", iou

Toolklt',a2.1, REIrffiREi8lffREIRIFT©TT±--~-~ap g$ 9 gr#riff=   rfu i esife* faT±]EHH
FEHREgiv¥q apas± #                 i ¥   ¥!;  ::                              hD-ELn-mlmp'i:FT.r:¥'un¥T¥I--'dr¥fi:!iREFi::-=iffii:i
F:\PM32\CHAP14\LIS!T03\in§tallc   ,                     L      et  fj I   : +1,`    ` I    i:I    1   :   `!   ,   I"''   :  `i,  i;.    ,  :i

¥cht&quHffWF EXERE,RE`NNNwhJO-rm11SNOOPEE@Templa F;\'PM32\CHAP1.4l[IST03\in§jti||d6r-i      -::  +           .5.  }     ¢fltJ+   o»#  ++j.+.  ,:,tt.„`i¢u..rF
F.\DM39\r:HA'D14\1  lf=Tn3\in=rall  r]en~   .                                                       ~!L            +     "      t!  `   `.t'  a-I

1'#d1WRnexgRE¢tes

xp       .'     ®'-®
.:i,T,,`':   i;i'ji,,I+,*+!\iI+'t.I,i`-i(i:-,}L,i-;alt]t`lL,,J.,L.1,,,a,i~`;t+,=,~-1*J',1.ulJ,1,I-'1--,

-:------_--*1I..`1",1`'+I+-.I+,i',L:i;;..,;::::Life;.:,:y,-:.;::i:i,:::,„,:<J:;,,;:It,``r,-.+`a.+s..I,(,1'+i----_-:--:(,iI"I:t.al,:::I!::;,r",,,Z!1~,I,,r,,,;-I:,:::,::T+I;Pt.IIrt,

ffirfap=#*ngifeargrF fe   uB£  _        + *ifefafeELg tr                                             +£

.    I.inI-.                                 `       wh
NSTALL.EXEi:i:++tt++.ffi;tt£'``.`'`*,-1I.                                              *j-Id'H

-aa-^^.coacoa6<+are~^m^^ermachaeaat+a+I_cop-peng±;;rFrrvx+1mxp:;g=er.~caur-~#

fri
r         ±fuF*rtyf        i                      pe¥q                      ¥rfu     #rf

:#*£in               RE#ngffiS#£       #ngF*rty:     ffitrifeng#ife

i.-.....a...;   rna...ill   ..-.-¢           -.-
Dr.i`ngA    Shredder

Figure 13.21  Dragging of the files present in the listbox of INSTALL by using
DrgDragFtles().



WPs progranndng     691

Destroying an Object
The rule that states that each element must be destroyed after its use holds even for
objects;thisiswhytheAPIprovidestheW£.7tDesfroyob/.ecfofunction:

#defi.ne   INCL_WPCLASS
B00L   APIENTRY   Wi.nDestroyobject(    H0BJECT   hobject)    ;

P ar a;meter               D e s cription
hobject                    Handle of the object to destroy
Retwn value         Description
BOOL                      Success or failure of the operation

The only parameter of this function is the handle previously rettmed by W€.7t-
Cre¢feob/.ec£0.Itfollowsthatthispieceofinformationmustbepreservedthroughout
theapplication'scode.Objecthandlesarepersistent,asopposedtowindowhandles.
Each object always maintains its own handle for all its life, and for any subsequent
activationofthewholesystem.Now,1et'smovetoamoreambitiousproject.

Developing a WPS Editor
ThebasicguidelinesforthedevelopmentofaprogramcomplyingwiththeWPSstyle
rules are the fouowing:

• No menu bar
• Presence of aL window context menu
• Use of the titlebar menu
• Heavy use of the objects furnished by WPS
• Implementation of drag & drop operations, within the program, as well as with

the system's interface.

You don't have to waste the looking for these functionalities in the Productivity
folder. Uhfortunately, the applets provided here are not at all instructional for those
designers who wish to develop OS/2 programs truly integrated in WPS. However,
there are some excellent examples that can demonstrate exactly the opposite-how
7tof to develop an application for PM. One of these is the system editor, E.EXE. The
leastyounrightexpectfromanapplicationlikethisissomeprintingabhity.

Examining E.EXE you can recognize some larger component at the interface level
asweuasintermsoffunctionality.Agreatdealoftheapplication'slogicisgovemed
by the adoption of a window of the WC_MLE class for dealing with the user's input
operations. The menu bar presents only four top-levels, and the use of numerous
dialog windows, some of which are of the predefined type (including Open, Save,
Save As...). Without oversimplifying, the work of the designers of E.EXE has largely
been that of assembling various components of PM's API according to the CUA 89
style rules. We can do the same, referring to the CUA 91 specifications and to the



692     0S/2 2.1 Workplace shed progranming

behavioral and aesthetic rules of WPS. Here are the operations that an editor should
provide to its users:

•  Load a preexisting ASCII file
• Edit a document from scratch
• Save the document being edited whenever the user demands so, and giving it a

name as the user pleases
• Perform printing
• hteract with the Clipboard
• Perform search and replace operations
• Change the text's font
•  Change the colors of the background and of the text
• Set options, like the displaying the current line nun.ber

The last two points are not absolutely mandatory, but nonetheless fall into the set
of features commonly supported. On the whole, the above list corresponds to the
contentsofthedrop-downmenusofE.EXE.Thetraditionalmethodofinteractingwith
the user is that of presenting a number of menu items distributed among the various
cascading menus. WPS, on the other hand, prescribes interaction according to a
different scheme.

Loading a File
Thisoperationisusuallyperformedintwoways:actinguponanobjectproducedwith
the  editor  and taking advantage  of the  document-application association,  or by
dragging a file directly over the program. If you think about this, both operations are
not that much more demanding than the traditional approach; rather they have
undoubted advantages. Forcing the user to manage the PC by concentrating on the
objectspresentonthedesktopisunquestionablymuchbetterthanpresentingadialog
window containing a number of controls, where the concepts  of the file system
(directory, drive, and pathname) are always present, requiring specific knowledge.
Navigating among folders is a simple operation that anybody can manage without
knowing anything about the structure of disks, partitions, and formatting standards.
This approach simply emphasizes the oZ7/iec£-orz.e7tfed nature present in WPS. h this
way,applicationsarenolongerthefocalpointofallattention;rathertheyarejusttools
for handling specific data.

Editing a New Dooumeut from Scratch
An editor for OS/2 2.1 must be developed according to the SDI model, with only one
input window given to the user. The writing of a new document thereby implies the
deletion of the current contents of the editing window or the activation of a new
instanceoftheprogram.Thebestapproachistohaveatoolforeliminatingtheexisting
textinonlyoneuserinteraction.Thezoz.77doz„o77fexf777e7it4oftheprogramwilltherefore



WPs progranming     693

presentthemenuitemNew.AnotheraltemativeistoselecttheCreateanothermenu
item in the window context menu to place a new instance of the application on the
desktop (hike a new object) or to open a new executing copy of the program.

Saving a Document
TraditionalapplicatiousalwayshavetheSaveandSaveAs...optionsforauowingthe
usertosavethecurrentdocunent.Asimplerandmoreintuitivewayisthroughfz.fzez7¢r
dnggr.7tg, as shown in Chapter 12. Even in this case, the user does not have to know
anythingaboutthefilesystem,butonlyneedstomanagetheobjectspresentinWPS.
The simplest and most straightforward method of saving is to position a document
directlyinthedesktoporinsomeopenfolderthatmightbepreviouslyprepared for
the saving operation. The implementation of something equivalent to the Save As...
optionisnolongernecessary.WhathasbeensaidforSavestillappliesforsavingand
changing names. When you try to save a document with the name of some existing
object, WPS wams you of the problem and pops up a dialog window to ask the user
to decide what should be d\one (Figure 13.22).

Figure13.22ThedialogdisplayedbythesystemwhenyoutrytoPlaceanobject
in a container where something with the same name already exists.



694     0S/2 2.1 Workylace shell programming

This is an ideal tool for assigning a new name to the object or for overwriting the
existing one. You might be skeptical about this new approach, but keep in mind that
thereisnorulethatforcesanapplicationtopresentthemenuitemsSaveandSaveAs...
for saving your work in a named ffle. It is only out of habit that you might thjck that
tlris is the standard way.

Printing
With the term prz.7tfz.77g we generally refer to both the actual printing (the Print menu
item), and possible changes to the print attributes made by interacting with the
printingdevicedriver(themenuitemPrintsetup).Thedocunentsproducedwithan
editorarenotverysophisticated,asfarastypesetting,fonts,andotheraspectswhich
are more sophisticated in the realm of word processors or DTP tools. The interface
with the print drivers installed in the system can be done through an option of the
program's zoz.7€dozo co7tfex£ 777e7t#, even if this is not a mandatory requirement. Even
regarding the issue of printing there are some special considerations introduced by
WPS.Theinterfacewillallowavarietyofrepresentations(icons)ofthesamephysical
output device, associating each one of them with different print attributes (like page
orientation,forexample).Anexpertos/2usercouldprobablysetupvariousconfigu-
rations for the printer, and put them in some handy folder. Then, to perform custom
printing, the user only needs to drag a document over the appropriate device image,
and release the right mouse button.

Thisoperationmustbeallowedbyanyapplication,alwaysbyimplementingfz.fzez7¢r
dr¢ggz.7cg. Printing is thus reduced to the execution of a well-known and easy-to-per-
form gesture: the dragging of the titlebar icon.

Interacting with the Cttpb o ard
h discussing the previous points, we have considered stylistic and functional solu-
tionsthatarequitefarawayfromthehabitsandrulesofCUA89.hthiscase,though,
theadoptionofasecondarymenuintheapplication'swindowcontextmenucontain-
ing the traditional options for cutting and pasting is the best solution. The adoption
ofacceleratorsandthewell-estabHshedhabitsofuserswiththissequenceofkeysisa
guarantee of success, and does not affect the look and feel of the program.

Searching and Replacing Teat
At the current stage, WPS does not have any special object for performing these
operations.Itisaweakpointoftheinterface.TheFind...optionispresentinanyWPS
object, but it is implemented in the old manner through a dialog window. In the next
release this could and should change. As for the Clipboard, the best solution is to put
the Find... option in the program's window context menu, and then display a dialog
wherein the search specifications can be stated.



WPs programming     695

Changing the Look.. Fouls and Colors
The traditional approach for fonts is to present a special dialog window, as imple-
mentedinE.EXE.Thisisnotagoodsolutionandshouldbeavoided.Thereisasystem
objectknownastheFontPalette,specializedincategorizinganddisplayingfontsthat
can assign them to windows by means of a drag & drop action. Inevitably, in all
demonstrations of OS/2 this feature is displayed, although it is never actually used.
It'stimetochangethis.TheFontPaletteisasystem-1eveltool,and,assuch,isalways
available to and accessible from any application. Furthermore, the user win already
knowhowtouseit(itisanamusingoperationforbegimerOS/2userstoplaywith).
The problem with the Font Palette, and also with the Color Palette, is that they are
WPS object-generated starting from SOM classes. PM's API offers some tools for
interactingwithwpsobjectsdirectlywithinyourownccode,withnogreatproblems.
This is the way to go. hi practice, using a Font Palette and a Color Palette can
completelyreplacetheoptionstop-1evelmenuinE.EXE.Moreprecisely,auelements
that take part in changing the look of an appHcation (like displaying accessory
windows,settingparameterslikeunitsofmeasurementinaDTPpackage,andsoon),
arebestplacedinoneormorepagesofasetting'snotebook,justasinWPS.

Let'snowexaninethePMEDITsample,whichisabasicframeworkforcreatingan
editor weu-integrated in WPS.

PMEDIT

EI

The initial look of PMEDIT (Figure 13.23) is that of an ordinary window of the class
WC_MLE,overlappingtheclientofagenericframe.Aninitialdifferenceistheabsence
of the client. It is the 7%Ze itself that plays the role of client for the main window.

Bypressingtherightmousebuttoninanyportionofthe7%Zeyoucausethewindow
context menu to be displayed, and the window  emphasized (Figure 13.24). This last
aspect is important because it visually enforces the relationship between the menu
and the object.

The absence of a cfient belonging to some class registered in the code, and the
appearance of a window context menu associated with the 777Ze, are two hints that
demonstrate the need for subclassing both windows. The interception of messages
addressedtothewindowprocedureoftheclassWC_MLEinsomefunctiongivenbythe
application also presents the possibility of setting up some code capable of dealing
withdrag&dropoperations.Thedraggingofanobject(inASCHformat)overthe7%!e
should be handled directly by the 777Ze window as soon as the right mouse button is
released (Figure 13.25).

PREDIT also has a notebook for assigning some settings regarding the window. It is
activatedbyselecthgthesetthgsoptionfromthesecondarymenuintroducedbyQpen
inthewindowcontextmenu.TheexampleshowninListing13.4implementsonlyafew
pages(Figure13.26):Youcanenrichthenotebookwithfunctionalitiesofyourown.

The Attributes page shows the radio buttons that will set the color for the text,
background,and font.hthepage,thereisnocolormap(1ikethevaluesetproposed
in Listing 7.14), nor is there any list of available fonts. By pressing the radio button



696     0S/2 2.1 Wor:laplace shell progranming

Figure 13.23  The PMEDIT editor is built around an fflze window.

Figure 13.24  The editor is equipped with a zt7£.#dozo co#fe#f menu.



WPs progranming     697

Figure13.25PMEDITinteractswithWPSbyacceptingobjectsinASCII
format.

v.<^:.a             *-c;:.              iw5          -*                                   I.'       ..-..            -i               -.`                 .-.      .-,       .          ...

=E=  VIO_XGA=DEVICE(BVHVGA,BVHXGA)

;a„ii+£8+

SET  VIDEO_DEVICES=Vlo_XGA
DEVICE=D:\OS2\XGARINGO.SYS
lFS=D:\OS2\HPFS.IFS   /CACHE:1024  /CRECL:4
PROTSHELL=D:\OS2\PMSHELL.EXE

I Syste

in..-.t-T~  ±**    FTqu±    Trowri        t#  !Aunbutes
SET  USER_lNI=D:\OS2\OS2.INl
SET  SYSTEM   INl=D:\OS2\OS2SYS.INI
SET  OS2   SHELL=D:\OS2\CMD.EXE

#ng3       fffi   *#    S  q     drrfu+iiI.
Values

SET  AUTOSTART=PROGRAMS,TASKLIST,FOLDE Gene,ali:

SET  RUNWORKPLACE=D:\OS2\PMSHELL.EXE a      givibute§         --

SET  COMSPEC=D:\OS2\CMD.EXE
F!{§ffii;¥X;#;o¥ d ab¥tse¥ae   RI¥ngfwh    =iREJRTngi# ...4ffiafyi!i`¥trke#`.+-iJ ..iigivJ*`xp£¥

LIBPATH=.;D:\OS2\DLL;D:\OS2\MDOS:D:\;D:\OS:
SET  PATH=D:\OS2:D:\OS2\SYSTEM;D:\OS2\MDI
SET  DPATH=D:\OS2;D:\OS2\SYSTEM:D:\OS2\Ml
SET  PROMPT=Si|Sp]SETHELP=D:\OS2\HELP;D:\OS2\HELP\TUTORlfSETGLOSSARY=D:\OS2\HELP\GLOSS;SETIPFKEYS-SBCS

RE`.;..  .  -.'..  ,-'.'i`       .`;;IREarc¢fatfr**»ffiprfingDooumen`tittributesr&*
PRIORITY_DISK_lo=YES
FILES=20DEVICE=D:\OS2\TESTCFG.SYSDEVICE=D:\OS2\DOS.SYS iiffi i-RE

<         s€m    ffl

DEVICE=D:\OS2\PMDD.SYS
BUFFERS=30
lopL=YES

•                                  -.                         ..-.                                                                                                        -                                   --                    rs¥

=fi
j-i   qu SI-                                    Folder

RE#
SNO0PEFIEid

EDoSre
Dlrvt}A    ShreddeTemplates

Figure 13.26  The Settings notebook of PMEDIT.



698     0S/2 2.1 Wor;laplace shell progranming

pertaining to the background color an instance of the Color Palette appears on the
screen (Figure 13.27). Notice that the title, though, is different from that of the object
present in the System Setup folder (Object Color in PMEDIT).

SelectonecoloranddragitoverPMEDIT.Theeditoradaptsandusesittopaintits
background. (However, there are some problems with the WC_M L E class that requires
asolutionatthecodelevelofitswindowprocedure;onlysomeoftheprimarycolors
willproducethedesiredeffectonan777Ze.ThecustomcontrolMIECC.DLLinChapter
10 shows how to bypass the problem). The same logic extends to the setting of the
color of text. After pressing the appropriate radio button, repeat the same operation
inthecolorpalette,anddragittotheeditor;nowitaffectsthetextcolor(Figurel3.28).
Naturally, even the change of font follows the same scheme (Figure 13.29).

PMEDIT supports various drag & drop operations, has a window context menu,
andfollowstheSDIconcept.Theseareaninterestingfeatures,whichhavepartlybeen
described in the previous examples. The real news is in the interaction with WPS
objects (SOM).

WPS Objects in PMEDIT
WPsobjectsusedinpMEDITareinstancesofequivalentobjectspresentinthesystem
Setup folder. Furthermore, the application will maintain a ``private" use of its own

SET  VIO_XGA=DEVICE{BVHVGA,BVHXGA)
SET  VIDEO_DEVICES=VIO_XGA
DEVICE=D:\OS2\XGARINGO.SYS
IFS=D:\OS2\HPFS.IFS    /CACHE:1024  /CRECL:4
PROTSHELL=D:\OS2\PMSHELL.EXE
SET  USER_lNl=D:\OS2\OS2.INI
SET  SYSTEM_INl=D:\OS2\OS2SYS.INI
SET  OS2_SHELL=D:\OS2\CMD.EXE
SET  AUTOSTART=PROGRAMS,TASKLIST,FOLDE
SET  RUNWORKPLACE=D:\OS2\PMSHELL.EXE
SET  COMSPEC=D:\OS2\CMD.EXE

DEVICE=D:\t
DEVICE=D:\(
DEVICE = D:\{

f`#!¥j;:®®®S
®®®©©¢
®®®®®e
EE®®®®®

|st±=aiF6iTr.`.   E unE#
[IriveA    Shredder

Figure 13.27  Setting of colors in the editor will respond to objects given by
WPS.                                                                                         ,



WPs progfianming     699

gffi rB3{ fFrpr¥^°ce§ffiRTE n`           xp                p ::-I

a       #ty¥#+#    ®*#        tsgiv    a Athbutes

kgrof¢er              r##      £;+
Values

General
EH                                      .                                                         lH:sr..i   `   .             _              Hses#fa`.*Sxp

tt#::itto§§ft;fpr#}+ iIi£!,

`S'«jI#**S``§3````.``iferfiifeh

j#£aokground fafor      frotetsftets  s¢\\`^

fa+ffixffont    apife  ifegiv       #

¥,fa

rffipr  RE    ch#&iQS
Document athbutes                                            .i

ut#ifadi®

eeife€  ifesxpiife#£#¥           £`ra  `%

Figure 13.28  Assigning a color to the text present in the editor.

Figure13.29Assigninganewfonttothedocumentpresentintheeditor.



700     0S/2 2.1 Wor:laplace shell progranming

instanceoftheColorPaletteandoftheFontPalette.Despitethis,nothingpreventsthe
userfromcoloringthebackgroundofthescreenbytakingthecolorfromthosepresent
intheobjectcolor.However,theminimizationordestructionofthesettingswindow
inpREDITcausesthesimultaneousdestructionofthewpsobjectspreviouslycreated
by pressing the corresponding radio buttons. The integrated management of the
Settings window and those of objects is  controlled from within the  application.
hmediately after the creation of a system object; PMEDIT retrieves the window's
handle and stores it in a data area of its own. The header ffle PMEDIT.H contains a
new data structure, N 8 KDATA, defined like this:

typedef   struct  _NBKDATA
I

HWND    hwndclr    ;

H0BJECT   hobjclr    ;

HWND    hwndFnt    ;

H0BJECT   hobjFnt    ;

B00L   fText   ;

}    NBKDATA     ;

typedef   NBKDATA   *    PNBKDATA    ;

The first four members describe the pair of handles HWND/H0BJ ECT for the Color
PaletteandtheFontPaletteactivatedbytheuser.Ihordertosavescreenspaceandto
simplifytheuserinterface,theselectionofacolorforthetextandforthebackground
causes the appearance of only one single instance of the Color Palette. The boolean
memberfTexttakesthevalueTRUEwhenthecolorpaletteregardsthetextcolor.This
does not directly affect the operations of creating a new object, but rather its sub-
sequent use.

Toretrievethewindowhandleofanobject,theprogramemploysasomewhatweak
algorithm. The only working solution is to search for a window that'has as its titlebar
the string used when the Wz.77Crc¢feoz7/.ecf () was caued. This is certainly not a fast and
efficient approach. A better solution would be that of having a special API function
for this purpose, but it is not available at this stage.

The Structural Elements of PMEDIT
The application fits into a window that has an 777Ze as its client. As usual, this window
issubjecttothreeoperations:subclassing,assignmentoftheowner,andchangeofthe
background color.

Subclassing is imposed even on the titlebar menu icon, in order to support drag &
drop operations. The new function is called Tz.fzeMe7t#W7tdp7'oc(). Immediately after
creating the main window and its ensuing subclassing, the program creates a second
standard window having a 7tofebook as its client. The notebook's handle is stored in
the QW L_U S E R portion of the application's reserved memory area (Table 13.5).

Both the 77tJe and the 77ofebook have as their owner their respective frame windows,
eveniftheyaretheclient(clientsdonothaveowners).Thisvariationonthetraditional



WPs progranming    701

Table 13.5  The Window Procedures of the Classes and Dialogs Used in PMEDIT

Function                                          D e scription

NewMewndproc
TitleMenuwndproc
Notebookwndproc
Titlebarwndproc

Framewndproc

Paranswndproc

Settingswndproc

Window procedure of the application's 777Ze window
Window procedure of the titlebar menu
Windowprocedureofthenotebookwindow
Titlebar window procedure to implement the title
editing.
Frame window procedure to intercept drag & drop
messages
Dialog procedure of the dialog associated with the
Values page of the Settings notebook
Dialog procedure of the dialog associated with the
Attributes page of the Settings notebook

scheme is accounted for by the possible need for intercepting the notification codes
generated by the two windows belonging to predefined classes. Often, though, it is
necessary to act directly at the subclassed window procedure level, because many
classesdonothavenotificationcodesthatare``smart"enough,especiallyconceming
the typical WPS operations,like drag & drop.

Changing the Name of a Document
PM EDIT offers yet another suggestion to OS/2 software appucation developers. h
WPS,changingthenameofanobjectisachievedbyclickingthemousebuttonwhile
theALTkeyispressed(orwiththecombinationShift+F9).Inanycase,thisactionis
always performed directly on the object. By following this rule, we can effectively
implement an alternative to the Save As... command typically found under the File
menu.Thetitlebaristheitemboundtocontainthetitleofawindow(application)and
isalsotheprincipaltoolforperformingmovements.Theinteractionbetweentheuser
and  a  window  of the  class  WC_TITLEBAR  is  rather  lilnited  and well  defined.  By
exploringtheAplsofOS/2youmightcomeacrossthemessageWM_TEXTEDIT,which
is generated automatically by the system every time the user presses the left mouse
buttontogetherwiththeALTkey.TheWM_TEXTEDITmessageissenttothewindow
underlying the mouse's hot spot. This behavior suggests subclassing the titlebar in
order  to  intercept  WM_TEXTEDIT.  When the  message  WM_PASSPROC  is  detected,  the
applicationwiualsocreateawindowoftheclassWC_ENTRYFIELD,withnosize,and
origin in the point (0 , 0). The parent of this window will be the titlebar. Even the
entryfieldissubclassedsothattheENTERkeycanbedetected.



702.     OS/2 2.1 Workplace shell progranming

WM   TEXTEDIT                0x0426

mp 1                          USHORT
uspointer

mp2                         POINTS
ptspointerpos

Return value          BOOL fResult

Description
Sourceofthemessage:TRUEindicatesthe
mouse, while FALSE indicates the key-
board
Pointer position expressed in window co-
ordinates
Indicates whether the message has been
processed (TRUE) or not (FALSE)

The information contained in mpl and mp2 of WM_TEXTED IT are not useful in this
case. When the message is received, the application first retrieves the size of the
titlebar, and then gets its title, with Wz.7tQ#erywz.77dozt7Rcc£() and Wz.7tQ#enyw.77dozt7-
Tex£(), respectively. The two pieces of information are used for sizing the entryfield
so that it completely covers the titlebar; it is then displayed to the user, containing the
application's title (Figure 13.30).

The loss of focus or pressing the ENTER key are the two conditions that terminate
the window's titlebar editing, and makes the entryfield disappear from the screen.

This simple integration to the code of PM EDIT will make window management
consistentwithwhatisstandardwithWPSobjects,anddemonstratesonceagainhow
malleable and flexible the OS/2 user interface is.

backup
SET   VIO   XGA=DEVICE {BVHVGA, BVIIXC.
SET   VII)EO  DEVICES=VIO  XGA
DEVICE=D:TOS2\.XGARING6.SYS
IFS=D:\OS2\HPFS.IFS      /CACHE:102
PROTSHELL=D : \OS2 \PMSHELL . EXE
SET  USER   INI=D:\OS2\OS2.INI
SET   SYSTEM_INI=D:\OS2\OS2SYS.Il ¥¥

i

SET   Os2   SHELI,=D:\Os2\ciro.EKE         ¥
SET   AUT6START=PROGRAMS , TASKL|sT cO
SET   RUNwoRKpr,ACE=D : \Os2\pMSHEL] T=
SET   coMspEc=D : \os2\c}m.EXE
I,IBPAIH= . ; D : \os 2 \DLL; D : \oS 2 \iroc
SET   PATH=D:\OS2;D :\OS2\SYSTEM;I
SET   DPATH=D:\OS2;D:\OS2\SYSTEM;
SET   PR014PT=Si[ SP]                                        #
SET   HELP=D:\OS2\HEI.P;D :\OS2\HEI .'
SET   GLOSSARY=D : \OS2\HELP\GLOSS; 3§
SET   IPF   KEYS=SBCS
PRIORIT¥  DISK   IO=YES
FILES=20                                                               i
DEVICE=D : \OS2\TESTCFG. SYS                 i

PE¥ESE=P : \9!3\99£= S¥.S..                       RE

Drag  item  to  target
k+ig+gHgfleEprd'

fiHflHiREiijE:fiHfii=i

•     %j5+i`,ir#               fyF        #

E=E=

ttrfe            F

5xtco'or-#

a#*gap#§n5#jofor€ngch

8 Tins Rmn

14.Helv

12 . Courier
12.Helv

Alt  keg  for  §g§tem-wide 9mgJL
ihFEapH FjRE

REi#
r{iu€„`    Shredder

Figure 13.30  Editing the title of a window directly in the titlebar.



Index Of Listings

Itsting     Na:me

RAC-
ERASE

SHOW

CREATE

3. 6              CLIENTCL

3. 7              PAINT

4.1              PARENT

4.2              OWNER

4.3          roI

4.4               STORE

4. 5              TWol^7ND

4.6              CLCOLOR

4. 7             ENtJM

4. 8              BROADCST

4. 9               SETFO CUS

Description

The source code file MACHINE.C.

Erasing the client window with Gpz.£r¢se().

This source code now allows you to color the client win-
dow in white.

A WM_CREATE case is added in the window procedure of
the application shown in Listing 3.4.
CLIENTCL  controls the  color  of its  client,  changing it
when the window is resized or when it gets the input
focus.

The source code of PAINT illustrates the output clipping
mechanism of PM.
A pair of windows both generated by calling W£.7tc7ieflfe-
stdwindow().

Example of ownership between top-level level windows
in PM.
Generation of two related PM windows by means of the
Wincreatewindow ( ) firmctton.

StorageofwindowinformationintheOS2.INIsystemfile.
A sample window procedure for displaying the rationale
governing the positioning of a predefined class window
with respect to the appHcation's client window.
CodeforcheckingthecontentsoftheWindowList'sHstbox.
Enun.eration of the top-level windows to detect the pres-
ence of any previous instance.

/

Usage  of  Wz.7tBro¢dc¢s£M5g()  to  prevent more  than  one
instance from rurming at the same time.

The code used to intercept the WM_S ET F0 C U S message in a
window procedure.

703



704    Index of ltstings

5.1                KBD

5. 2              MOUSE

5.3              TIRER

5.4               i/Vn\ITMp

ICON
SYSBNI
ICONDRAG
BITh4AP

ASSOCT

6. 3              MENUAPP

6.4             MENUAPP
6.5              MENUAPP

6. 6              TWOMENUS

TWORENIS

BMPRENI

ACCEL
RTMENU
CNTXT

SNOOPER

7. 2              BUTTONS

7. 3              BUTTONS

7.4               SCRLLBAR

ThesourcecodeofapMapplicationthathandleskeyboard
input and echoes it to the screen.
The code that displays the mouse's coordinates inside the
client area of a window.
Samplesourcecodeofaprogramdemonstratingtheusage
of timers in PM.
Code for creating a window starting from a window tern-
plate in a resource file.
Assigning an icon to a window.
Application that displays all of PM's predefined bitmaps.
Drawing and dragging an icon on the screen.
Source code of an application that allows you to move a
bitmap by selecting it with the mouse.
The source code of the ASSOCT appHcation, a practical
example of the usage of the ASSOCTABLE resource.
ThesourcecodeofthehAINUAPPappficationwithamenu
barandanappropriatelymodifiedwindowprocedure.
Determining the input tool used to select a menuitem.
Changing a menu item's attributes  dynamically in the
ATTRS application.
TheappHcationTWOMENUSisequlppedwithtwomenu
templates; the two menus are loaded altematively in the
window.
Anelegantsolutionforhandlingtwoormoremenusinthe
same window.
Structure of an application that uses bitmaps in place of
ordinary text strings as menu items.
Dynamic loading of an accelerator table in ACCEL.
Building menus inside the client area of a window.
Source code of the CNTXT application with a customized
titlebar menu and a window context menu.
SNOOPER, a PM appfication that can display the proper-
ties of windows of other programs.
The various kinds of button shapes present in the API of
OS/2 PM.
Changingthecoloroftheclientareaofawindowbyusing
a pushbutton.
Usage of a horizontal scrollbar to modify the color of a
window's client area.



7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

LISTBOX

FLOW
ODLIST

ENTRY

COMBO
NOTEBOOK

FOLDER

SLIDER

SPIN

VALUESET

PRESPARAM
VVHEREIS

OLDOPEN

NEWOPEN
MODELESS
RENT
SNOOPER
SNOOPER
VVREREIS

MSGQUEUE

SUBCLASS
SUPERCLS
BORDER

RE01

Index of ltstings    705

A sample listbox filled with text strings coming from a
resourcefile:Theselecteditemisreproducedinawindow
of class WC_STAT I C.

Capturing the message flow during window creation.
Theinsertionofagraphicalobjectsinalistboxbydelegat-
ing to the application all output operations.
Creating of an entryfield window that accepts a preset
number of characters.
A Combobox example.
A simple notebook equipped with several primary and
secondary page tabs.
FOLDER is an example of usage of a WC_C0 NTA I N E R class
window in a PM application.
The SLIDER application demonstrates the usage of slider
controls.
TheSPINapplicationshowshowtoinsertnumericvalues
or text strings in a spinbutton.
VALUESETshowsallthefunctionalityofawindowofthe
class  WC_VALUESET,  with the  exception  of drag  &  drop
operations.
Sample usage of the presentation parameters.
The source code of the WIIEREIS application for deleting
a set of files.
The source code of a PM application presenting a modal
dialog.
The code of the NEWOPEN example.
An example of the usage of a modeless dialog in PM.
The source code of Menu Maker.
Source code of SNOOPER.
High priority SNOOPER
A multithreaded version of WHEREIS .
Sample that displays the contents of an application's mes-
sage queue.
An example of subclassing a control in PM.
Source code of an application performing superclassing.
ThesourcecodeoftheBORDERapplicationthatproduces
the application shown in Figure 10.14.
Thesourcecodeofthe.NIE01.DLLdynamiclinkinglibrary
that provides its services to the BORDER application.



706     Index of ltstings

10.6             i/VINDOW

10.7           RE02

10. 8             SYSDLLS

10.9           RECC

10.10           USECTL

11.1             CLIPPUT

ThesourcecodeoftheWINDOW.EXEcontainingthecode
registering a new class of windows.
The source code of MIE02.DLL, a sample DLL used in the
previous example.
SYSDLLS.EXE lets the user selectively add and remove
DLLs in the SY S_D L LS entry in OS2.INI.

The source code of MIECC.DLL, a custom control auto-
matically loaded at system bootstrap.
USECTL creates one window of class TWENY registered
in the NIECC.DLL custom control.
The application CLIPPUT illustrates the rules for transfer-
ring information to the Clipboard.

11.2           CLIPSHOW      The application cLIPSHOw illustrates the rules for re-
trieving information from the Clipboard.

CLIENT             A sample DDE client.
SERVER             A sample DDE server.
DRAG                An example of dragging.
DROP                DROp shows how to intercept and then accept an object

via drag & drop.
PANEL              The source code of the PANEL application.
WPSFLDR         The source code of wpsFLDR.
SNOOPER         The source code of the sNOOPWps application.
CLASSES           The source code of the application CLASSES, which lists

the classes registered in WPS.
INSTALL           The source code of the INSTALL application.
PMEDIT             The source code of the PMEDIT editor.



Index

32-bit processors, 483-84

A

accelerators, 241, 287-92
in WIIEREIS application, 463

ACCELTABLE jresource, 287-92
ACC files, 501-3
action bar, 249
anchor block, 37, 515
API (Application Program hterface), 8-10
ASSOCTABLE, 236-39
asynchronous messages, 97, 98

8

binary resources, 217-18
bitmaps

as menu items, 285-86
moving, 233-36
predefined, 221-28

displaying, 226-28
B"_messages, 383-85
BKS_styles, 382-83
block scope, 38
BTNCDATA structure, 323-26
buttons, 320-29. See ¢Zso pushbuttons;

WC BUTTON class widows
BTNCDATA structure and, 323-26
interacting with, 326T27

C

CA_attributes, 400
cached micro PS, 83-85
calling convention, 15
CBM_messages, 370
CBS_styles, 369-70
CCS_styles, 388-89
child windows, 121-26

creating, 154T56
C language, 12-19
CLASSINFO structure, 312-14
class registration of windows, 122-23
CLIENT application, 598-606
cHent window, 24
Clientwindproc(), 66
Chipboard, 571-82, 694

CLIPPUT and CLIPSHOW
applications, 578-82

examining the contents of, 578
inserting data into, 574-76
retrieving the contents of, 577-78
transferring an object, with, 576

clipboard data formats, 572
Clipboard viewer, 578
CLIPPUT application, 578-80
CLIPSHOW application, 578-82
CMA_attributes, 407, 409-10
CM_ALLOCRECORD message, 393
CM_INSERTRECORD message, 398-99
CM_messages, 391-92

707



708    hdex

CM_SETCNRINFO message, 401-2
CN_notification codes, 407, 408
CODE directive, 490, 491
code segment, 487-88
colors, 695
comboboxes, 369-72
COMMANDMSG macro, 270-71, 276
COMMANDMSG structure, 276-77
compiling multithreaded applications, 514
containers. See ¢Zso WC  CONTAINER

class windows
creating, 392-93
display modes of, 389, 390, 401
objects of, 393402
proliferation of objects and, 406-7

context switch, 37
CREATESTRUCT structure, 144T45
C S_CLIPCHILDREN, 42
CS_CLIPSIBLINGS, 42
CS_FRAME, 42
CS_HITTEST, 42
CS_MOVENOTIFY, 42
C S_PARENTCLIP, 42
CS_PUBLIC, 42
CS_SAVEBITS, 42
CS_SIZEREDRAW, 42
CS_SYNCPAINT, 42
CUA 89 (Common User Access 89), 21, 23
CUA 91 (Common User Access 91), 21,

23-24

D

DATA directive, 489-91
data segment, 487-88
data types, 15-17
DDE conversations, 584-96

designing, 584-85
features of, 585-86
initiating, 586-90
invisible windows and, 596-97
permanent links and, 595
providing data to the client in, 593-95
requesting data in, 590-93
terminating, 595-96

DDE (Dynamic Data Exchange), 582nd06
CLIENT application using, 598-606
uses of, 598

debugging, 19-20. See ¢Zso IPMD debugger
DEF file (definition file), 30-31, 490-91

of a DLL, 554T58
defines, 15-16
deleting files, in WIIEREIS application,

465-68
designing OS/2 applications, objectives

of, 659-60
desktop window, 120
destroying an object, 691
device context, 82, 83
device drivers, 81-82
DevopenDC(), 86
dialog procedures, 429, 439, 440
dialog windows (dialogs), 124, 429-81

accessing controls in, 44648
creating, 432-35
default message processing and, 457-58
features of, 430-31
as frame windows, 430, 432
modal, 430, 435
modeless, 430, 435, 445, 480-81
Open box, 469-75
ownership relationship and, 44346
predefined, 476-79
presentation parameters of, 448-58

resource files and, 456
setting the presentation parameters,

452-54
Wincreatewindow() and, 454T56

templates for, 436-38
terminating, 456-57
WIIEREIS application, 458-68
WM_INITDLG message and, 441rd8

discarding, as memory management
tedique, 486

DisREThiead(), 514
DLGEDIT.EXE, 436-38
DLLs (dynamic link libraries), 45, 491, 504,

540-59. See ¢Zso import libraries
advantages of, 54244
coding, 551-52



compiling, 554
creating, 552-54
creating a new control and, 559-60
DEF file of, 554T58
definition of, 54041
executing programs that access, 548
loading

explicitly, 549-51
implicitly, 54849

producing, 54142, 544
relocation record and, 54548

DM_DRAGOVER message, 625, 628-37
return value of, 634136

DoCo-ands(), 272
DosAllocMem(), 485
DoscreateThread(), 512-14
DosError(), 463
DosFreeModule(), 549-50
DosFreeResource(), 210
DosGetlhfoBlock(), 36-37, 517-18
DosGetprty(), 518
DosGetResource(), 209, 210
DosLoadModule(), 504, 549
DosQuerycurrentDisk(), 462
DosQueryModuleHandle(), 550
DosQueryModuleName (), 550
DosQueryprocAddr(), 550
DosQueryResourcesize(), 209
DosResumeThread(), 514
DossetMem(), 485
Dossetpriority(), 516-17
Dosstartsession(), 158
DosSuspendThiead(), 514
DoswaitThread(), 514
DRAG application, 63944
drag & drop messages, 77
drag & drop operations, 197-98, 607-58

acceptance feedback and, 633-34
API involved in, 607-24
changing the cursor's look and, 631-33
DRAG application, 63944
DROP application, 64448
executing the drag, 623-24
folders and, 654T58

hdex    709

frame window-cfient window
relationship and, 636-37

functions involved in, 607-9
with icons, 228-33
fistboxes and, 650-54
message flow in, 610-11
messages involved in, 625-26
mouse messages regarding, 194
preparing objects for dropping,

625-39
preparing the image for, 622-23
receiving objects, 637-38
return value of DM DRAGOVER

message and, 634T36
selecting objects and, 613-22
titlebar dragging, 638-39
valuesets and, 645-50

DRAGIMAGE structure, 622-23
Drawcircle(), 92
DrawxMasTree(), 93-94
DrgAccessDraginfo(), 627-28, 637-38
DrgAddstrHandle(), 617
DrgAllocDraginfo(), 614-16, 620-21, 625
DrgDrag(), 623-24, 625
DrgFreeDraginfo(), 638
DrgGetps(), 633-34
DrgQueryDragitemcount(), 628, 638
DrgQueryDragitemptr(), 628, 638
DrgQuerystringName(), 629
DrgsetDraghage(), 631-32
DrgsetDragitem(), 616-17
DrgsetDragpointer(), 632
DrgverifyNativeRMF(), 630-31
DrgverifyRMF(), 630-31
DrgverifyTrueType (), 629
DrgverifyType(), 629
DrgverifyTypeset(), 629
DROP application, 64448
drop-dour menus, 241

customizing the look of, 253-55
defining, 497-99
MENUITEM directive and, 252, 253
style rules for, 256-57



710    Jhdex

E

editor for OS/2 2.1, 691-93
E.EXE, 691-93
EM_messages, 366-67
ENTRYFDATA structure, 368
entryfields

multiple line (mle), 372-80
entryfield windows, 365-68
erasing

a window's background, 94+96
ES_styles, 365-66
EXPENTRY functions, 17-18

F

FCF_flags, 50-55, 130
WC_FRAME class and, 143rd4

FCF_SYSMENU flag, 24344, 246, 249
FID_flags, 123
FILEDLG structure, 476-78
file extensions, 11
focus handling, 175-79
folders

drag & drop operations and, 654158
fonts, 695

listing, 478
frame control window, 130-32
FRAME directive, 212-13
frame window,119-20
Framewndproc(), 14344
FS_styles, 49-55
full-screen applications (FS), 3
function prototypes, 35, 36

G

General Protection Fault, 488
generic PM applications, 21, 24T25

main() function for, 65-66
sample, 67-71

GpiAssociate(), 86
GpiBox(), 303
GpicharstringAt(), 315
Gpicreateps(), 85, 86
GpiErase(), 79-80, 96

GPI functions, 82
GpiLoadBitmap(), 223, 359
GpiQueryFontMetrics(), 358

H

handles, 13-15
header files, 12-13, 34T35, 35-36
± files, 501-5

parsing, 504T5
hot spot, 188
Hungarian Notation, 17

I

ICON directive, 217-18
ICONEDIT.EXE, 219
icons

loading, 218-21
moving, 228-33
predefined, 221-28

displaying, 226-28
import libraries, 54546

producing, 558-59
initialization of an instance, 37-38
input focus, 183
INSTALL program, 684-90
instances of programs

executing several, 488-89
execution of one single instance, 159nd8

accessing the Window List, 160-63
enumerating top-level windows,

163-65
initiahization of, 37-38

integrating OS/2 applications in WPS,
660-61

IPMD debugger, 169
messages and, 104-7

K

keyboard, 183-88
menu access with, 253, 256

keyboard control codes, 185-86
KVIKRE.EXE, 20



L

listboxes. See ¢Zso WC  LISTBOX class
windows

creating, 350-53, 358-59
drag & drop operations and, 650-54
drawing items in, 361-65
handling information in, 360-61
macros used to interact with, 341
multiple selection, 34344
owner-draun, 354
reserved memory area of items in, 342T43
sending LM_messages to, 34142
simple, 34649
top-index item of, 340

LM_messages, 33942
LOADONCALL directive, 487, 489
local heap, 31
LS_OWNERDRAW style, 354

M

magic cookies, 132
main() function, 3643, 67

for a generic PM application, 65-66
main template, 283
make files, 25-31
maximized window, in Menu Maker, 493
MB_flags, 171-74
MBID_flags, 175
MDI (Multiple Document hterface), 281
memory

allocation of, 485-87
reserved

memory blocks, moving, 486
memory buffers of windows, 41, 43
menu bar, 24, 249

interactions between client windows
and, 296-97

MENUITEM directive, 251-53
menu items, 241

accelerators for, 287-92
bitmaps as, 285-86
built by the application, 286-87
categories of, 257

Ihdex     711

changing dynamically, 278-81
owner-draw-type, 287
recognizing the source of a selection of,

275-78
MENUITEM structure, 505
Menu Maker, 492-511

adding a drop-down in, 508-9
adding a top-level in, 507-8
attributes of of menu items in, 506
bitmap handle in, 506
control panel of, 495
drop-down menu in, 497-99
empty menu bar in, 493-95
functions of, 510-11
ID of menu items in, 506
interface of, 493
loading the menu template in, 502T4
maximized window in, 493
MENUITEM structure and, 505
position of menu items in, 505
saving the menu template in, 501-2, 507
separator bar in, 499-500, 509
styles in, 505-6
submenu handle in, 506
submenus in, 500-501, 509
top-level menus in, 496

menus, 241-305
drop-down, 241

customizing the look of, 253-55
defiing, 497-99
MENUITEM directive and, 252, 253
style rules for, 256-57

keyboard access to, 253, 256
loading new, 281-85
macros and, 281
parenthood and ownership of, 268nd9
run-time, 292-94
style rules for, 256-57
top-level, 241

defiling, 496-97
SUBMENU directive and, 252

window context, 195, 241, 247, 297-302,
403nd

emphasizing the client window and,
303-5



712     index

rmenus (continued)
WPS, 294L96

menu templates, 249-53. See ¢Zso Menu
Maker

changing attributes dynamically,
278-81

complex, 261-63
defiing, 258-61
loading, 265-68, 502T4
load options, 251
memory management options, 251, 252
saving, 501-2, 507
syntax rules for, 264nd5

message boxes, 169-75
message loop, 60nd5
message queue, 37, 60

creating, 39
destroying, 64

messages, 75-117. See ¢Zso WM_PAn\IT
message

categories of, 77
DDE, 582-83
flow of, 97-109

debugging, 104-7
•      definingnew messages,108-9

functions that use messages, 108
messages of predefined classes, 108
non-queued messages, 101-3
posting messages, 97-101
predefined window classes and,

308-9
queued messages, 97-99
WC_LISTBOX class windows,

349-50
windows and window procedures,

107
output handling and, 92-94
passing, 137-38
posting, 97-lot
sending,103,111-14. See ¢Zso

WinsendMsg()
Winsetwindowpos(), 60

RESSAGETABLE, 203, 209-11
RA_CHECRED, 255
RA DISABLED, 255

RA FRAMED, 255
RA_ELITED, 255
nAIA_NODlsMlss, 255
nricro PS, 85-86
mini-pushbutton, 261, 296
MIS_BITMAP, 254
NIS  BREAK, 255
MIS=BREAKSEPARATOR, 255
NIS_BUTTONSEPARATOR, 255
NIS  RELP, 254
NIS  MULTIMENU, 254
MIS_OWNERDRAW, 254
NIS_SEPARATOR, 254
NIS_STATIC, 255
NIS_SUBMENU, 254
NIS_SYSCOMMAND, 254
NIS  TEXT, 254
MLECTLDATA structure, 379-80
MLM_messages, 373-77
MLN_notification codes, 378
MM_messages, 273, 274, 279, 281
MM_QUERYITEMTEXT message, 273
MM_SETITEMATTR message, 279-81
rmemorric code, 256
hrm files, 501-2

parsing, 504T5
module definition files, 30-31. See ¢Zso

DEF file
module name, 490
mouse, 188-98. See ¢Zso drag & drop

operations
clicking the, 195
selecting objects with, 195-97

mouse pointers, predefined, 224T26
moving icons, 228-33
MQINFO structure, 529-30
multitasking, 5-7
multithreaded applications, 483-527. See

¢Jso Menu Maker
compiling, 514-15
creating, 511-14
memory allocation and, 485-87
priority classes and, 515-16
segmented applications, 487-92
WHEREIS, 519-27



N

NEWOPEN application, 478-79
NMAKE.EXE utility, 27
normal PS, 86
notebooks, 380-88, 381. See ¢Zso

WC  NOTEBOOK class windows
associating information with a page

Of ,grfffl     ,
dialogs and, 435-36
fiThg, 383-85
first try at using, 387
inserting a page in, 385-87
page tabs  of, 383, 385

0
Open box, creating a, 469-75

centering the dialog, 471-72
filling in controls, 472
input sources, 472-75
new data type, 470-71
positioning the dialog, 470
selecting a ffle, 475

0S2386.LIB, 545
owner-draw-type menu items, 287
ownership relationship, between

windows, 126-30

P

PAINT application, 115-17
painting, 78-83

execution of,115-17
synchaonous, 91-92

parent windows, 120-26
permanent links, 595
PM applications, 4T5

software tools needed for writing, 11-12
PMEDIT editor, 695-702
PM screen group, 5-8
PMSRELL.EXE, 515
PMWIN.DLL, 316-17
PMWIN.H, WM_hAINU class windows

and, 282
PMWP.H, API of, 677-84

Ihdex     713

POINTER directive, 217-18
posting messages, 97-101
predefined window classes, 3940, 4344,

orJflITiffl
as control elements, 308
creating new, 560-70
creating windows of, 318-20
message flow and, 308-9
undocunented, 318
WC_BUTTON, 320-29
WC_COMBOBOX, 369-72
WC_CONTAINER, 388410
wc_ENTRVIIELD, 365nd8
WC_LISTBOX, 338-65
WC_MLE, 372-80
WC  NOTEBOOK, 380-88
WC_SCROLLBAR, 333137
WC_SLIDER, 410-17
WC_SPINBUTTON, 417-23
WC  STATIC, 329-32
WC_TITLEBAR, 332-33
WC_VALUESET, 424T27
when to create windows of, 320
window words and, 317

preemptive multitasking, 511. See ¢Zso
multitasking

PRELOAD directive, 487, 488
Presentation Manager. See ¢Zso I.7tde#

entries starting with ``PM'
presentafronparameters,of dialogs,448i58

resource files and, 456
setting the presentation parameters,

452-54
Wincreatewindow() and, 454T56

presentation spaces, 82-86
cached micro, 83-85
device context distinguished from, 83
micro, 85-86
normal, 86
types of, 83-84

PrfQueryprogramHandle(), 158
printing, 694
priority classes, 515-19

selecting, 518-19
private data area, 31



714     hidex

processes, 5
process identification number (PID), 513
project files, 25, 30
protected mode, 488
public classes, registering, 168-69
PU_flags, for window context menu,

300-301
pushbuttons, 327-29

Q

QMSG structure, 61, 63
queued messages, 97-99
QW_flags, 125

R

RC files. See resource files
RECORDCORE structures, 393-98
RECORDINSERT structure, 397-98
registering window classes, 3941, 4546

public classes, 168-69
relocation record, 54548
reserved memory area of windows, 132-36

extending, 135-36
indexes used to access information in,

132-33
querying, 136

resource files, 31-34, 200-215
binary resources in, 217-18
FRAME directive in, 212-13
icons in, 218-21
menu templates in, 258-61
MESSAGETABLE in, 2og-11
presentation parameters and, 456
STRINGTABLE in, 2o3-9

defining computed IDs, 207-8
loading a string, 206-7
reasons for using, 208-9
syntax, 204

text resources in, 2024
WINDOWTENILATE in, 211-17

resources, ZOO:218. See also specific resources
information characterizing, 201-2

run-time menus, 292-94

S

saving
a document, 693-702
the position of a window, 153-54

SBM_messages, 333-34
SBS_styles, 333
scheduler, 5, 511, 512
screen groups, 5-7

switching among, 7
SCROLLBAR application, 335
searching and replacing text, 694
searching for a file, 459-61, 468
segmentation (segmented applications),

Iffffl-fyr2
rules of, 491-92

SEGMENTS directive, 490, 491
selecting objects with the mouse, 195-97

mouse messages regarding, 194
semaphores, 168, 512
sendingmessages.Sce¢ZsoWin.SendMsg()
separator bar, 499-500, 509

::bsLsi°;S*:j:Cj&s7,S:£:reen groups        ,
sizing icons, 24
sliders, 410-17. See ¢Zso WC_SLIDER class

windows
creating, 414
ouner-drawn, 417
structural elements of, 413

SLM_messages, 414-15
SLS_styles, 411-12, 411-14
SM_messages, 332
SNOOPER utility, 311-16, 661-68

priority classes and, 515-18
SNOOPWPS utility, 661-77

analysis of, 668-74
creating a panel for, 674-77

source code, 35-36
SPBM_messages, 419
SPBN_notification codes, 422
SPBS_styles, 418
spinbuttons, 417-24

master-servant relationship of, 421-22
sample, 422-23



SPTR_flags, 180-82
SS_styles, 330-32
static linking, 544
Stringparser(), 273
STRINGTABLE, 203-9, 347

defining computed IDs in, 207-8
loading a string from, 206-7
reasons for using, 208-9
syntax of, 204

subclassing, 136, 137, 532-37
SUBMENU directive, 251-53
submenus                             '

adding, 509
defiling, 500-501

superclassing, 537-38
SV_flags, 147-51
swapping, 486

as a memory management technique,
486

swipe selections, 339
SWP_flags, 152
syndronous, 247L49
system icons, adding, 179-82
system menu, 23-24

Apls of PM and, 24849
System Object Module (SOM), 5, 678

T

thread identification number (TID), 513
threads, 5, 511-14

creating, 512-14
maximum number of simultaneously

running, 6
PM applications and, 514-15

timers, 198-200
time-slices, 5, 518
titlebar icon, 22
titlebar menu, 24348
titlebar(s), 22, 72, 332-33

dragging, 638-39
top-index item, 340
top-level menus, 241

defining, 496-97
SUBMENU directive and, 252

hdex    715

top-level windows, 121, 122
enumerating, 163-65

U

update region, 87-88

V

valuesets, 424T27
drag & drop operations and, 645-50

virtual keys, 289-91
VM_messages, 426
VM_SETITEMATTR message, 425
VN_notification codes, 426
VS_styles, 424

W

WC_BUTTON class windows, 43, 320-29
messages specific to, 326
notification codes specific to, 326+27
styles of, 321-22

WC_COMBOBOX class windows, 43,
yfff)-J2

WC_CONTAINER class windows, 43,
388410. See ¢Zso containers

attributes of, 400
CMA_attributes of, 407, 409-10
messages of, 390-92
notification codes of, 406, 408
styles of, 388-89
window context menu and, 403nd

WC_ENTRYFIELD class windows, 43,
365-68

ENTRYFDATA structure of, 368
messages of, 366nd7
notification codes of, 367L68
styles of, 365nd6

WC_FRAME class windows, 43, 14344
WC_LISTBOX class windows, 44, 338nd5.

See ¢Zso listboxes
LM_messages associated with, 33942
message flow and, 349-50
notification codes used by, 34546
styles of, 339



716     index

WC_LISTBOX class windows (co7tfz.7tt4ed)
WM_DRAWITEM message and, 354T58
WM_NIAstJREITEM message and, 354

WC_MENU class windows, 44
styles available for creating windows

of, 295-96
WC_MLE class windows, 44, 154T56, 372T80

data structures of, 377, 379
messages specific to, 373-77
notification codes of, 377, 378

WC_NOTEBOOK class windows, 44,
380-88. See ¢Zso notebooks

notification codes of, 387
styles of, 382-83

WC_SCROLLBAR class windows, 44,
333-38

messages specific to, 333-34
styles of, 333, 334

WC_SLIDER class windows, 44, 410-17.
See ¢Jso sliders

messages of, 414-15
notification codes of, 416
styles of, 411-14

WC_SPINBUTTON class windows, 44,
417-24

messages of, 419
notification codes of, 422
styles of, 418

WC_STATIC class windows, 44, 329-32
messages specific to, 332
styles of, 330-32

WC_TITLEBAR class windows, 44, 332-33
WC_VALUESET class windows, 44, 424+27
WIIEREIS application, 458-68

accelerator table, 463
deleting files in, 465-68
error handling in, 463
executing a file in, 463-64
multithreaded, 519-27
scheme of, 461-62
searching for a ffle with, 459-61, 468
selection of a file in, 464-65

WinAddswitchEntry(), 157, 158, 163
WinBeginEnumwindows (), 163-64
WinBeginpaint(), 85-88, 92-94, 95

WinBroadcastMsg(), 166-68
Wincloseclipbrd(), 576
WincreateMsgQueue(), 39, 78, 514
Wincreatestdwindow(), 46-56, 109-10,

119-22, 138, 140, 147
CREATESTRUCT structure and, 144T45
messages and, 105-7
parameters of, 47L48, 50
potential errors with, 56

Wincreatewindow(), 4647, 13843, 147,
318-20

CREATESTRUCT structure and, 144T45
creating standard windows with, 140rd3
experiments using, 144
FCF_flags and, 14344
parameters of, 13840
presentation parameters and, 454T56
WC_FRAME class and, 14344

WinDdehitiate (), 586-90
WinDdepostMsg(), 591-93
WinDdeRespond(), 589-92
WinDefDlgproc (), 457-58
WinDefwindowproc(), 66-67, 75, 79, 146
WinDestroyMsgQueue (), 64
WihDestroyobject(), 691
WinDestroywindow(), 64, 14546
WinDismissDlg(), 456-57
WinDispatchMsg(), 63, 66, 137-38
winDlgBox(), 443, 445, 458
window classes

predefined. See predefined window
classes

registering, 3941, 4546
public classes, 168-69

styles of, 41, 42
window context menu, 195, 241, 247,

297-302, 403-6
emphasizing the client window and,

303-5
WINDOW directive, 213-14
windowed applications (WIN), 4
Window List, 7

execution of one single instance; of a
program and, 160-63

informing, 156-59



window procedures, 66-73, 529
accessing, 531-33
modifying, 269-75

windows, 4T5
adding system icons to, 179-82
dhfld, 121-26

creating, 154T56
class registration for, 122-23
closing, in multi-window applications,

146
creating, 46T56. See ¢Zso

Wincreatestdwindow();
Wincreatewindow()

destroying, 14546
dialog. See dialog windows
displaying, 56ndo
focus of, 175-79
frame, 119-20
frame control, 130-31
getting information regarding, 310-16
message box, 169-75
ownership relationship between, 126T30
parent, 120-26
reserved memory area of, 132-36

extending, 135-36
indexes used to access information

in, 132-33
querying, 136

resizing, 21
saving the position of, 153-54
sibling, 126
sizing and positioning, 147-53
top-level, 121, 122

enumerating, 163nd5
WINDOWTEhAI?LATE directive, in

resource files, 211-17
window words, 137

predefined window classes and, 317
WinDrawBitmap (), 223-24, 364
WinDrawpointer(), 225-27
WinDrawText(), 364
WinEmptyclipbrd(), 574
WinEndEnumwindows(), 163, 164
WinEndpaint(), 85, 87, 92-94
WinFillRect(), 80, 95, 112, 113

hdex    717

WinFlashwindow(), 199, 200
WinGetMessage(), 61nd4, 66
WinGetMinposition(), 153
WinGetNextwindow(), 163, 164
WinGetps(), 84-85
WinGetsysBitmap (), 223
Winhitialize (), 37
WinhvaldateRect(), 89-92, 108
Winlswindowvisible (), 134
WinLoadDlg(), 214-15
WinLoadLibrary(), 206-7
WinLoadMenu(),250,298,502,5+04
WihLoadMessage(), 210-11
WinLoadpointer(), 221
WihLoadstring(), 206, 208, 267, 315, 347
WinMapwindowpoints(), 192, 193
WinMessageBox(), 169-75

syntax of, 170
WinMultwindowFromlDs () , 448
Winopenclipbrd(), 574
WinpopupMenu(), 299-301
WinpostMsg(), 99-101, 108-9

parameters of, 100
WinQueryAnchorBlock(), 38, 161
WinQuerycapture (), 191
WinQueryclasshio(), 312, 313, 352
WinQueryclassName(), 164-65, 314
WinQueryclipbrdData(), 577
WinQueryclipbrdFmthio (), 577
WinQueryclipbrdviewer (), 5 78
WinQuerypointerpos(), 298J99, 362
WinQuerypresparam(), 451-52
WinQueryQueuelnfo(), 529
WinQueryQueuestatus(), 530-31
WinQueryswitchList(), 161, 162
WinQuerysyspointer(), 180-82, 224+25
WinQuerysysvalue (), 147-53
WinQueryTasksizepos (), 154
WinQuerywindow(), 123-26, 177

dialogs and, 443, 445
WinQuerywindowpos(), 151
WinQuerywindowprocess(), 157-58
WinQuerywindowptr(), 132, 531
WinQuerywindowRect(), 80-81
WinQuerywindowText(), 165



718     hidex

WinQuerywindowuLong(), 132, 134, 136
WinQuerywindowushort(), 132, 136
WinRegisterclass(), 4041, 45, 122-23, 135
WinReleaseps(), 84-85
WinRestorewindowpos(), 153, 154
WinsendDlgltemMsg(), 447
WinsendMsg(), 101-3, 108-9, 137-38

dialogs and, 446, 447
WinsetAccelTable (), 463
Winsetcapture(), 189-91
WinsetclipbrdData(), 574-76
Winsetcfipbrdowner(), 576
WinsetcHpbrdviewer(), 578
WinsetMultwindowpos(), 151
Winsetowner(), 128, 131
Winsetparent(), 131, 268
Winsetpresparam(), 44849
WinsetwindowBits(), 134, 135
Winsetwindowpos(), 56-60, 71-72, 151,

154
HWND_ definitions used with, 58
messages generated by, 60
SWP_flags acceptable by, 58-59

Winsetwindowptr(), 132, 136, 535
WinsetwindowText(), 72
WinsetwindowuLong(), 132, 135-36
Winsetwindowushort(), 131, 132, 135-36
Winshowwindow(), 56-57, 107, 134
WinstartTimer(), 199-200
WinstopTimer(), 200
Winstorewindowpos(), 153
Winsubclasswindow(), 534135
WinTerminate(), 64-65
WinTrackhio (), 234
WinTrackRect(), 234iiT36
Wihup datewindow(), 90-92
WinwindowFromlD(), 123-26, 267, 446L48
WinwindowFrompoint(), 192-93
WM_ACTIVATE messages, 111-13
WM_BEGINSELECT message, 196, 197
WM_BUTTONI MOTIONEND message,

196, 197
i/Vh4  BUTTONIMOTIONSTART

message, 196-97
WM_BUTTONxCLICK messages, 195

WM_CHAR messages, 183-85
WM_COMMAND message, 269-73, 276L78
WM_CONTEXTMENU message, 195,

298-302
WM_CONTROL message, 34546, 34849
WM_CREATE messages, 109-10
WM_DRAWITEM message, 354T58
WM_ENDSELECTION message, 196, 197
WM_INITDLG message, 441rd8

ownership relationship and, 44346
WM_INITMENU message, 270, 273
WM_MEASUREITEM message, 354
WM_MOUSEMOVE messages, 188-90
WM_PAINT messages, 78, 79, 87-92,

115-17. See ¢Zso messages
erasing a window's background and,

95-96
forcing, 89-91
output synchronization and, 91-92
update region and, 87-88

WM_SINGLESELECT message, 196
WM_SIZE messages, 113-14
WM_SYSCOMMAND message, 24446
WM_TIMER messages, 198-200
WM_UPDATEFRAME message, 284, 285
WPS objects, API for, 677-84
WS_GROUP style, 438
WS_styles, 48
WS_TABSTOP style, 438



How to Use the Disk

Disk Contents
The accompanying disk contains the following files:

BOOENST.EXE
NIE02.DLL
LH.EXE
OS2VVPS.LZH
PRJS.LZH
READRE:TXT
LIST.TXT

hstallation program
DLL required for installation
Shareware compression utility
Book examples
Project files
Essentially, the same material as this page
Summary of program listings

Installation Procedure
Start BOOKINST.EXE either from a full-screen OS/2 prompt or directly by double-
clicking on the Drive A Workplace Shell object. BOOKINST creates a window on the
screen with the book cover as its background.We strongly recommend that you run
OS/2 in a high-resolution mode (SVGA 600 x 800 or better); if you don't, you'1l be
abletotellinediatelyatthispoint,becausethebitmapofthecoverwillspmoffthe
top of the screen and the colors will be, well, ugly.

Simply click the right mouse button on any location in the client window q]ook
cover) to let the window context menu pop up. Choose install to start the installation
procedure. A listbox appears at the bottom of the window showing all the available
drives in the system. Select the target drive to start the installation procedure. When
it terminates, you will be notified by a beep.

719



720     HowtousetheDisk

The files are divided in 13 directories, one for each chapter. Each chapter directory
lfasaVariablenumberofsubdirectories,oneforeachcodesample.BOOKINSTcreates
the \PM32 dire.ctory on the target drive with a tree structure that resembles this:

*  z:\PM32
1-

CHAP02
I

LIST01
xxxxx;0.Myy
xxxxxl.yyy

j,              xxxxx2.yyy

where z is the target drive and ##xxxO.gryy is a generic file. BOOKINST also creates a
shadow copy of the \PM32 directory on the desktop.

Foreachexample,youalsowillfindcopiesofthe.MAKandthe.DEPfiles.Istrongly
recommend you re-create both files if you experience any problem during compila-
tiontimeorareusingadifferentversionofthecset++compiler(oranothercompiler).

You can always interrupt the installation procedure by selecting the Close menu
item in the window context menu.

Compilers
AIltheexampleshavebeenwrittenandtestedusingtheIBMCSet++2.0compfleron
an IBM PS/2 model 90 with 24MB RAM, 2 SCSI 400MB drives, and an XGA card. The
installationprocedurelooksforthe\IBMWFdirectoryinwhichtoappropriatelystore
the .PRJ files for each example provided in the book. Later versions of this compiler
might require a different location for the .PRJ files. For your convenience, all the .PRJ
files are located in each subdirectory, too.

The examples provided don't have any specific dependencies on the C Set++
compiler. Recompilation with other OS/2 C/C++ compilers requires the creation of
only appropriate project files.





LigivATF/ADVAN(EP____I

OPERAT!N6  SYSTEM

.¢'
RANDOM HOUSE
ELECTRONIC PUBLISHING

Design Applications for OS/2 2.1, lBM's MulTiThreaded
Operating System for the PC

OS/2  2. I   is the latest release of lBM's multitasking  environment for the
PC  platform.  Using  its Workplace shell, you can develop applications
that stand out,  not only for their user interface,  but for their inner work-
•lrgs as w.ell.  OS/2  2._1. \^(erkplc!ce Shell  Programming   gu.ides you

through the process of building those applications, with examples
throughout the text and source code supplied on the enclosed  3.5-inch
d.isk. In add.i+.ion,  OS/2  2. I  Workplace-Shell  Programming covers..

I The OS/2  2.1  system architecture
I- Memory management
I The graphics display interface
11 OS/2  2. I  programming tools

Using OS/2  2. I  will enable you to enioy the advantages of
lnterprocess Communications,  a flat memory model,  semaphores,  and

protected  memory. The programming  languages that can  be used with
OS/2  2.1  are those most commonly found on other hardware and soft-
ware platforms, although OS/2  has a strong  bias toward C and C++
because of their flexibility and  power.

You'Il  find that the following  features,  among others,  distinguish  OS/2
2.1  from  other operating  systems:

I lt has the ability to exploit all  the  power of a  fully p'reemptive  multi-
tasking system, which  means better performance and a  higher level of

protection  for each task in  execution.
I The Workplace Shell  is the system  interface as well  as the first appli-
cation that fully benefits from the system's Apl,  the Presentation
Manager, and the objects of the System Object Model, alanguage-
neutral environment for defining,  managing,  and  interacting with class
libraries.
I OS/2  2.1  is simple and  intuitive to use,  thanks to the Workplace
Shell, which  is a  new breed of obiect-oriented  user interface.
I All  IBM development tools are supported  by rich  on-line documenta-
tion,  and are full of cross-references that make it a  breeze to use.

Stefono Maruzzi is a leading authority on OS/2 2. I , and is the author
of several best-selling computer books in Italian.

ISBN  0-679-79162-0

o-4;]979ierHfj
U.S.  $44.00

Can.  $58.00 780679 791621

54400


